OFFICERS DON KNABE PRESIDENT

RERNARD C. PARKS VICE PRESIDENT

MARGARET U. FARNUM
ADMINISTRATIVE OFFICER

'ATRICK T. LYNCH ENERAL MANAGER



SITE OF 1932 AND 1984
OLYMPICS ATHLETICS COMPETITION
OPENING & CLOSING CEREMONIES



SITE OF 1984 OLYMPICS BOXING COMPETITION

FAX: (213) 746-9346

STATE OF CALIFORNIA
WILLIAM J. CHADWICK
A. LARRY CHAPMAN
ROBERT H. McNEILL, JR.

FRANKLIN E. ULF ALTERNATE

COUNTY OF LOS ANGELES YVONNE BRATHWAITE BURKE DON KNABE ZEV YAROSLAVSKY

> MICHAEL D. ANTONOVICH ALTERNATE

CITY OF LOS ANGELES
BERNARD C. PARKS
MIKE ROOS
LISA SPECHT

CHRISTOPHER W. HAMMOND NATE HOLDEN ALTERNATES

# NOTICE OF COMPLETION OF THE DRAFT ENVIRONMENTAL IMPACT REPORT FOR THE LOS ANGELES MEMORIAL COLISEUM RENOVATION PROJECT

LOS ANGELES MEMORIAL COLISEUM COMMISSION

COLISEUM, 3911 S. FIGUEROA ST. • (213) 765-6711 • SPORTS ARENA, 3939 S. FIGUEROA ST. • (213) 748-6136

LOS ANGELES, CALIFORNIA 90037

TO:

All Concerned Public Agencies, Organizations and Individuals

FROM:

The Los Angeles Memorial Coliseum Commission

**PROJECT** 

LOCATION:

FAX: (213) 748-5828

Los Angeles Memorial Coliseum,

3911 South Figueroa Street, Los Angeles, California

DATE:

September 5, 2003

Pursuant to the California Environmental Quality Act (P.R.C.§21000 et seq.), the Los Angeles Memorial Coliseum Commission ("Coliseum Commission"), as the Lead Agency, is providing public notice that it has completed a Draft Environmental Impact Report (Draft EIR) for the Los Angeles Memorial Coliseum Renovation Project ("Proposed Project").

#### **Project Location**

The Los Angeles Memorial Coliseum ("Coliseum") occupies a 27.4-acre parcel of land within the boundaries of the Exposition Park Master Plan Area. Exposition Park is located approximately two miles southwest of the downtown Los Angeles area and encompasses a total of 160 acres. Exposition Park is bounded by Exposition Blvd. to the north, Figueroa St. on the east, Martin Luther King Jr. Blvd. on the south, and Vermont Ave. on the west. The Coliseum is generally situated in the center of Exposition Park.

#### **Project Description**

The Proposed Project includes a conceptual plan to renovate the Coliseum, including the rehabilitation of portions of the 27.4-acre project site surrounding and containing the Coliseum structure itself. The Proposed conceptual design would reduce the fixed seating capacity for all

#### Notice of Completion of the Draft EIR for the Los Angeles Memorial Coliseum Renovation Project September 5, 2003

events from the existing level of 92,500 seats to a maximum of approximately 78,000 seats. In addition, the conceptual design includes approximately 200 luxury suites and two approximate 20,000-square-foot structures outside of the stadium for ancillary retail or office use. One of the principle goals of the Proposed Project is to renovate the Coliseum in conformance with the generally accepted standards of design for National Football League (NFL) stadiums, thus enabling the Coliseum Commission to support an NFL franchise in the City of Los Angeles. The NFL and USC Trojans football teams would be the primary tenants at the Coliseum, holding all of their home games in the stadium. Other events that would be held at the renovated Coliseum would include those already occurring such as soccer matches, off-road vehicle events, political rallies, concerts and other cultural events.

The Proposed conceptual design will retain and restore as much of the existing Coliseum façade, bowl geometry and seating areas as physically and practically possible, within the constraints of operational, programmatic and historic restoration guidelines. The Proposed Project would be constructed over an approximate 18- to 20-month period. Current plans call for the commencement of construction activities in 2004 with completion by 2006.

#### **Probable Environmental Effects**

In summary, the Draft EIR concludes that the Proposed Project would result in less than significant environmental impacts for the following issue areas: Aesthetics (Visual Impacts, Light and Glare), Land Use, Noise, Geology/Seismic Hazards, Public Services (Police and Fire), Public Utilities (Energy Conservation, Water Conservation, Wastewater, Solid Waste), and Parking. The Draft EIR found the Proposed Project would result in significant and unavoidable environmental impacts for the following issue areas: Air Quality, Cultural and Historical Resources, and Traffic.

#### **Public and Agency Comment**

In accordance with the State CEQA Guidelines (C.C.R. § 15105), the Draft EIR will be circulated for a 45-day review period beginning September 8, 2003. During this period, all public agencies, interested individuals and organizations are encouraged to provide written comments regarding the adequacy and completeness of the EIR. All comments should be submitted in writing to the Coliseum Commission at the following address no later than October 22, 2003:

Los Angeles Memorial Coliseum Commission Attn: Margaret Farnum, Chief Administrative Officer 3911 S. Figueroa Street Los Angeles, California, 90037 Fax: (213) 748-5828

The Draft EIR will be made available to the general public at the address listed above. Copies of the Draft EIR will also be made available to view in electronic format on the Coliseum Commission's official website at <a href="http://www.lacoliseum.com">http://www.lacoliseum.com</a>.

# LOS ANGELES MEMORIAL COLISEUM RENOVATION PROJECT



# DRAFT ENVIRONMENTAL IMPACT REPORT

Prepared for:
Los Angeles Memorial Coliseum Commission

September 5, 2003 SCH# 1990011065

#### Prepared by:



CHRISTOPHER A. JOSEPH & ASSOCIATES Environmental Planning and Research

11849 W. Olympic Boulevard, Suite 101 · Los Angeles, CA 90064 · Phone 310-473-1600 · Fax 310-473-9336 31255 Cedar Valley Drive, Suite 222 · Westlake Village, CA 91362 · Phone 818-782-9708 · Fax 818-735-8858 101 H Street, Suite Q · Petaluma, CA 94952 · Phone 707-283-4040 · Fax 707-283-4041 e-mail cajaeir@cajaeir.com

### TABLE OF CONTENTS

| Chapte | <u>er</u>                                                                      |                    |                       |        | <u>Page</u> |
|--------|--------------------------------------------------------------------------------|--------------------|-----------------------|--------|-------------|
| I.     | INTRO                                                                          | DDUCTION           |                       |        |             |
| П.     | EXEC                                                                           | JTIVE SUMMARYII-1  |                       |        |             |
| III.   | PROJECT DESCRIPTION                                                            |                    |                       |        |             |
|        | A.                                                                             | Location and       | Boundaries of Projec  | t Site | III.A-1     |
|        | B.                                                                             | Project Back       | ground and Objectives | S      | III.B-1     |
|        | C.                                                                             | Project Chara      | acteristics           |        | III.C-1     |
| IV.    | OVERVIEW OF ENVIRONMENTAL SETTING                                              |                    |                       |        |             |
|        | A.                                                                             | Environment        | al Setting            |        | IV.A-1      |
|        | B.                                                                             | Analytical A       | ssumptions            |        | IV.B-1      |
|        | C.                                                                             | Cumulative I       | Related Projects      |        | IV.C-1      |
| V.     | ENVIRONMENTAL IMPACT ANALYSIS                                                  |                    |                       |        |             |
|        | A.                                                                             | Aesthetics         |                       |        |             |
|        |                                                                                | 1. Visua           | ıl Impacts            |        | V.A.1-1     |
|        |                                                                                | 2. Light           | and Glare             |        | V.A.2-1     |
|        | B. Air Quality  C. Cultural and Historic Resources  D. Geology/Seismic Hazards |                    | V.B-1                 |        |             |
|        |                                                                                |                    | V.C-1                 |        |             |
|        |                                                                                |                    | V.D-1                 |        |             |
|        | E.                                                                             | Land Use           |                       |        | V.E-1       |
|        | F.                                                                             | Noise              |                       | •••••  | V.F-1       |
|        | G.                                                                             | G. Public Services |                       |        |             |
|        |                                                                                | 1. Fire            | Protection            |        | V.G.1-1     |

|       |       | 2.                              | Police ProtectionV                                           | .G.2-1           |
|-------|-------|---------------------------------|--------------------------------------------------------------|------------------|
|       | Н.    | Public                          | Utilities                                                    |                  |
|       |       | 1.                              | Energy ConservationV                                         | .H.1-1           |
|       |       | 2.                              | Water ConservationV                                          | .H.2-1           |
|       |       | 3.                              | Sanitary SewersV                                             | .H.3-1           |
|       |       | 4.                              | Solid Waste and DisposalV                                    | .H.4-1           |
|       | I.    | Traffic                         | c, Access and Parking                                        |                  |
|       |       | 1.                              | Traffic and Access                                           | 7. <b>I</b> .1-1 |
|       |       | 2.                              | Parking                                                      | 7.I.2-1          |
| VI.   | GENE  | ERAL IM                         | MPACT CATEGORIES                                             |                  |
|       | A.    | Summa                           | ary of Significant Unavoidable Impacts                       | VI.A-1           |
|       | B.    | Growth                          | h-Inducing Impacts                                           | VI.B-1           |
|       | C.    | Effects                         | s Found Not to be Significant                                | VI.C-1           |
| VII.  | ALTE  | RNATIV                          | VES TO THE PROPOSED PROJECT                                  |                  |
|       | A.    | Introdu                         | uction V                                                     | II.A-1           |
|       | B.    | No ProjectVII.B-1               |                                                              |                  |
|       | C.    | Alternate Design (Without Roof) |                                                              |                  |
|       | D.    | Alterna                         | ative SitesV                                                 | II.D-1           |
|       | E.    | Enviro                          | nmentally Superior Alternative                               | ⁄П.Е-1           |
| VIII. |       |                                 | IONS AND INDIVIDUALS CONTRIBUTING TO THE ON OF THIS DOCUMENT | VIII-1           |
| IX.   | REFEI | RENCES                          | 5                                                            | IX-1             |

### **APPENDICES**

Appendix A: Notice of Preparation and NOP Response Letters

Appendix B: Air Quality Analysis Worksheets

Appendix C: Acoustic Report
Appendix D: Traffic Impact Study

### **FIGURES**

| <u>Figure</u> |                                                         | Page     |
|---------------|---------------------------------------------------------|----------|
| III-1         | Project Location Map                                    | III.A-2  |
| III-2         | Project Vicinity Map                                    | III.A-3  |
| III-3         | Conceptual Historic Fabric Retention Plan               | III.B-4  |
| III-4         | Conceptual Model Rendering -Northwesterly Overhead View | III.C-2  |
| III-5         | Conceptual Model Rendering -Westerly Overhead View      | III.C-3  |
| III-6         | Conceptual Model Rendering -Southwesterly Overhead View | III.C-4  |
| III-7         | Conceptual Model Rendering -Easterly Overhead View      | III.C-5  |
| III-8         | Conceptual d Site Plan - Field Level                    | III.C-10 |
| III-9         | Conceptual Site Plan -Service Level                     | III.C-11 |
| III-10        | Conceptual Site Plan - Lower Club/Plaza Suite Level     | III.C-13 |
| III-11        | Conceptual Site Plan - Plaza Level/Main Concourse       | III.C-14 |
| III-12        | Conceptual Site Plan – Mid-Suite Level                  | III.C-15 |
| III-13        | Conceptual Site Plan - Club Level                       | III.C-16 |
| III-14        | Conceptual Site Plan – Upper Suite/Press Level          | III.C-17 |
| III-15        | Conceptual Elevation – Upper Concourse                  | III.C-18 |
| III-16        | Conceptual Plan - Overall Seating Bowl                  | III.C-20 |
| III-17        | Conceptual Elevation - Roof Plan                        | III.C-21 |
| III-18        | Conceptual Elevation - Temporary Expansion Seating      | III.C-22 |
| III-19        | Conceptual Elevation – 50 Yard Line Section             | III.C-23 |
| III-20        | Conceptual Elevation - East End Zone Section            | III.C-24 |
| III-21        | Conceptual Elevation - West End Zone Section            | III.C-25 |
| IV.A-1        | Aerial Photograph of the Project Site                   | IV.A-5   |
| IV.C-1        | Related Projects Location Map                           | IV.C-5   |
| V.A.1-1       | Photograph Location Map                                 | V.A.1-9  |
| V.A.1-2       | Views of the Project Site, Views 1, 2, and 3            | V.A.1-10 |
| V.A.1-3       | Views of the Project Site, Views 4 and 5                | V.A.1-11 |
| V.A.1-4       | Views of the Project Site, Views 6, 7, and 8            | V.A.1-12 |
| V.A.1-5       | Views of the Project Site, Views 9, 10, and 11          | V.A.1-14 |
| V.A.1-6       | Views of the Project Site, Views 12, 13, and 14         | V.A.1-16 |

# FIGURES (continued)

| V.A.2-1  | Illustration of the Proposed Project                                | V.A.2-5  |
|----------|---------------------------------------------------------------------|----------|
| V.C-1    | Historic Views of the Project Site, Views 1, 2, and 3               | V.C-5    |
| V.C-2    | Historic and Present Day Views of the Project Site, Views 4 and 5   | V.C-20   |
| V.C-3    | Historic and Present Day Views of the Project Site, Views 6 and 7   | V.C-21   |
| V.C-4    | Historic and Present Day Views of the Project Site, Views 8 and 9   | V.C-22   |
| V.C-5    | Historic and Present Day Views of the Project Site, Views 10 and 11 | V.C-23   |
| V.D-1    | Geologic Soils Map                                                  | V.D-4    |
| V.D-2    | Major Regional Faults                                               | V.D-7    |
| V.E-1    | Aerial Photograph of the Project Site                               | V.E-2    |
| V.E-2    | South Central Los Angeles Community Plan General Land Use Map       | V.E-6    |
| V.E-3    | Hoover Redevelopment Area                                           | V.E-8    |
| V.E-4    | Land Use Designations                                               | V.E-9    |
| V.F-1    | Typical Noise Levels                                                | V.F-3    |
| V.F-2    | Noise Sensitive Receptor Locations                                  | V.F-8    |
| V.F-3    | Time History Correlation of Noise Levels During Football Games      | V.F-9    |
| V.G.1-1  | Fire Station Location Map                                           | V.G.1-3  |
| V.G.2-1  | Police Station Location Map                                         | V.G.2-2  |
| V.I.1-1  | Study Location and Analyzed Intersections                           | V.I.1-4  |
| V.I.1-2  | Existing Transit Services                                           | V.I.1-6  |
| V.I.1-3  | Existing Weekend Traffic Volumes Without Project                    | V.I.1-11 |
| V.I.1-4  | Existing Weekday Traffic Volumes Without Project                    | V.I.1-13 |
| V.I.1-5  | Pre Event Weekend Traffic Volumes With Project                      | V.I.1-16 |
| V.I.1-6  | Post Event Weekend Traffic Volumes With Project                     | V.I.1-17 |
| V.I.1-7  | Cumulative Development Projects                                     | V.I.1-19 |
| V.I.1-8  | Cumulative Base Weekday Traffic Volumes                             | V.I.1-20 |
| V.I.1-9  | Project Traffic Distribution                                        | V.I.1-23 |
| V.I.1-10 | Parking Entrances and Restrictions                                  | V.I.1-25 |
| V.I.1-11 | Project Only Weekday Traffic Volumes                                | V.I.1-26 |
| V.I.1-12 | Cumulative Base Plus Project Weekday Traffic Volumes                | V.I.1-27 |
| V.I.1-13 | Pre Event Turn Prohibitions                                         | V.I.1-39 |
| V.I.2-1  | Parking Inventory                                                   | V.I.2-3  |
| V.I.2-2  | Location for Yard and Off-Street Parking                            | V.I.2-5  |
| VII-1    | Alternative Sites (City of Carson/City of Pasadena)                 | VII.A-4  |
| VII-2    | Alternative Sites Evaluated by the City of Los Angeles CRA          | VII.D-2  |

# **TABLES**

| <u>Table</u> |                                                                               | Page        |
|--------------|-------------------------------------------------------------------------------|-------------|
| III.C-1      | Coliseum Event Profile - Average and Maximum Attendance Levels (1999-2002     | 2) III.C-8  |
| IV.A-1       | Exposition Park Facilities                                                    | IV.A-3      |
| IV.A-2       | Existing Development on Project Site                                          | IV.A-8      |
| IV.A-3       | Los Angeles Memorial Coliseum – Existing Event Profile                        | IV.A-9      |
| IV.B-1       | Coliseum Event Profile - Average and Maximum Attendance Levels (1999-2002     | )IV.B-3     |
| IV.C-1       | Related Projects List                                                         | IV.C-2      |
| V.B-1        | Ambient Air Quality Standards                                                 | V.B-4       |
| V.B-2        | Air Quality Data Source Receptor Area 1 - North Main Street Monitoring Statio | nV.B-7      |
| V.B-3        | Existing Coliseum Mobile Emissions By Event Type                              | V.B-9       |
| V.B-4        | SCAQMD Significance Thresholds (lbs/day)                                      | V.B-10      |
| V.B-5        | Maximum Daily Construction Emissions                                          | V.B-12      |
| V.B-6        | Future Coliseum Mobile Emissions by Event                                     | V.B-13      |
| V.B-7        | Cumulative Project Operational Impact Analysis                                | V.B-15      |
| V.B-8        | Daily Construction Emissions Without and With Mitigation                      | V.B-17      |
| V.D-1        | Characteristics of Major Faults in the Project Vicinity                       | V.D-8       |
| V.F-1        | Commonly-Used Terms Relating to Noise                                         | V.F-2       |
| V.F-2        | Sound Measurement Locations                                                   | V.F-7       |
| V.F-3        | Sound Measurement Duration                                                    | V.F-10      |
| V.F-4        | Sound Measurements (in dBA) and Percentage of Audible Noise from the Colise   | um . V.F-12 |
| V.F-5        | Outdoor Construction Noise Levels                                             | V.F-13      |
| V.G.2-1      | 2002 Crime Statistics for RD 378, Southwest Area and Citywide                 | V.G.2-3     |
| V.H.1-1      | Existing Electricity Consumption                                              | V.H.1-3     |
| V.H.1-2      | Existing Natural Gas Consumption                                              | V.H.1-4     |
| V.H.1-3      | Construction Equipment Fuel Consumption                                       | V.H.1-6     |
| V.H.1-4      | Proposed Project Electricity Consumption                                      | V.H.1-7     |
| V.H.1-5      | Proposed Project Natural Gas Consumption                                      | V.H.1-10    |
| V.H.1-6      | Estimated Electricity Consumption by Related Projects                         | V.H.1-12    |
| V.H.1-7      | Estimated Natural Gas Consumption by Related Projects                         | V.H.1-13    |
| V.H.2-1      | Existing Water Consumption                                                    | V.H.2-2     |
| V.H.2-2      | Proposed Project Water Consumption on Event Days                              | V.H.2-4     |
| V.H.2-3      | Proposed Project Water Consumption on Non-Event Days                          | V.H.2-4     |
| V.H.2-4      | Estimated Water Consumption by Related Projects                               | V.H.2-6     |
| V.H.3-1      | Existing Wastewater Generation.                                               | V.H.3-3     |
| V.H.3-2      | Proposed Project Wastewater Generation on Event Days                          | V.H.3-5     |
|              |                                                                               |             |

## TABLES (continued)

| V.H.3-3 | Proposed Project Wastewater Generation on Non-Event Days               | V.H.3-6  |
|---------|------------------------------------------------------------------------|----------|
| V.H.3-4 | Estimated Wastewater Generation by Related Projects                    | V.H.3-6  |
| V.H.4-1 | Existing Solid Waste Generation                                        | V.H.4-3  |
| V.H.4-2 | Proposed Project Solid Waste Generation                                | V.H.4-4  |
| V.H.4-3 | Estimated Solid Waste Generation by Related Projects                   | V.H.4-6  |
| V.I.1-1 | Level of Service Definitions for Signalized Intersections              | V.I.1-9  |
| V.I.1-2 | Intersection Level of Service Analysis - Existing Conditions           | V.I.1-12 |
| V.I.1-3 | Average Vehicle Occupancy Based on Historical Coliseum Data            | V.I.1-22 |
| V.I.1-4 | LADOT Significant Traffic Impact Criteria for Intersections            | V.I.1-28 |
| V.I.1-5 | Pre-Event Intersection Level of Service Analysis - Weekend Conditions  | V.I.1-30 |
| V.I.1-6 | Post-Event Intersection Level of Service Analysis - Weekend Conditions | V.I.1-32 |
| V.I.1-7 | Weekday Intersection Level of Service Analysis, Pre-Event Hour         |          |
|         | Cumulative Base and Cumulative Plus Project Conditions                 | V.I.1-33 |
| V.I.1-8 | CMP Freeway Level of Service Analysis - Weekday PM Pre-Event Hour      | V.I.1-36 |
| V.I.2-1 | Parking Demand Summary                                                 | V.I.2-4  |

#### I. INTRODUCTION

#### OVERVIEW OF THE ENVIRONMENTAL REVIEW PROCESS

The California Environmental Quality Act (CEQA) (Public Resources Code (P.R.C.) Division 13, § 21000 et seq.) was enacted in 1970 with the main objective of providing public disclosure to inform Decision-Makers and the public of the significant environmental effects of proposed activities and to require agencies to avoid or reduce the environmental effects by implementing feasible alternatives or mitigation measures.

CEQA applies to all discretionary activities proposed to be carried out or approved by California public agencies, including state, regional, county, and local agencies. The proposed Los Angeles Memorial Coliseum Renovation Project ("Proposed Project") requires discretionary approval from the Los Angeles Memorial Coliseum Commission ("Coliseum Commission") and, therefore, is subject to the environmental review requirements established under CEQA. For purposes of complying with CEQA, the Coliseum Commission is identified as the Lead Agency for the Proposed Project.

This Draft Environmental Impact Report (EIR) is a "Project EIR" prepared in accordance with CEQA and the State CEQA Guidelines (California Code of Regulations (C.C.R.), Title 14, Division 6, Chapter 3, § 15000-15387, as amended). As provided by the State CEQA Guidelines § 15121(a):

"An EIR is an informational document which will inform public agency decision-makers and the public generally of the significant environmental effect of a project, identify possible ways to minimize the significant effects, and describe reasonable alternatives to the project. The public agency shall consider the information in the EIR along with other information which may be presented to the agency."

The subject of this Draft EIR is the proposed renovation of the Los Angeles Memorial Coliseum ("Proposed Project"), located at 3911 South Figueroa Street in the City of Los Angeles. For a detailed description of the Proposed Project, see Section III.C, Project Characteristics. For a detailed description of the Project Site and the surrounding locale, see Section IV.A, Overview of Environmental Setting.

As Lead Agency for the Proposed Project, the Coliseum Commission conducted an initial review of the Proposed Project's potential impacts and determined that the Project could have a significant effect on the environment and has required that an EIR be prepared. On May 22, 2003, the Coliseum Commission distributed a Notice of Preparation (NOP) and project description to local and regional responsible agencies and other interested parties. Written responses to the NOP (received during a 30-day comment period ending on June 23, 2003) were evaluated and considered in the development of this Draft EIR. A matrix identifying each NOP respondent and categorizing each response by subject matter is contained in Appendix A to this report. Copies of each response are also contained in Appendix A to this report.

Based upon the initial review of the Proposed Project and a review of the NOP responses from responsible and trustee agencies, and other interested organizations and preservation interest groups, the EIR focuses on the following set of issues:

- Aesthetics (Visual Impacts and Light and Glare);
- Air Quality;
- Cultural and Historic Resources;
- Geology/Seismic Hazards;
- Land Use;
- Noise:
- Public Services (Fire and Police Services);
- Public Utilities (Energy Conservation, Water Conservation, Sanitary Sewers, Solid Waste Disposal); and
- Traffic, Access and Parking.

#### FORMAT OF THE EIR

Including this introductory Chapter, this Project EIR is comprised of nine Sections.

Section II of this EIR includes a concise summary of the probable environmental effects of the Proposed Project, mitigation measures and the levels of significance assuming all of the identified mitigation measures are implemented.

Section III of this EIR includes the Project Description. The Project Description is comprised of three subsections, including: the location and boundaries, the project objectives and the project characteristics.

Section IV of this EIR provides an overview of the environmental setting. This Section includes a description of the environmental conditions at the time the NOP was published, a statement of the analytical assumptions that were employed in preparing the analyses, and a description of cumulative related projects.

Section V of this EIR includes the environmental impact analysis for the proposed project. The environmental impact analysis section includes detailed analysis on nine environmental issue areas, as previously identified above. Each analysis provides a detailed account of the environmental setting, a statement of the thresholds of significance in which the potential impacts were evaluated, a list if feasible mitigation measures (if applicable), a cumulative impact analysis, and a statement of the level of environmental impact after implementation of the recommended or required mitigation measures.

14

ئتند

Section VI of this Draft EIR includes a discussion of mandatory general impact statements including: a summary of significant unavoidable impacts of the Proposed Project, growth-inducing impacts of the Proposed Project, and effects of the Proposed Project found not to be significant.

Additionally, CEQA requires that the EIR include a reasonable range of project alternatives that may reduce the effects of the proposed project. Section VII, Alternative to the Proposed Project, includes an analysis of the following Project Alternatives:

- 1) No Project Alternative;
- 2) Alternative Design Without Roof Structure;
- 3) Evaluation of Alternative Site(s).

Section VIII of this EIR includes a list of organizations and persons consulted during the preparation of the EIR.

Section IX of this EIR includes a list of references and acronyms used in creating this environmental report.

#### PUBLIC PARTICIPATION

To provide full public disclosure of potential environmental impacts that may occur as a result of a Proposed Project, CEQA requires that Draft EIRs be noticed and circulated to all responsible and trustee agencies as well as the general public. In accordance with the State CEQA Guidelines, this Draft EIR will be circulated for a 45-day review period. During this period, all public agencies and interested individuals and organizations are encouraged to provide written comments addressing their concerns with the adequacy and completeness of the EIR. When providing written comments on the subject matter of the EIR, the readers are referred to State CEQA Guidelines, 15204(a), which state:

"In reviewing Draft EIRs, persons, and public agencies should focus on the sufficiency of the document in identifying and analyzing the possible impacts on the environment and ways in which the significant effects of the project might be avoided or mitigated. Comments are most helpful when they suggest additional specific alternatives or mitigation measures that would provide better ways to avoid or mitigate the significant environmental effects. At the same time, reviewers should be aware that the adequacy of an EIR is determined in terms of what is reasonably feasible, in light of factors such as the magnitude of the project at issue, the severity of its likely environmental impacts, and the geographic scope of the project. CEQA does not require a lead agency to conduct every test or perform all research, study, and experimentation recommended or demanded by commentors. When responding to comments, lead agencies need

only respond to significant environmental issues and do not need to provide all information requested by reviewers, as long as a good faith effort at full disclosure is made in the EIR."

The 45-day public review period will commence on September 8, 2003 and end on October 22, 2003. All comments regarding the adequacy of the Draft EIR should be submitted in writing to the Coliseum Commission at the following address no later than October 22, 2003:

Los Angeles Memorial Coliseum Commission Attn: Margaret Farnum, Chief Administrative Officer 3911 S. Figueroa Street Los Angeles, California, 90037

Fax: (213) 748-5828

The Draft EIR will be made available to the general public at the address listed above. Copies of the Draft EIR will also be made available to view in electronic format on the Coliseum Commission's official website at <a href="http://www.lacoliseum.com">http://www.lacoliseum.com</a>. Public and agency notice of availability of the Draft EIR will be made in accordance with CEQA. Following the public review period, the Lead Agency will prepare a Final EIR. The Final EIR will include additions and corrections to the Draft EIR, as warranted, and will include written responses addressing the comments and recommendations received by individuals, organizations, and public agencies during the review period.

#### INTENDED USES OF THIS EIR

Pursuant to Section 15124 (d) of the CEQA Guidelines, the following section describes the intended uses of this EIR, to the extent that this information is known at the time of this writing. The purpose of this EIR is to provide an objective analysis of the environmental implications of the Proposed Project through the evaluation of potentially significant environmental issues. In addition, feasible mitigation measures are recommended, when applicable, that could reduce such adverse impacts to insignificant levels.

#### **Public Agency Actions**

The Proposed Project will require the following discretionary approvals from the Los Angeles Memorial Coliseum Commission, the designated Lead Agency:

- Certification of the Final Environmental Impact Report;
- Approval of the Mitigation Monitoring Program;
- Approval of the Development and Concept Plan.

Other ministerial and/or discretionary approvals required in order to execute and implement the Proposed Project, as necessary, may include but are not limited to permits for excavation, shoring, barricades in public ways, and installation of public improvements; permits that may include grading, foundation support, and building permits; required permits for mechanical, electrical, plumbing, and heating/ventilating/air conditioning (HVAC) system; and approval of a haul route for export of soil/debris materials. Jurisdiction for such permits and/or approvals may be ceded to the City of Los Angeles, County of Los Angeles or State of California, as may be appropriate.

#### II. EXECUTIVE SUMMARY

This EIR has been prepared at the direction and under the supervision of the Los Angeles Memorial Coliseum Commission ("Coliseum Commission)" in accordance with the California Environmental Quality Act (CEQA)<sup>1</sup> and the Guidelines for Implementation of CEQA (State CEQA Guidelines)<sup>2</sup>, as amended. The Coliseum Commission is the Lead Agency for the EIR pursuant to CEQA.

This Executive Summary provides a brief description of the Proposed Project, a summary of the potential environmental impacts, mitigation measures, and levels of impact after mitigation.

#### PROJECT LOCATION

The Los Angeles Memorial Coliseum ("Coliseum") occupies a 27.4-acre parcel of land within the boundaries of the Exposition Park Master Plan Area. Exposition Park is located approximately two miles southwest of the downtown Los Angeles area and encompasses a total of 160 acres. Exposition Park is bounded by Exposition Boulevard to the north, Figueroa Street on the east, Martin Luther King Jr. Boulevard on the south, and Vermont Avenue on the west. The Coliseum is generally situated in the center of Exposition Park. The 27.4-acre parcel of land that includes the Coliseum and the areas immediately surrounding the Coliseum define the "Project Site."

Other land uses immediately adjacent to the Project Site include grass-covered athletic fields and surface parking for Exposition Park facilities across Menlo Avenue to the west, the Los Angeles Memorial Sports Arena and adjacent surface parking across South Coliseum Drive to the southeast, and the California Science Center and the Los Angeles County Museum of Natural History across North Coliseum Drive to the north. All of these adjacent facilities are also within Exposition Park. All of Exposition Park, including the Coliseum, is located within the City of Los Angeles in the City's South Central Los Angeles District Plan area.

#### PROJECT CHARACTERISTICS

The Proposed Project would reduce the Coliseum's existing maximum seating capacity from 92,500 persons for all events to approximately 78,000 persons. The renovation includes the addition of approximately 200 luxury suites and two approximate 20,000-square-foot structures outside of the stadium for ancillary retail or office use. The NFL and USC Trojans football teams would be the primary tenants at the Coliseum, holding all of their home games in the stadium. Other events that would be held at the

State of California Public Resources Code Section 21000 et. seq.

<sup>&</sup>lt;sup>2</sup> California Code of Regulations (CCR), Title 14, Sections 15000 et seq.

renovated Coliseum would include those already occurring such as international soccer matches, off-road vehicle events, public speaking events, political rallies, and concert performances.

The existing exterior wall of the Coliseum would remain virtually intact and existing ancillary structures would be removed. The Peristyle end of the Coliseum would remain intact, along with the adjacent Coliseum Commission offices. New press facilities would be integrated into the upper suite level, eliminating the press box that currently extends above the exterior wall of the seating bowl. The interior of the renovated Coliseum would continue to feature the Peristyle as the dominant architectural element in the east end of the bowl. The color video board, black and white matrix boards and sound clusters that are currently attached to the top of the Peristyle would be removed and relocated to other areas of the stadium. Pedestrian access to the Project Site would continue to remain substantially as at present from the outlying parking areas off-site. The existing perimeter fence bordering the Peristyle area of the Coliseum would be removed, providing increased general pubic open space areas immediately surrounding the Coliseum. No major alterations to the existing parking arrangement(s) at the Coliseum are contemplated as part of the Proposed Project

The Proposed Project would be constructed over an approximate 18 to 20-month period. Current plans call for the commencement of construction activities in 2004 with completion of the renovations to be achieved by 2006.

#### SUMMARY OF ENVIRONMENTAL IMPACTS

#### Unavoidable Significant Environmental Impacts

The Proposed Project would result in significant unavoidable environmental impacts for the following environmental issue areas:

- Air Quality (construction and operational),
- Cultural and Historic Resources, and
- Traffic

Refer to Section VI.A, Unavoidable Significant Environmental Impacts, for discussion on each of these impact areas.

#### Effects Found Not to be Significant

The following environmental impact or issue areas were determined to have less than significant impacts and would not require analysis or mitigation: Agricultural resources, Biological Resources, Hazards and Hazardous Materials, Mineral Resources, and Population and Housing. Refer to Section VI.C. Effects Found Not to be Significant, for discussion on each of these impact areas.

The EIR included a detailed discussion of the following environmental issue areas and concluded that Project impacts to these issue areas would be less than significant and warranted no mitigation measures:

#### **Aesthetics**

Impact on the Visual Character of the Site and Locale

The Proposed Project would renovate the interior of the Coliseum, altering its existing interior appearance but the historically significant exterior fabric will remain intact. The separation of the stadium's seating into three main sections would effectively change the perception of the existing stadium as a homogeneous symmetrical, elliptical bowl. The addition of a new upper seating deck above the new suite levels and horizontally positioned closer to the field could create the general effect of a smaller, less expansive stadium. The overall alteration of the interior of the Coliseum would be considered a significant visual change. From an aesthetic point of view, this change could be considered either adverse or beneficial. In keeping the exterior facade intact and retaining as much of the original seating fabric as possible, the existing portions of the seating areas would remain visible behind the new seating areas from the main concourse and club level areas. As a result, the Coliseum would retain its historic image and feel within a modern state-of-the art sports venue.

#### Alterations to Viewsheds

Impacts to views of the Project Site from north to south, from south to north, from west to east, and from east to west would not be considered adverse or significant. Views of the Coliseum from west to east would be opened by the removal of ancillary structures and the surrounding gate. The Coliseum's existing facade would continue to be prominent in the foreground and virtually unchanged. Impacts to viewsheds from surrounding areas are expected to be neither adverse nor significant.

#### Light and Glare

A detailed lighting system has not yet been designed for the Proposed Project. However, the Proposed Project includes the incorporation of a tensile fabric roof canopy facing inward along the north and south sides of the stadium with floodlights attached to the roof to illuminate the field. As the floodlight design of the Proposed Project directs lighting more accurately than the existing lighting system, a significant beneficial reduction in the amount of light projected onto adjacent properties would result as compared to existing conditions. Thus, the *magnitude* of direct light and glare from the field lighting will be reduced significantly with the Proposed Project.

#### Land Use

#### Land Use Compatibility

Development of the Proposed Project would modify various aspects of the Coliseum, but would continue the site's existing character of use. As a result, the Project would facilitate the continuance of existing uses, which are considered to be physically compatible with the surrounding environment with respect to traffic, access and parking, noise and demands on public services (i.e., Police and Fire). Implementation of the project would maintain the existing physically compatible aspects of the Coliseum resulting from its location in Exposition Park. It is anticipated that the Proposed Project would secure the continued long-term utilization of the Coliseum at or near historic levels, and facilitate the land use objectives of the Exposition Park Master Plan, the South Los Angeles Community Plan, and the Hoover Redevelopment Plan with respect to promoting revitalization of the Park and preserving cultural monuments. Therefore, land use compatibility impacts would be less than significant.

#### **Public Services - Fire Protection**

Development of the Proposed Project would not be expected to alter the existing administrative fire protection procedures currently in place at the Coliseum and in the immediately surrounding area. According to the LAFD, the Proposed Project would not require any changes to the existing fire-flow conditions. Since the Coliseum is an existing use, the required fire flow is currently maintained at an acceptable level. Impacts to fire protection services are therefore considered less than significant.

#### **Public Utilities - Energy Conservation**

#### Electricity

Electricity consumed by the Proposed Project would be approximately 63,323 kilowatt hours (kWh) per event, and 1,317 kWh per day on non-event days. On event and non-event days the Proposed ancillary uses are expected to consume approximately 1,419 kWh per day. Annually, the Proposed Project will consume approximately 3.4 million kWh (based on 46 events per year and ancillary use daily throughout the year). This represents an increase of approximately 1.2 million kWh per year over existing conditions. The ability of the DWP's regional infrastructure to deliver the peak electrical requirement to the site would not be expected to be severely affected by implementation of the Proposed Project. However, additional power facilities could be required in order to serve the load growth associated with the Proposed Project. Such improvements could be made with minimal impact upon the surrounding land uses. Impacts to electricity infrastructure and supply are therefore expected to be less than significant.

#### Natural Gas

Natural gas consumption by the Proposed Project was estimated using the amount of electricity currently consumed on the Project Site and projecting an increase in up to 12 additional football games per year. Natural gas consumed by the Proposed Project would be approximately 33,835 cf per event. The

proposed ancillary uses would consume approximately 2,630 cf of natural gas per day. Annually, the Proposed Project would be anticipated to consume approximately 2.3 million cf (based on stadium consumption during 46 events per year and ancillary use daily throughout the year). This represents an increase of approximately 1.3 million cf of natural gas per year over existing conditions. The ability of the Southern California Gas Company's regional infrastructure to deliver the peak natural gas requirement to the site would not be expected to be severely affected by implementation of the Proposed Project. Project impacts to natural gas services are expected to be less than significant.

No significant impacts upon electricity or natural gas resources or infrastructure systems have been identified, thus no mitigation measures are required. Nevertheless, the LADWP recommends the following measures be incorporated into the final design as feasible, to reduce the Project's demands for energy resources.

1. During the design process, the applicant should consult with the Los Angeles Department of Water and Power, Efficiency Solutions Business Group, regarding possible energy efficiency measures. The applicant shall incorporate measures to meet or, if possible, exceed minimum efficiency standards for Title XXIV of the California Code of Regulations.

#### **Public Utilities - Sanitary Sewers**

The Proposed Project would be estimated to generate approximately 390,000 gallons of sewage per event, assuming maximum attendance at all Coliseum events. Ancillary structures will generate approximately 6,000 gallons of wastewater per day. It should be noted that the maximum possible sewage consumption from the site experienced during any Coliseum event could be reduced from projected levels upon implementation of the Proposed Project. This reduction would be accomplished through the installation of a more water-efficient infrastructure and fixtures which could result in a reduction in the average perperson per-event sewage generation. Sewage generated by the project would continue to flow to the Hyperion Treatment Plant, which will have adequate capacity to accommodate the increase in wastewater flows. The City of Los Angeles Department of Public Works, Bureau of Sanitation has determined that impacts on City of Los Angeles sewer services by the Proposed Project will be less than significant, assuming maximum capacity conditions.<sup>3</sup>

#### Public Utilities - Solid Waste

The Proposed Project is anticipated to generate approximately 1,860,671 pounds (or approximately 930 tons) of solid waste per year. Existing uses on the site generate approximately 837,071 pounds (or approximately 419 tons) of solid waste per year. Therefore, implementation of the Proposed Project would generate a net increase of approximately 1,023,600 pounds (or approximately 512 tons) per event. Development of the Proposed Project could potentially result in an approximate 23 % increase

<sup>&</sup>lt;sup>3</sup> City of Los Angeles, Department of Public Works, Bureau of Sanitation, July 29, 2003.

in the volume of solid waste generated by the Coliseum. Since the Proposed Project represents a relatively low increase in annual solid waste generation at the Project Site as compared to existing conditions, and regional landfill capacity is currently adequate to accommodate the regional solid waste demands for the City of Los Angeles, impacts associated with the Proposed Project would be considered less than significant.

#### Parking

The Proposed Project does not include any major changes to existing parking facilities at the Coliseum, Exposition Park, or the USC Campus, which are all currently available to meet the parking demand of existing Coliseum events. Reduced seating capacity at the Coliseum for NFL games would result in a reduction in the demand for off-site parking, on-street parking in residential areas or in off-street small private lots, as well as a reduction in the amount of congestion associated with people searching for parking. In addition to all the existing parking around the Coliseum, a subterranean parking structure is being constructed adjacent to the California Science Center. Utilization of this structure would further reduce impacts upon parking demand. Currently, the Coliseum has the potential to generate parking demands on the order of 27,407 spaces. This is currently met by a cumulative parking availability of 19,820 parking spaces at the Coliseum, within Exposition Park and on the USC Campus. The remaining cars generally park off-site in the neighborhoods to the west and south of the Coliseum. The Proposed Project will decrease the demand for parking spaces by approximately 2,207 spaces and will be served by additional 2,160 spaces. As such the Project will experience a net increase in parking availability by approximately 4,367 spaces or 15% percent as compared to the existing conditions. Thus, impacts associated with parking availability are expected to be less than significant.

# Impacts Determined to be Potentially Significant, but Can be Mitigated to Less Than Significant Levels

Based upon the environmental characteristics of the Proposed Project Site and surrounding areas, and the characteristics of the Proposed Project, implementation of the Proposed Project could create significant environmental impacts in the following areas: Aesthetics, Geoloy/Seismic Hazards, Land Use, Noise, Public Services, and Public Utilities. These issues were examined in detail in the EIR and the findings of the analysis are summarized below for each issue.

#### Air Quality

#### Construction

Construction of the Project would generate pollution emissions from the following activities: (1) demolition activities; (2) grading operations; (3) travel by construction workers to and from the Project Site; (4) delivery and hauling of construction materials and supplies to and from the Project Site; (5) fuel combustion from on-site construction equipment; and (6) the application of architectural coatings

and other building materials that release reactive organic compounds (ROC). Based on the above fugitive dust generation factors, and assuming earthwork activities include disturbance to the entire Project Site, such activities would generate approximately 279.48 lbs/day of fugitive dust with the use of BACMs. This is above the SCAQMD's threshold criteria of 150 lbs/day; thus the project's fugitive dust emissions would result in a significant impact. Various forms of tractors and diesel equipment will be used during the demolition, excavation and site preparation phase of the project. Emissions associated with these phases of project construction would not exceed SCAQMD thresholds for ROG or SOx criteria pollutants; however the thresholds would be exceeded for NOx CO, and PM<sub>10</sub>. These exceedances would be considered significant.

#### **Operations**

Future operational emissions are estimated based on the maximum seating capacity of 78,000. Future attendance under both scenarios would be below the maximum attendance capacity of the existing Coliseum, thus vehicle trips and associated air emissions would be reduced as compared to a sold out event at the existing Coliseum. Mobile source emissions would exceed SCAQMD thresholds for ROG, NOx, CO and PM<sub>10</sub> emissions. The threshold would not be exceeded for SOx emissions.

Localized carbon monoxide emissions and/or concentrations from Coliseum events would continue to exceed these thresholds and the one-hour standard and would be considered significant impacts. To provide a context for the assessment of the impact, it should be noted that this is and would continue to be an infrequent occurrence -- concentrated in the hour preceding and following a Coliseum event. On an annual basis, this would mean that carbon monoxide hot spots would be generated at least 78 hours out of a total of 8,760 hours during the year, or less than one percent of the time. Regardless of the frequency, however, the California Ambient Air Quality Standards dictate that any exceedance of a standard for any amount of time must be considered significant. Therefore, the operational impacts of the Proposed Project would result in a significant impact.

#### AQMP Consistency

The renovation of the Coliseum would continue the current and historic use of the Coliseum and would reduce the maximum seating capacity on an event-by-event basis. As such, the Project would be consistent with growth forecasts adopted by the City and therefore consistent with the local City of Los Angeles General Plan. The Project is therefore consistent with the AQMP.

#### Mitigation Measures

The following measures are recommended to reduce short-term impacts related to construction activities. Mitigation measures shall be included in all contracts between the applicant and Project contractors to assure compliance with the following:

53

- 1. Haul trucks shall be staged on-site in the vacant parking areas within Exposition Park. Haul truck staging plan shall be subject to review by the City of Los Angeles Department of Building and Safety and the Department of Transportation. Trucks shall be called to the site by radio dispatch.
- 2. Diesel-powered equipment shall be located as far away as possible from sensitive land uses and areas. Specifically, diesel compressors, pumps and other stationary machinery shall be located to the extent feasible on the south side of the Coliseum or within the interior of Coliseum to avoid air pollution impacts on passive recreational spaces in Exposition Park (such as the area north of the Coliseum and south of the museum complex).
- 3. Grading activities shall be restricted on exceedingly windy days (winds in excess of 25 MPH) when fugitive dust emissions are likely to be carried off-site. All truck loads of export debris shall be covered or shall provide at least 2 feet of freeboard.
- 4. Ground wetting shall be required in accordance with SCAQMD Rule 403 for dust control during grading and construction.
- 5. Contractors shall cover any stockpiles of soil, sand and similar materials.
- 6. Equipment engines shall be maintained in proper tune.
- 7. Construction equipment shall be shut off to reduce idling when not in direct use for extended periods of time.
- 8. Contractors shall discontinue construction activities during second-stage smog alerts.

The following measures are recommended to reduce emissions from long-term mobile sources:

9. To reduce the traffic-related air quality impact on the affected intersections, the Project shall implement the required traffic management measures described in Section IV.C.6 of this report, Traffic, Parking, and Access.

#### Level of Impact After Mitigation

With the implementation of the mitigation measures described above, daily construction emissions would still exceed threshold criteria established by the SCAQMD for ROG, CO, SOx and NOx emissions. PM<sub>10</sub> emissions would be reduced to below the significance thresholds and would therefore be less than significant.

Implementation of the mitigation measures described above would reduce the Project's operational air quality emissions. However, for maximum-attendance Coliseum events, the amount of reduction achieved by the mitigation measures would not be sufficient to reduce impacts to acceptable levels.

#### **Cultural and Historic Resources**

The Coliseum is designated as a National Historic Landmark, a State Historical Landmark, and is listed on the National Register of Historic Places (National Register). It should also be noted that the Coliseum is listed as a National Historic Landmark because of the events that have occurred there and that the stadium itself has been a backdrop to these events. Most of the alterations of the Proposed Project preserve the historic character-defining features of the Coliseum. The Proposed Project retains and enhances the character-defining features of the Coliseum. A few elements will be covered over by new construction, and an even smaller number of features will be removed.

The Proposed Project will update the Coliseum and make it economically viable while keeping consistent its use as a sports facility, thus there will be no impact on its historic designations. Its historic use is largely why it has been designated a National and State landmark, and this rehabilitation will guarantee that historic use can continue in the future. The proposed rehabilitation meets all of The Secretary of Interior's Standards for Rehabilitation and Guidelines for Rehabilitating Historic Structures (The Standards) except for the removal of the seating at some locations. The removal of some of the existing seating, considered to be part of the historic fabric of the Coliseum, is a significant impact and cannot be feasibly mitigated. The exterior of the Coliseum will be returned to its former appearance and the Peristyle will be restored enhanced with the removal of the large electronic scoreboards.

#### Mitigation Measures

The following mitigation measures are recommended to reduce the Proposed Project's impact upon historic resources. Mitigation measures shall be included in all contracts between the applicant and Project contractors to assure compliance with the following:

- 1. Recordation. Demolition of any historic fabric shall be documented in a report consistent with Historic American Buildings Survey (HABS) standards. The report shall document the significance and physical condition of the historic resources proposed for demolition, both historic and current, photographs, written data, and text. The documentation shall include:
  - a. A brief written historic and descriptive report shall be completed in narrative format, including an architectural data form.
  - b. A site plan on 8" x 11" paper showing the location of the buildings should be included. This site plan shall include a photo-key.
  - c. A sketch floor plan on 8" x 11" paper shall accompany each architectural data form.

- d. Large format (4" x 5" or larger negative size) photographs in accordance with HABS guidelines. Views shall include several contextual views, all exterior elevations, detailed views of significant exterior architectural features, and interior views of significant historical architectural features or spaces.
- e. Field photographs (35mm) based on HABS guidelines. Views as detailed in large format photographs.
- f. The report shall include copies or prints of any available original plans and historic photographs.
- g. Archivally stable reproductions of any available significant historic construction drawings and photographs.
- h. Archival copies of the documentation shall be submitted to the Los Angeles Memorial Coliseum Commission.
- 2. In accordance with Standard 7 of the Secretary of the Interior's Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring and Reconstructing Historic Buildings, the surface cleaning of structures shall be undertaken with the gentlest means possible. Sandblasting and other cleaning materials that will damage the historic building materials shall not be undertaken.
- 3. The Proposed Project shall be constructed in substantial compliance with the Conceptual Historic Fabric Retention Plan, as depicted in Figure III-3 of this EIR.

#### Level of Impact After Mitigation

As a result of the Proposed Project, there is no specific mitigation for the loss of historic materials, primarily the removal of portions of the seating. Other alterations to the Coliseum either improve the character-defining features or could be reversed in the future. Therefore, an unavoidable adverse impact is created through the removal of some original seating.

#### Geology/Seismic Hazards

Implementation of the Proposed Project would result in the excavation and removal from the site of approximately 250,000 cubic yards of soil and demolition debris material.

#### Geology

Impacts associated with implementation of the Proposed Project on the site's geologic formations, inclusive of the near surface alluvial deposits, are expected to be minimal. Laboratory testing indicated

that the surface soils within the foundation area of the proposed development are not expansive, collapsible, or compressible. Therefore, implementation of the Proposed Project is not expected to produce any adverse impacts relative to non-seismic geotechnical issues.

#### Grading and Excavation

Dust raised during grading would have an incremental short-term adverse impact on local and regional air quality. In addition, the excavation and hauling of earth materials would temporarily increase noise levels in the immediate area for the expected 18 to 20 month duration of Project construction activities. Discarded building and/or earth materials containing any hazardous materials, primarily asbestos, would be disposed of in accordance with all applicable local, state, and federal regulations.

#### Groundwater

Groundwater is not expected to be encountered during grading or construction; however, perched groundwater or saturated soil conditions may exist in scattered areas underneath the site. Implementation of the Proposed Project is not expected to produce any adverse impacts relative to groundwater.

#### Liquefaction

Due to the depth of the groundwater table and the relatively high density of the soils underlying the site area, the potential for soil liquefaction is considered very remote. Therefore, the Proposed Project would not be subject to significant impacts caused by seismically-induced liquefaction.

#### Seismicity

Since no known or mapped active, potentially active, or inactive faults, if projected, would trend toward or directly through the Project Site area, and the Coliseum does not lie in an Alquist-Priolo Special Study Zone, impacts associated with implementation of the Proposed Project relative to the seismic displacement of structures on the site would be less than significant.

#### Ground Shaking

Eleven faults were identified that could influence the site relative to earthquake ground shaking. Additional faults outside the local area, such as the San Andreas would also have the potential to create moderately strong ground motion effects in the project area. A significant impact posing an increased threat to public safety or destruction of property by ground shaking is not expected to occur with the development of the Proposed Project. Construction practices in strict compliance with the Uniform Building Code would reduce these inherent risks to acceptable standards. Impacts associated with seismic hazards would be less than significant.

學

#### Mitigation Measures

The following mitigation measures are required in order to effect a reduction in the severity of potential on-site impacts:

- All structures to be constructed or renovated as part of the Proposed Project shall be designed as
  required by either the Uniform Building Code for structures within Seismic Zone 4, or other
  pertinent State and/or City building codes (such as Division 23, Section 91.2305 of the City of
  Los Angeles Building Code), to withstand the expected ground motions.
- 2. A comprehensive geotechnical investigation shall be prepared to the satisfaction of the responsible State and/or City reviewing agencies. The investigation shall verify the soil conditions under the proposed structures and derive the pile capacities.
- 3. All grading activities shall be in compliance with specific recommendations and requirements provided in the geotechnical report prepared for the Proposed Project, subject to review and approval by the appropriate State and/or City responsible agencies.
- 4. A copy of the foundation report and/or supplements and approval letter shall be attached to the State and/or City office and field sets of plans, with one copy of the foundation report and/or supplements submitted to the State and/or City plan checker prior to the issuance of the permit.
- 5. During construction, all grading shall be carefully observed, mapped, and tested by the project engineer. All grading shall be performed under the supervision of a certified engineering geologist and/or soils engineer in accordance with the applicable provisions of the State and/or City Building Codes to the satisfaction of the State and/or City building and safety authorities. The responsible engineer shall review and approve the foundation plan and/or the excavation/shoring plan prior to the issuance of any permits.
- Artificial fills in the existing 35-foot earth berm shall not be considered suitable for the support of foundations unless excavated, recompacted, and tested to be in compliance with the applicable State and/or City Grading Codes.
- 7. The geologist or the soils engineer shall inspect and approve all fill and subdrain placement areas prior to placing fill.
- 8. Haul route approval for the transport of graded and excavated earth materials and removed building materials to receptor sites and/or local landfills shall be obtained from the City of Los Angeles Department of Building and Safety and/or other responsible City agencies. Haul routes for the transport of such materials shall be established, where possible, through non-residential areas so as to minimize the effects of noise, and shall maximize, where possible, the distance traveled on major arterials.

- 9. Discarded building and/or earth materials containing any hazardous materials, primarily asbestos, shall be disposed of in accordance with all applicable local, state, and federal regulations.
- 10. To the maximum extent feasible, uncontaminated graded materials shall be transported off-site to a receptor site needing imported fill material. Landfills shall only be considered as a last resort disposal option for materials from the site.
- 11. Prior to the issuance of building permits, if the soils and/or perched groundwater beneath the site are found to be contaminated, the City of Los Angeles Fire Department shall be notified and provided with a summary of all local, state, county, and federally required remediation activities and submit evidence of compliance.
- 12. Where encountered on the site, perched groundwater or saturated soils should be removed to the extent feasible or necessary.

#### Level of Impact After Mitigation

Implementation of the recommended mitigation measures would reduce, but not eliminate, impacts to local landfills from the disposal of earth and building materials. With implementation of the foregoing mitigation measures, project construction and operation impacts would be mitigated to less than significant levels.

#### **Noise**

#### Construction-Related Noise

Construction noise levels inside the Coliseum would be reduced by the Coliseum wall to approximately 79 dBA at a distance of 50 feet from the source. Noise generated by the demolition of the outbuildings and other landscaping improvements outside the Coliseum would not be attenuated, as there are no intervening structures or obstacles separating the Coliseum grounds from the rest of Exposition Park. Some of the sensitive receptors located within Exposition Park are within 100 feet of the proposed active construction areas and will experience significant noise levels (above 75 dBA). Off-site construction noise will likely result from the ingress and egress of haul trucks used to transport excavated materials. This would result in a relatively short-term and temporary noise impact for some sensitive receptors.

#### Coliseum Event Noise

The design for the stadium would include a distributed sound system including hundreds of small sound speakers throughout the stadium and concourse areas. As the project involves the renovation of an existing recreational facility that already creates significant noise impacts, and the project would not

increase the intensity of crowds or number of events per year, the project's operational noise impacts would be less than significant.

#### Noise from Event Traffic

It is anticipated that the average attendance at Coliseum events would decrease as a result of the renovation. The decrease in attendance would, in all likelihood, result in a corresponding decrease in vehicle traffic. It is not expected that the reduced level of traffic would have a significant noise reduction impact because the decrease in traffic volume is not great enough to produce discernible noise reduction. However, as stated above, since the project involves the renovation of an existing recreational facility that already creates significant noise impacts, and the project would not increase the intensity of crowds or number of events per year, the project's operational noise impacts from event traffic would be less than significant.

#### Mitigation Measures

- 1. The Applicant shall comply with the construction hours as specified by the City LAMC Noise Ordinance, Chapter IV, Section 41.40., which prohibits construction before 7:00 a.m. or after 6:00 p.m. Monday through Friday, before 8:00 a.m. or after 6:00 p.m. on Saturday or any national holiday, and at anytime on Sunday.
- 2. The Applicant shall prepare a construction-related traffic plan detailing proposed haul routes and staging areas for the transportation of materials and equipment, with consideration for sensitive uses in the neighborhood. A traffic and parking plan for the construction phase will be submitted for approval by LADOT and the Department of Building and Safety prior to the issuance of any permits.
- 3. Adjacent museums and residents shall be given regular notification of major construction activities and their durations. A visible and readable sign (at a distance of 50 feet) shall be posted on the construction site identifying a telephone number where residents can inquire about the construction process and register complaints.
- 4. During construction, the project contractors shall muffle and shield intakes and exhaust, shroud and shield impact tools, and use electric-powered rather than diesel-powered construction equipment, as feasible.
- 5. The perimeter of the Project Site (including the ancillary outbuildings proposed to be demolished) shall be enclosed with a temporary barrier wall for security and noise protection purposes. This barrier wall shall consist of a solid, heavy vinyl material or ¾-inch plywood positioned to block direct line of sight from the active construction areas and other open space areas and sensitive uses within Exposition Park.

#### Level of Impact After Mitigation

Based on the analysis above, significant constriction noise impacts would result from construction activities in close proximity to two sensitive land uses within Exposition Park. Implementation of the noise reduction measures listed above and compliance with the City of Los Angeles Noise Ordinance would reduce noise impact to less than significant levels.

No significant new operational noise impacts would occur as a result of the proposed renovation of the Los Angeles Memorial Coliseum. Nevertheless, the recommended operational mitigation measures listed above would act to further reduce the operational noise impacts that already occur during major Coliseum events.

#### **Public Services - Police Protection**

The number and type of events to be held in the Coliseum following project implementation are anticipated to remain similar to existing levels of use, with the addition of the NFL as a permanent tenant. Therefore, development of the Proposed Project is not expected to place an increased burden on police services in the Southwest Area. Similarly, the Proposed Project is not anticipated to have any adverse impact on the ability of officers to respond to calls at the Coliseum. The current level of service will continue to be adequate assuming continued use of off-duty police officers and private civilian security personnel. Overall, the Proposed Project is not expected to result in the alteration of the existing police protection personnel arrangement in place at the Coliseum. However, the LAPD has indicated that a project of this size would have a significant impact upon police services in the Southwest Area.

#### Mitigation Measures

The following mitigation measures are recommended to ensure that an adequate level of police protection continues to be provided on the Project Site during Coliseum events:

- 1. Plot plans for the proposed renovation shall be submitted to the Los Angeles Police Department's Crime Prevention Section for review and comment. Security features subsequently recommended by the LAPD shall be implemented to the extent feasible.
- 2. Building plans shall be filed with the LAPD Southwest Area Commanding Officer. Plans shall include access routes, floor plans, evacuation routes, and any additional information that might facilitate prompt and efficient police response.
- 3. Security features shall be provided on the construction site(s), such as guards, fencing, and locked entrances.

- 4. Landscaping shall not be planted in a way that could provide cover for persons tampering with doors or windows of commercial facilities, or for persons lying in wait for pedestrians or parking lot users.
- 5. Additional lighting shall be installed where appropriate as determined in consultation with the LAPD.
- 6. Safety features shall be incorporated into the Proposed Project to assure pedestrian safety, assist in controlling pedestrian traffic flows, and avoid pedestrian/vehicular conflicts on-site. Safety measures may include provision of security and traffic control personnel; clearly designated, well-lighted pedestrian walkways on-site; special street and pedestrian-level lighting; physical barriers (e.g., low walls, landscaping), particularly around the perimeter of the Coliseum, to direct pedestrians to specific exit locations that correspond to designated crosswalk locations on adjacent streets.
- 7. A Security Plan shall be developed and implemented by the Applicant, in consultation with the LAPD, outlining the security services and features to be provided in conjunction with the Proposed Project. Security features may include but are not limited to the provision of a private on-site security force, implementation of a surveillance system, installation of locks and alarms on entryways where appropriate, security and parking lot lighting, "spotters" to survey parking lots, and maximum accessibility for emergency service personnel. The plan shall be reviewed by the LAPD, and any provisions pertaining to access shall be subject to review by the LADOT. A copy of the Plan shall be provided to the LAPD Southwest Area Commanding Officer.
- 8. An Emergency Procedures Plan shall be established and implemented by the Applicant outlining guidelines and procedures in the event of civil disturbance, evacuation, and other types of emergencies. The plan shall be subject to review by the LAPD, and any provisions pertaining to access shall be subject to review by the LADOT. A copy of the Plan shall be provided to the LAPD Southwest Area Commanding Officer.
- 9. Traffic control personnel may be provided on adjacent roadways and in parking areas during Coliseum events and immediately preceding and following events to help prevent vehicles and pedestrians from obstructing emergency access.

In addition to the foregoing recommendations and requirements, measures recommended and/or required under Section V.I, Traffic, Access, and Parking shall be implemented as appropriate.

#### Level of Impact After Mitigation

The LAPD has indicated that the Proposed Project would significantly impact the services rendered by the Los Angeles Police Department. However, it is expected that supplemental police personnel would continue to be requested and funded by the Coliseum or the NFL, as needed during Coliseum events. With implementation of the required mitigation measures identified above, including the implementation of the proposed Security Plan, and continued deployment of supplemental police personnel during Coliseum events, impacts to LAPD services would be reduced to less than significant levels.

#### **Public Utilities - Water Conservation**

Water consumption on the site is estimated to be approximately 468,000 gallons per event with the development of the Proposed Project, assuming maximum levels of attendance at all events, and 7,200 gallons of water per day on non-event days. This results in a total of approximately 24 million gallons of water consumed by the Project per year, based on a rate of 46 events per year and daily use of the ancillary structures. Water service for the Coliseum would continue to be provided by the City of Los Angeles Department of Water and Power from the existing infrastructure. Consequently, impacts to water service to the Proposed Project are considered less than significant.

#### Mitigation Measures

To reduce impacts to less than significant levels, the following mitigation measures are required:

- 1. The Project Applicant shall be required to comply with any improvements necessary to meet Los Angeles Fire Department fire-flow requirements for the Proposed Project.
- 2. The Proposed Project shall incorporate water saving techniques as required by the City of Los Angeles' mandatory water conservation program (Ordinance Nos. 166,080 and 163,532). Water conservation measures described in the ordinance include, but are not limited to, the following:
  - As necessary, the Project Site shall be landscaped with drought-tolerant/indigenous species (xeriscape).
  - Low flow flush valves and shower head water-conservation devices shall be installed in all restroom and/or locker room facilities.

In addition, the City of Los Angeles Department of Water and Power recommends the following water conservation measures:

3. Automatic sprinkler systems should be set to irrigate landscaping during early morning hours or during the evening to reduce water losses from evaporation. However, care must be taken to reset sprinklers to water less often in cooler months and during the rainfall season so that water is not wasted by excessive landscape irrigation.

6

- 4. Reclaimed water should be investigated as a source to irrigate large landscaped areas, including the grass playing field.
- 5. On-site recycling of drainage from water used for playing field irrigation should be investigated.
- Recirculating hot water systems which can reduce water waste in long piping systems where
  water must be run for considerable periods before hot water is received at the outlet should be
  investigated.
- 7. Plumbing fixtures should be selected which reduce potential water loss from leakage due to excessive wear of washers.

#### Level of Impact After Mitigation

The Proposed Project's impacts to water service are expected to be less than significant after the implementation of the above mitigation measures.

#### Traffic, Access, and Parking

#### Traffic and Access

In consultation with the City of Los Angeles Department of Transportation, the Project Traffic Study evaluated 26 intersections in the vicinity of the Coliseum. The study evaluated the Proposed Project's traffic impacts using the City's established significance criteria and applied to three separate scenarios (1) Weekend Pre-Event Peak Hour, (2) Weekend Post-vent Peak Hour, and (3) weeknight Pre-Event Week Hour. The weekend traffic scenarios were based on actual traffic counts taken at a weekend Coliseum event with an attendance of approximately 87,944 persons. The Proposed Project will reduce the maximum seating capacity of the Coliseum to approximately 78,000 persons, thus the impacts projected in this analysis represent a worst-case scenario. The results of the Traffic Impact Study are summarized as follows concluded that during the Weekend Pre-Event Peak Hour, eight of the 26 study intersections would be significantly impacted. These intersections include:

- Figueroa Street and Adams Boulevard
- I-110 NB Ramps/Hill Street and Martin Luther King Jr. Boulevard
- Vermont Avenue and Jefferson Boulevard
- Normandie Avenue and Jefferson Boulevard
- Vermont Avenue and Adams Boulevard
- Normandie Avenue and Adams Boulevard
- Normandie Avenue and 1-10 EB ramps
- Vermont Avenue and I-10 WB ramps

During the Weekend Post-Event Peak Hour, 6 of the 26 intersections would suffer significant impacts. These intersections include:

- I-110 NB Ramps/Hill Street and Martin Luther King Jr. Boulevard
- Vermont Avenue and Jefferson Boulevard
- Normandie Avenue and Jefferson Boulevard
- Vermont Avenue and Adams Boulevard
- Normandie Avenue and Adams Boulevard
- Vermont Avenue and I-10 WB ramps

The weeknight Coliseum event scenario was evaluated to consider the occurrence of a Monday or Thursday night NFL game. It should be prefaced, however, that the occurrence of a weeknight NFL game would occur at most only once in any given season. A weekday game would not likely occur each and every season. The Traffic Impact Study concluded that the weeknight event scenario would result in significant traffic impacts at 23 of the 26 study intersections, including:

- Figueroa Street and Adams Boulevard
- Figueroa Street and Jefferson Boulevard
- Flower Street and Exposition Boulevard
- Figueroa Street and Exposition Boulevard & 37th Street
- Figueroa Street and 38th Place/Flower Street
- I-110 HOV Ramps and 39th Street
- Figueroa Street and 39th Street/Coliseum Drive
- 1-110 Northbound Ramps/Hill Street and Martin Luther King Junior Boulevard
- Figueroa Street and Martin Luther King Junior Boulevard
- Hoover Street and Martin Luther King Junior Boulevard
- Vermont Avenue and Martin Luther King Junior Boulevard
- Vermont Avenue and 39th Street
- Vermont Avenue and Exposition Boulevard
- Normandie Avenue and Martin Luther King Junior Boulevard
- Normandie Avenue and Exposition Boulevard
- Vermont Avenue and Jefferson Boulevard
- Normandie Avenue and Jefferson Boulevard
- Vermont Avenue and Adams Boulevard
- Normandie Avenue and Adams Boulevard
- Vermont Avenue and I-10 eastbound ramps
- Normandie Avenue and I-10 eastbound ramps
- Vermont Avenue and I-10 westbound ramps
- Normandie Avenue and I-10 westbound ramps

1

#### Congestion Management Program

Based on the threshold criteria of the CMP, it was determined that the Proposed Project would impact both of the CMP monitoring stations: the I-10 freeway monitoring station at Budlong Avenue and the I-110 freeway monitoring station at Slauson Avenue.

#### Mitigation Measures

In order to mitigate the traffic and access impacts created by the Proposed Project, the Project Applicant will collaborate with LADOT, LAPD, California Department of Transportation, and California Highway Patrol on implementation of a traffic management plan. The following are mitigation measures that shall be implemented in order to reduce potentially significant impacts to less than significant levels:

- To facilitate movement of vehicles, the LAPD and LADOT staff shall have the authority to implement turn restrictions, parking prohibitions, lane closures, barriers/cones, and flexible signage. There shall be a temporary command post available on the site to control and monitor traffic conditions. The area shall be split up into zones, with an engineer assigned to each zone. These engineers would have the authority to react to situations and change restrictions if necessary.
- 2. Electronic ticketing shall replace parking guards at problem area lots and traffic signs on adjacent Coliseum streets to minimize parking lot back-up. In addition, season and regular ticket holders could be issued speed passes and assigned parking at specific lots.
- 3. Real time radio alerts and broadcasts via Highway Advisory Radio (HAR) shall be located where LADOT deems appropriate.
- 4. In conjunction with the aforementioned measures, Changeable Message Signs (CMS) shall be used to direct vehicles from the freeways and surface streets to the Coliseum/USC parking lots. At least eight or more signs would be needed for results to be noticeable and coordinated.
- 5. Project implementation shall include the development of a carpool incentive system to reduce the number of overall vehicle trips.
- 6. Alternate parking sites located away from the Coliseum shall be made available, as well as transportation to and from these parking areas and the Coliseum.
- 7. Existing turn prohibitions, as illustrated in Figure V.I.1-13, shall remain in place on game days.

#### CMP Mitigation Measures

As mentioned in the previous chapter, the NFL football games at the Coliseum are projected to happen occasionally during the weekday p.m. peak hour. It would again be more appropriate to utilize an incident management plan that incorporates the I-10 and the I-110. The proposed management plans are incorporated in the above mitigation measures. The aim is to facilitate the movement of game day traffic and to relieve as much pressure as is feasible on the street network approaching the Coliseum.

#### Level of Impact After Mitigation

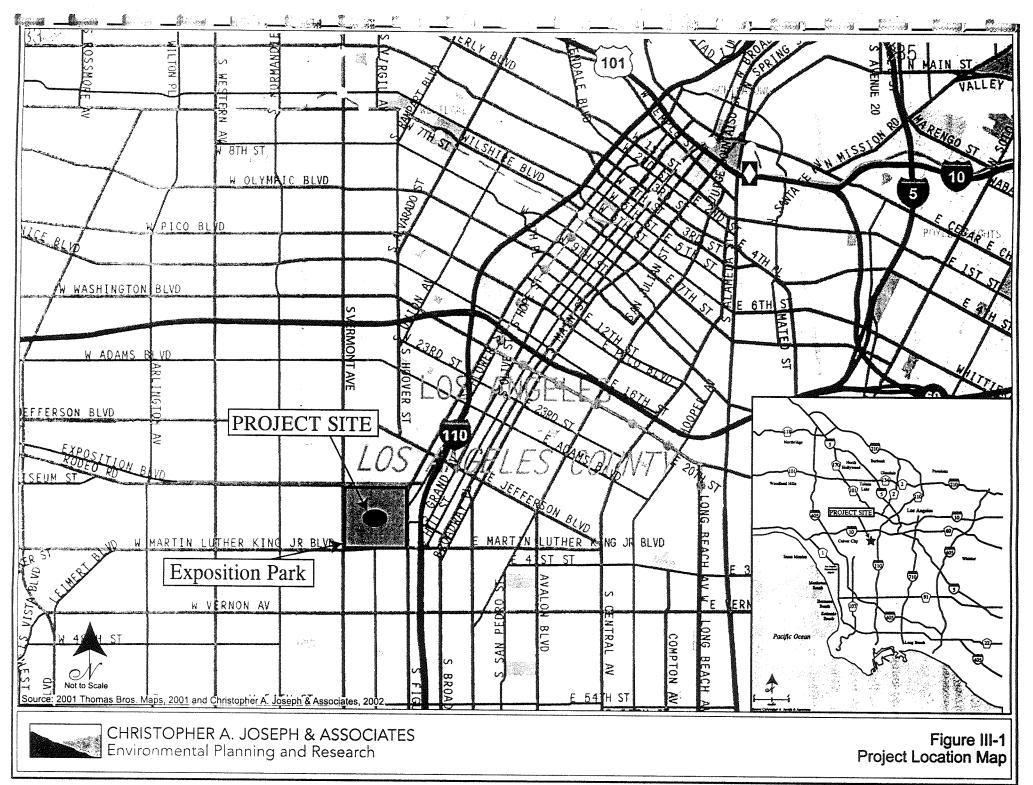
#### Intersections

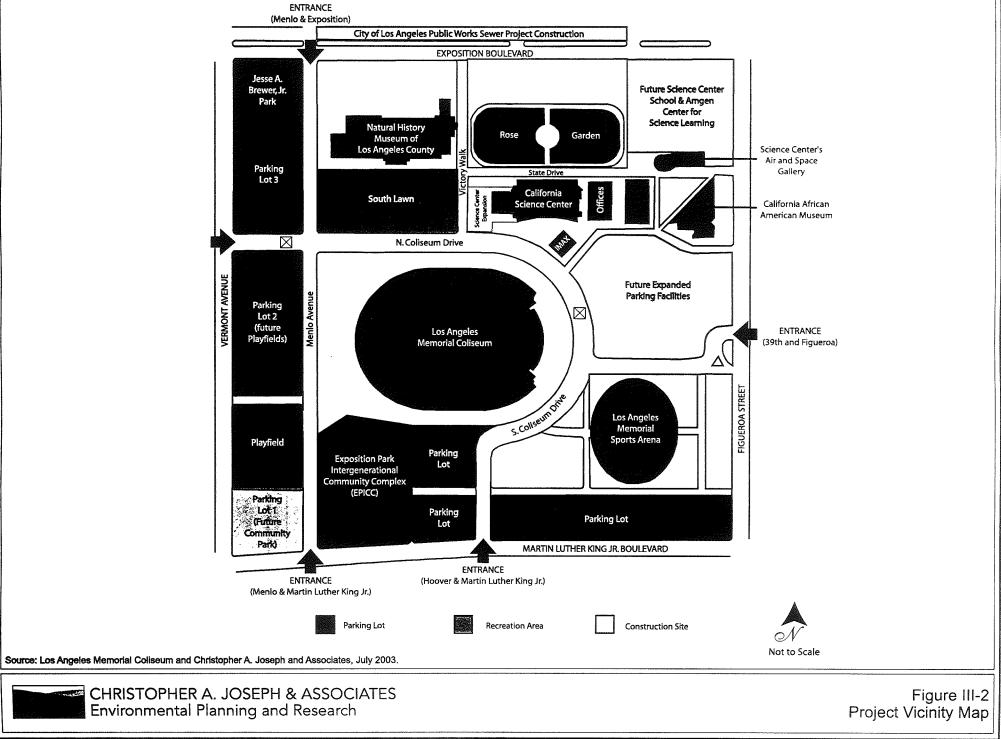
It should be noted that, while the proposed mitigation measures reduce the project's impacts to less than significant levels and improve forecast future traffic operations at both intersections, they are short-term measures designed to address current needs. The implementation of the above mentioned mitigation measures will reduce project impacts to less than significant levels.

#### CMP

The CMP monitoring stations affected by the Proposed Project are currently operating at LOS F during the weekday pre-event hour. With the development of the Proposed Project and the LOS at the two freeway monitoring stations would remain at LOS F. However, the mitigation measures above, as coordinated into an incident management, plan will reduce the project's design to capacity (D/C) ratio, thus reducing the level of impact to less than significant.

# III. PROJECT DESCRIPTION A. LOCATION AND BOUNDARIES OF THE PROJECT SITE


#### PROJECT LOCATION


The Los Angeles Memorial Coliseum ("Coliseum") occupies a 27.4-acre parcel of land within the boundaries of the Exposition Park Master Plan Area. Exposition Park is located approximately two miles southwest of the downtown Los Angeles area and encompasses a total of 160 acres. Exposition Park is bounded by Exposition Boulevard to the north, Figueroa Street on the east, Martin Luther King Jr. Boulevard on the south, and Vermont Avenue on the west. Exposition Park is the largest park in the Central Los Angeles area of the City of Los Angeles. The Los Angeles Memorial Coliseum is generally situated in the center of Exposition Park. The general location of the project area is illustrated in Figure III-1, Regional Location Map, on page III-A-2.

The Los Angeles Memorial Coliseum Renovation Project area (i.e., the "Project Site") includes the Coliseum and the immediately surrounding area contained within an oval formed by a 10-foot-high chain link and steel bar fence surrounding the Coliseum structure at a point approximately 100 feet from the base of the stadium's exterior wall. The two locations at which the site's boundary extends outward from the perimeter fence are at the southwestern edge of the site, where the boundary extends west to Menlo Avenue, and then north along Menlo to a point adjacent to the northern end of the maintenance shed, whereupon it runs easterly back to the perimeter fence; and along the eastern and northeastern sections of the Coliseum, where the boundary extends outward to North/South Coliseum Drive, which it parallels. The specific boundary of the Project Site is shown in Figure III-2, Project Vicinity Map on page III.A-3. The Project Site is generally bounded by Menlo Avenue on the west, the Los Angeles Swim Stadium and the Exposition Park Intergenerational Community Center (EPICC) complex on the south, North Coliseum Drive on the north, and South Coliseum Drive on the east.

Other land uses immediately adjacent to the Project Site include grass-covered athletic fields and surface parking for Exposition Park facilities across Menlo Avenue to the west, the Los Angeles Memorial Sports Arena and adjacent surface parking across South Coliseum Drive to the southeast, and the California Science Center and the Los Angeles County Museum of Natural History across North Coliseum Drive to the north. All of these adjacent facilities are also within Exposition Park. All of Exposition Park, including the Coliseum, is located within the City of Los Angeles in the City's South Los Angeles District Plan area.

Major streets in the vicinity of the Proposed Project include Martin Luther King Jr. Boulevard, approximately 300 feet south of the Project Site; Vermont Avenue, approximately 500 feet west of the Project Site; Exposition Boulevard, approximately 0.2 mile north of the Project Site; and Figueroa Street, approximately 0.1 mile east of the Project Site. Regional access to the Coliseum is provided by the Harbor Freeway (Interstate 110), located approximately 0.3 mile east of the site; and by the Santa Monica Freeway (Interstate 10), located approximately 2.0 miles north of the site.





# III. PROJECT DESCRIPTION B. PROJECT BACKGROUND AND OBJECTIVES

## HISTORICAL OVERVIEW - ORIGIN OF THE COLISEUM

## Los Angeles Memorial Coliseum Commission

The Coliseum was constructed between 1921 and 1923 by the Community Development Association, a non-profit cooperative organization formed for that purpose, on property in Exposition Park leased from the Sixth District Agricultural Association of the State of California. Original construction of the Coliseum was funded by both the City of Los Angeles (City) and the County of Los Angeles (County). The Coliseum is operated under the authority of the Los Angeles Memorial Coliseum Commission ("Coliseum Commission"), which was formed under the Joint Exercise of Powers Act on September 25, 1945. Although this governing body is comprised of representatives from the City of Los Angeles, the County of Los Angeles and the State of California, no taxpayer funds are used to support the facility.

## The Los Angeles Memorial Coliseum

The Coliseum was constructed in the early 1920s and opened its doors to the public in June 1923. The first football game was played in the stadium on October 6, 1923, with the University of Southern California (USC) hosting Pomona College before a crowd of 12,836. It was a modest beginning for a venue that would later play a prominent role in college and professional football.

The history of the Coliseum spans eight decades. It is the only facility in the world to host two Olympiads (X<sup>th</sup> and XXIII<sup>rd</sup>), two Super Bowls (I and VII), and one World Series (1959). Along with the adjacent Sports Arena, the Coliseum is credited with promoting the migration of professional sports to the West Coast. The Coliseum provided a home for the Los Angeles Rams (from Cleveland, 1946-79), the Los Angeles Dodgers (from Brooklyn, 1958-61), the Los Angeles Raiders (from Oakland, 1982-1994), and was the expansion home of the Los Angeles Chargers (1960, AFL).

In 1984, the State of California and the United States Government declared the Coliseum a State and Federal Historical Landmark for its contribution to the historical makeup of the 31<sup>st</sup> State of the Union as well as the United States of America.

The Sixth District Agricultural Association is also known as the California Science Center. It is in the State and Consumer Services Agency and is deemed to be a tax-exempt organization as an instrumentality of this State in accordance with Section 23706 of the Revenue and Taxation Code (See Food and Agricultural Code Section 4101-4108).

The 92,500-seat Coliseum served as the home of the NFL's Los Angeles Rams from 1946 through 1979, the NFL's Los Angeles Raiders from 1982 through 1994, and has, since its initial construction, served as the home for the USC Trojan football team (1923 - present). The Coliseum also hosts international soccer competitions, and hosted the L.A. Xtreme professional football team during the XFL's first and only season in 2001. Other world-class events that have occurred at the Coliseum include UCLA football games (1933 through 1981); numerous high school football contests, including the famed "Shrine All-Star Game"; political rallies, including John F. Kennedy's Democratic Presidential Nomination acceptance speech at the Democratic National Convention in 1960; religious conventions, including an all-time Coliseum attendance record of 134,254 for Billy Graham in 1963 and the 1987 Papal Mass (the first Papal Mass held in the United States by Pope John Paul II); the 1976 Bicentennial Spectacular; and numerous rock concerts and cultural events.

Prior to the 1993 football season, the Coliseum underwent a \$15 million renovation. The Coliseum's floor was lowered 11 feet and the running track was removed to create a more intimate stadium. Fourteen new rows of seats (comprising approximately 8,000 seats) were added to the lower bowl area, bringing fans closer to the playing field. The first rows of seats between the goalposts were repositioned to a maximum of 54 feet from the sideline, instead of the previous distance of 120 feet. During this renovation the locker rooms, public restrooms, and concession facilities were also upgraded and expanded.

Southern California's damaging January 1994 earthquake resulted in major structural damage to the Coliseum, requiring approximately \$93 million worth of repairs. In the summer of 1995, the Coliseum underwent a major seismic renovation and a new \$6 million press box was constructed. The California Office of Emergency Services (OES) awarded \$100.6 million to the Coliseum Commission to cover the costs of earthquake damage. A new press box was added to the south side of the Coliseum extending above the rim and upper seating bowl. The press box is comprised of two main levels, with a camera deck located on the roof. The square footage of the press box addition, including the rooftop and circulation areas, is approximately 18,400 square feet, surpassing the 8,300 square feet of the former press box.

The Coliseum has a present maximum capacity of approximately 92,500 seats. Almost all of the seats in the Coliseum are chair-back seats. There are approximately 25,000 seats from goal line to goal line, including both the north and south sides. Rows 1-43 have a 12-inch rise, rows 44-68 have a 15-inch rise, rows 69-93 have an 18-inch rise. The distance between each row of seats is 33-inches in rows 1-14 and 30-inches in rows 15-93. Seats vary between 19 and 20 inches in width. With the exception of the east end zone, which includes bench seating, all of the seats are theater-type, self-rising chairs, the first of their kind ever installed in a football stadium at the time.

The symbolic Olympic torch monument was originally built for the 1932 Summer Olympics. It stands 150 feet above ground level and 182 feet above the field level.

X

The color video board affixed to the top of the Peristyle, measures approximately 33 feet, 7 inches by 44 feet. The black-and-white matrix board, measuring approximately 50 feet by 51.5 feet, carries game-in-progress information and is capable of displaying messages, pictures, animations and video action.

## PROJECT BACKGROUND AND OBJECTIVES

In response to a 1999 study by the NFL to bring professional football back to Los Angeles, the Coliseum Commission retained NBBJ, an international architectural firm that has designed numerous NFL stadiums, to develop a vision for the historic Coliseum that would enable the 1920s-era stadium to become a premiere, state-of-the-art venue for an NFL franchise. NBBJ's approach capitalized on the strength of the existing architectural elements of the Peristyle and Olympic flame, while constructing a new, modern stadium within the existing structure. The conceptual design celebrates the rich heritage of this architectural landmark, while incorporating contemporary aesthetics.

The Los Angeles Memorial Coliseum Renovation Project ("Proposed Project") was conceived to enhance the Historic Landmark's presence and importance in both the Los Angeles region and the nation. It was determined that the Proposed Project should preserve the exterior wall, the emblematic Peristyle on the east end of the stadium, and as much of the seating fabric and bowl geometry as possible. These fundamental historic preservation principles became important guidelines as the design work began and are illustrated in the Conceptual Historic Fabric Retention Plan provided in Figure III-3. The stadium design renderings prepared by NBBJ, as presented later in Section III.C, Project Characteristics, present a stadium proposal that is representative of a possible design solution. They are not intended to serve as a final design. To the extent that design changes are anticipated during the planning and development phase, for purposes of this EIR, the final design will be required to be principally consistent with the Conceptual Historic Retention Plan.

Early in the process of designing the enhancements to the building to make it a competitive venue for use by an NFL franchise, NBBJ looked at geometries for the seating that were in line with the current geometry, enabling the design team to save at least part of the seating sections in the existing bowl. The importance of this decision was to make sure, as the building is experienced, that there would always be a part of the bowl in view. A large portion of the west end of the bowl will be retained and, while not used for regular NFL games, portions of the seating may used for large attendance events. The east end of the bowl is maintained in a similar manner to anchor each end of the Peristyle in its current form.

The conceptual design of the Proposed Project explores and enhances the full value of the heritage of its Exposition Park site. The Peristyle at the east end of the stadium, clad in stone, is a priceless monument to the historic events that have passed beneath its arches: two Super Bowls, two Olympics,

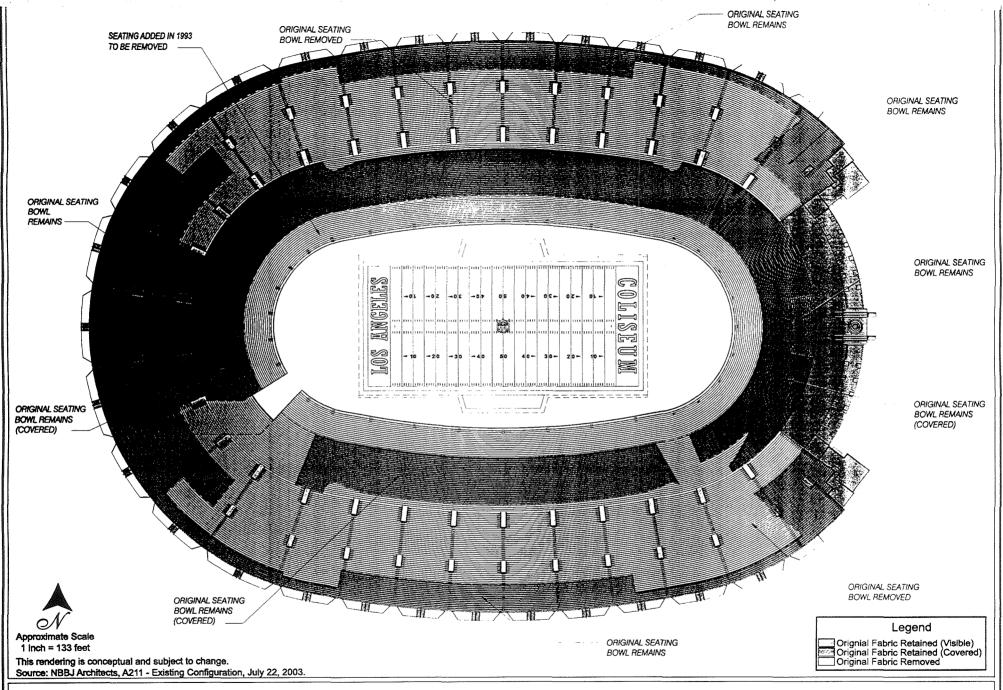



Figure III-3 Conceptual Historic Fabric RetentionPlan the celebrated arrival of presidential nominee John F. Kennedy and countless other sporting events. Within the Peristyle, an outdoor restaurant experience will be created. Intended to be the only open-air suites in the NFL, this area produces a distinct new club experience unlike any other in the NFL, allowing VIP ticket holders the uniquely "L.A." experience of seeing and being seen.

The seating bowl is designed to bring more fans closer to the field and along the sidelines. On three levels in favorable sideline positions, approximately 200 suites and a club level with premier seats create high-amenity areas with great views to the playing field, while maintaining the historic fabric and defining character of the Coliseum.

The Coliseum Commission's stated objective for this Project is to secure the highest possible level of management, operation, and maintenance of the Coliseum as a world-class, "state-of-the-art" public assembly facility of the first magnitude. The Coliseum Commission has identified the following goals and objectives for the Proposed Project:

- To renovate the Coliseum in conformance with the generally accepted standards of design for National Football League (NFL) stadiums, thus enabling the Coliseum Commission to acquire and maintain an NFL franchise in the City of Los Angeles.
- To extend the useful life of the Coliseum so as to assure that the stadium will continue to provide to the public an economically viable facility capable of hosting a wide variety of athletic, cultural, political, and community events.
- To renovate the Coliseum in conformance with the generally accepted standards of design for collegiate football, thus enabling the Coliseum Commission to continue its landlord/tenant relationship with the USC football team.
- To provide spectators and users of the Coliseum with the amenities and conveniences consistent
  with a state-of-the-art facility, including improved restrooms, concession, and press facilities;
  improved spectator viewing; luxury suites and club seating; improved locker and dressing
  facilities; additional circulation space; and better accessibility to seating, concessions, and
  restroom facilities.
- To assure that stadium operations generate enough revenue to enable the Coliseum Commission to preserve and maintain the Coliseum in a self-sufficient manner.
- To preserve, where feasible, the historic character of the Coliseum in a manner compatible with the other objectives of the Proposed Project.
- To extend the useful life of the Coliseum and modernize the existing infrastructure with energy conservation fixtures in accordance with Title 24 (C.C.R) requirements, improved emergency fire

access, and upgraded accessibility standards in accordance with the Americans with Disabilities (ADA) requirements.

• To finance the renovation of the Coliseum without expending money from the City of Los Angeles or State of California General Funds.

# III. PROJECT DESCRIPTION C. PROJECT CHARACTERISTICS

The Proposed Project consists of the renovation of the Los Angeles Memorial Coliseum, including the rehabilitation of portions of the 27.4-acre Project Site surrounding and containing the Coliseum structure itself. The Proposed Project would also include the demolition of all of the existing extraneous outbuildings surrounding the Coliseum structure (except for one original (1932) ticket booth that will be retained) and the construction of two new approximate 20,000-square-foot ancillary buildings for supporting retail and office uses. This section first presents an overview of the Proposed Project, including a discussion of the guiding principles and program requirements. Following this, general elements of the Proposed Project's conceptual design envelope are presented.

As stated previously in Section III.B, Project Objectives, the renderings prepared by NBBJ, present a stadium proposal that is representative of a possible design solution. While the final stadium design has not yet been developed, the Conceptual Historic Fabric Retention Plan provided in Figure III-3 illustrates the fundamental historic preservation principles envisioned for the Proposed Project. Additional conceptual renderings depicting the general scale and massing of the representative design solution are presented in Figures III-4 through III-7.

# Principles and Requirements Guiding the Proposed Project

The Proposed Project has been conceptually envisioned to provide a modern, state-of-the-art sports and entertainment venue within the existing Coliseum structure. The fundamental historic preservation principles which have guided the development of the Proposed Project are as follows:

- To retain and restore as much of the existing Coliseum façade, bowl geometry and seating areas as physically and practically possible, within constraints of operational, programmatic and historic restoration guidelines;
- Where modifications, alterations, and replacements to the existing Coliseum are required, the new work shall attempt to maintain the same spirit as the original aesthetic character;
- To remove and reorganize exterior accessory structures ("out-buildings") in order to facilitate exterior patron access and to enhance the appearance of the Coliseum grounds.

The program requirements essential to the Proposed Project are as follows:

- To reduce seating capacity while improving field proximity;
- To improve spectator access and egress within the Coliseum;





Figure III-4 Conceptual Model Rendering - Northwesterly Overhead View

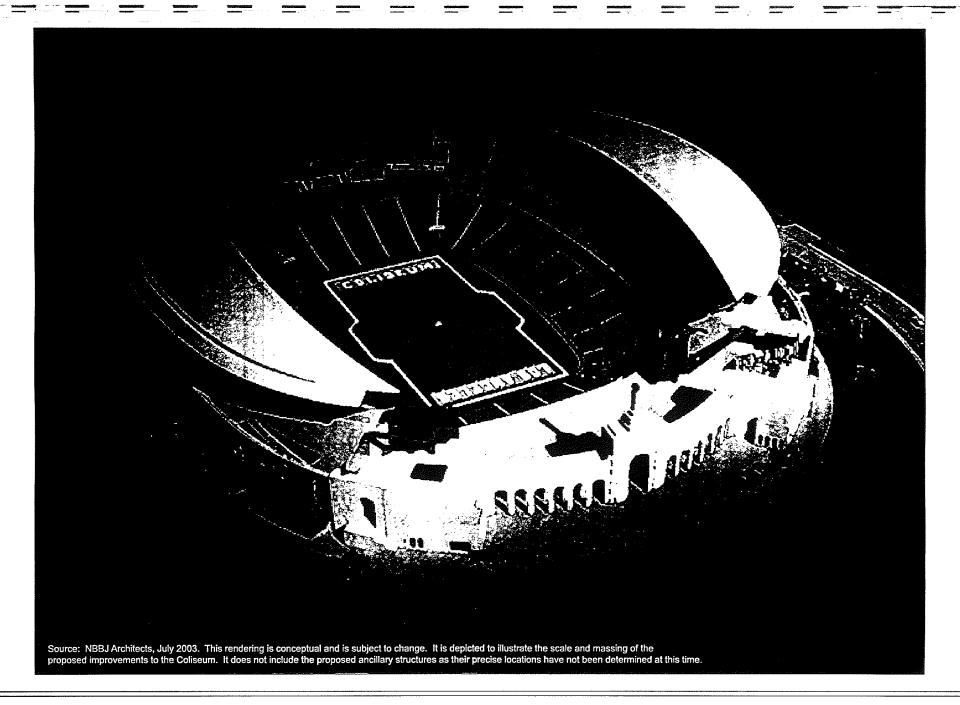





Figure III-5 Conceptual Model Rendering - Westerly Overhead View

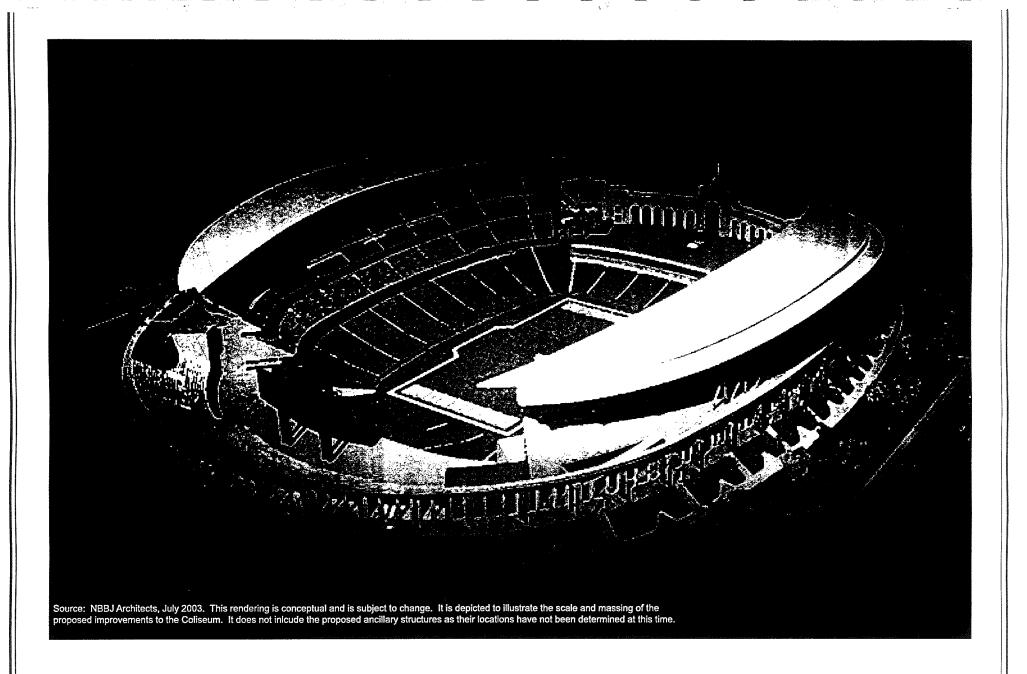






Figure III-6 Conceptual Model Rendering - Southwesterly Overhead View





- To provide state-of-the-art private spectator suites (luxury boxes), having separate patron access and circulation and located in a desirable viewing location to support the stadium financing and to keep other stadium pricing reasonable;
- To extend the useful life of the Coliseum by modernizing the existing infrastructure with energy conservation fixtures in accordance with Title 24 (C.C.R) requirements, improving emergency fire access, and upgrading accessibility standards in accordance with the Americans with Disabilities (ADA) requirements.
- To provide luxury suites and a club level with premier seats supported by high-amenity areas with great views to the playing field; and
- To provide improved and more accessible restrooms and concessions for all spectators.

# **Primary Directives of Proposed Project**

Given the aforementioned fundamental principles and essential program requirements, the following principle directives were developed as fundamental aspects of the Proposed Project:

- To maintain the Peristyle end of the existing Coliseum as the dominant focal point of the stadium;
- To maintain the oval plan geometry of the existing exterior walls, while inserting a new seating bowl that includes a separate club level, three suite decks, an upper deck, and two public concourses;
- To retain and restore the existing exterior wall, including the reuse of the existing stairs and tunnels as much as possible while providing separate circulation and access for the club and suite seating;
- To provide a main concourse level adjacent to the north and south sideline spectator seating, with restrooms and concessions, allowing most extraneous out-buildings and equipment to be removed from the outside grounds, and also locating these amenities closer to the patrons.

### Overview of the Proposed Project

The Proposed Project would reduce the Coliseum's existing maximum seating capacity from 92,500 seats for all events to a maximum of approximately 78,000 seats. Upon completion of the Proposed Project, seating in the Coliseum would be divided into three different classifications: general seating, club seating, and luxury suite seating. The principle differences between the three seating types involve the level of amenities available to patrons in each of those respective areas. Approximately 200 luxury suites would be accommodated in the suite levels. The seating rows themselves would consist of self-rising, floor or riser-mounted armchair seats with the first row situated approximately five and one-half feet above the

1

台灣

field. The average seat width would be 19 inches in the general seating areas, 22 inches in the suites, and 21 inches in the club seating area. Seating reserved for companions of wheelchair patrons would be located adjacent to the handicapped seating. The existing Coliseum provides approximately 146 seating locations for patrons in wheelchairs, generally in the west end of the Coliseum between Tunnels 13 and 17. The Proposed Project would increase the total wheelchair positions to meet or exceed Americans with Disabilities Act (ADA) requirements. The wheelchair seating would be situated in several locations throughout the stadium to provide a variety of seating options for the disabled.

## Proposed Uses for the Coliseum

As detailed in Section IV.A, Environmental Setting, and IV.B, Analytical Assumptions, the Coliseum currently hosts an average of 34 events a year, which includes USC football games, international soccer matches, off-road vehicle events, public speaking events, political rallies, and concert performances. Table III.C-1, on page III.C-4, identifies the types of events held at the Coliseum over the past four years, including the number of events held per year by event and maximum attendance levels by event. It is anticipated that the existing event schedule would continue under the Proposed Project, and will be expanded upon to include the NFL as a permanent tenant. Under the Proposed Project, 10 to 12 professional football games would be added to the current annual event profile, representing an approximate 35% increase to the existing operations. Upon completion of the Proposed Project, the NFL and USC Trojans football teams would be the two primary tenants at the Coliseum.

The College football season lasts approximately four months beginning the last week in August and ending in December. The USC Trojan football team hosts 6 to 8 home games each season. College games are played on Saturdays and/or Saturday evenings. The USC Trojan football team has been a primary tenant at the Coliseum since 1923. Based on recent data collected during the past four years (1999-2002), the average attendance for USC football games was 48,775 persons. The maximum attendance for a USC football game during this time period was 87,944 persons.

The NFL's football season occurs over a six-month period beginning in August and ending the last week of January. The NFL schedule generally includes four pre-season games in August, seventeen regular season games beginning the first week of September, and three post-season playoff games played in late December and early January. Including four pre-season games and sixteen regular season games, each team plays a minimum of twenty games per season, with roughly half (10) of the games being played on the home team's field. Qualifying teams play up to three additional post-season playoff games leading up to the Super Bowl. The Super Bowl is played on the last Sunday of January. The NFL schedules a majority of the games on Sundays, with generally one event per week scheduled on Monday night, Thursday night and/or a Saturday. As a representative schedule, the 2003 NFL's regular season schedule includes 16 Monday night football games, 2 Thursday-night games and 2 Saturday games. The remaining

Each team has one week off during the course of the 17 week regular season.

Table III.C-1
Coliseum Event Profile – Average and Maximum Attendance Levels (1999-2002)

| Event Type                                    | Events<br>Per<br>Year | Average<br>Attendance<br>(Per Event) | Maximum<br>Attendance<br>(per Event) | Annual<br>Attendance<br>(Per Event) <sup>a</sup> |
|-----------------------------------------------|-----------------------|--------------------------------------|--------------------------------------|--------------------------------------------------|
| Miscellaneous Sports (High School Football)   | 2                     | 8,811                                | 24,278                               | 17,622                                           |
| Motorsports (Monster Truck and Motorcross)    | 2                     | 15,943                               | 17,569                               | 31,886                                           |
| Religious (Our Lady of Guadalupe)             | 1                     | 45,000                               | 45,000                               | 45,000                                           |
| Miscellaneous (Revlon Run)                    | 1                     | 44,751                               | 50,000                               | 44,751                                           |
| Concerts (Metallica)                          | 1                     | 67,517                               | 67,517                               | 67,517                                           |
| Soccer                                        | 13                    | 15,140                               | 49,146                               | 196,820                                          |
| USC Football                                  | 6-7                   | 48,775                               | 87,944                               | 341,425                                          |
| XFL Football (2001 season only <sup>b</sup> ) | 7                     | 13,150                               | 29,527                               | 92,050                                           |

#### Notes:

Source: Los Angeles Coliseum Commission, 2002.

games occur on Sundays. Since there are only seventeen weeks during the season and 32 teams on the league, weekday games at the Coliseum would be rare and would not occur every season. At the most, it could be expected that the Coliseum would host one weekday game per season, occurring on either a Monday or Thursday night. A weeknight game would not occur every season.

## **Exterior Treatment**

The existing exterior wall of the Coliseum would remain virtually intact, with few alterations. Existing extraneous out-buildings (i.e., ancillary structures that are on site, but detached from the stadium) would be removed from both the outside of the Coliseum structure and from the adjacent grounds on the site. Such buildings include mechanical and electrical equipment and sheds, restrooms, concession stands, storage buildings, and ticket booths, as well as buildings, escalators, elevators, and non-original stairways that have been added over time. One original (1932) ticket booth located outside the Coliseum in the northeast corner of the site would be retained. The Peristyle end of the Coliseum would remain intact, along with the adjacent Coliseum Commission offices. The existing Coliseum contains a series of 27 stairways and 28 tunnels leading from the exterior grade into the stadium. The stairways would be maintained to the extent permitted by the building codes and safe exiting practices.

<sup>&</sup>lt;sup>a</sup> The average annual attendance levels were based on the recorded total annual attendance levels for each event averaged over a four year period.

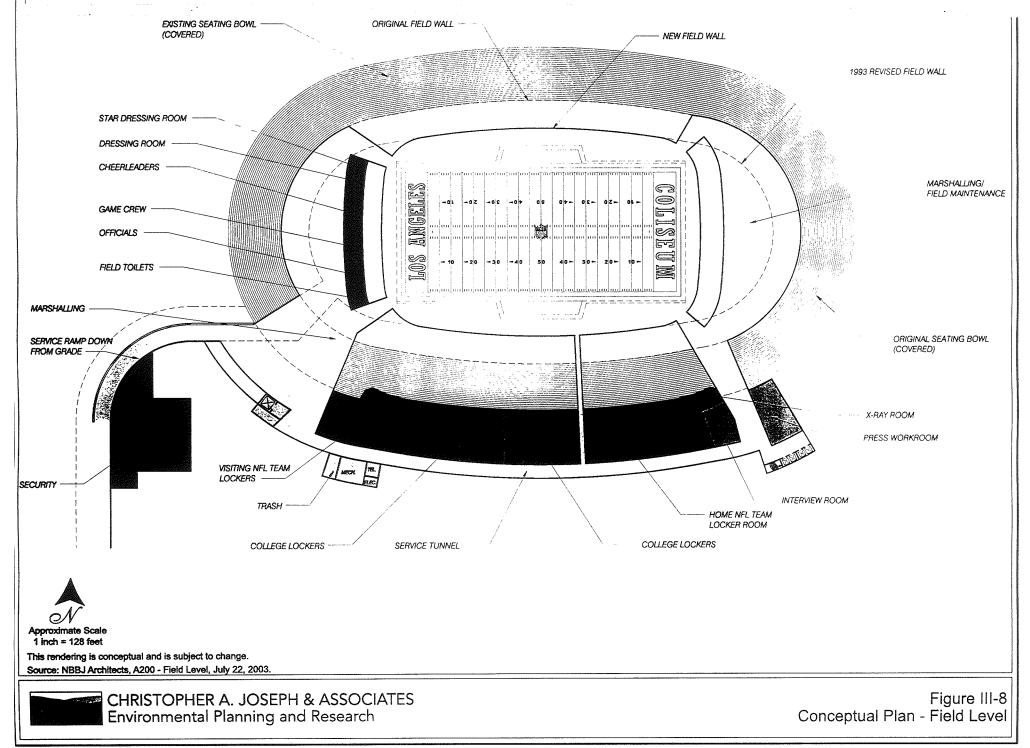
b The XFL was discontinued after its first season.

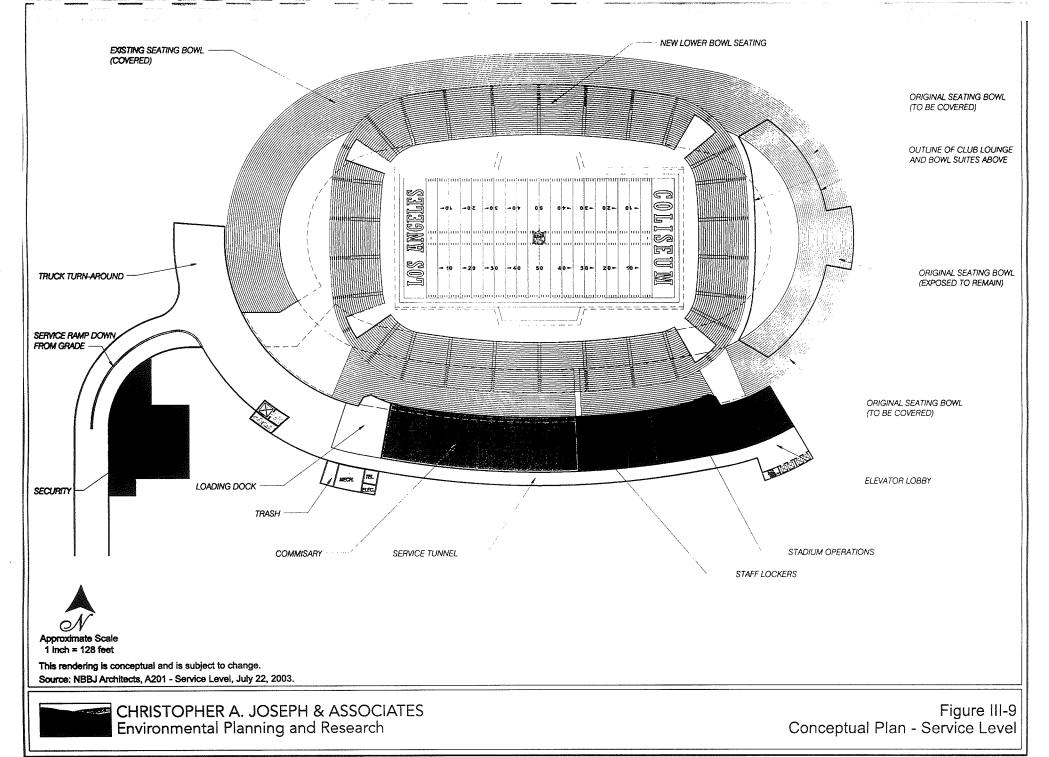
The 26 of the 28 tunnels would remain and provide direct, on-grade access to the main concourse. Two of the tunnels will be blocked by the exit ramps serving the Upper Concourse. The tunnels on the north and south sidelines would be shortened to accommodate the new main concourse.

The existing openings in the exterior wall of the Coliseum would remain intact and cleared of any miscellaneous piping, wiring, and glazing. The concrete brackets and upper seating tiers that provide the cornice to the existing wall would also remain. The original exterior lighting fixtures would be reused or recreated where feasible. The new press facilities would be integrated into the upper suite level, eliminating the press box that currently extends above the exterior wall of the seating bowl. The existing earth berm against the exterior wall would remain largely intact, with only minor modifications to accommodate access and exiting requirements.

#### **Interior Treatment**

The interior of the Coliseum would continue to feature the Peristyle as the dominant element in the east end of the bowl. The Peristyle would remain intact. The color video board, black-and-white matrix boards, and sound clusters that are currently attached to the top of the Peristyle would be removed. At the west end zone, the upper portion of the existing bowl will be retained as well as the access stairs. By retaining these sections, the feel of the original bowl geometry will be retained.


The Proposed Project provides that a removable/retractable pavilion of seats may be located in the lower bowl at the east football end zone. When the seats are retracted, the pad for this seating would serve as the location for portable stages constructed for concerts and other performance events.


The lower bowl will be completely reconstructed to meet the NFL's design standards for a modern, state-of-the-art football stadium. The first row of the lower bowl would be approximately 5½ feet above the field level to provide acceptable sight lines over people standing on the sidelines.

### **Coliseum Service and Seating Levels**

The Proposed Project would develop separate levels within the Coliseum. These levels are described in detail, from lowest to highest elevation, as follows:

- <u>Field Level (See Figure III-8)</u> This level would consist of the playing field, new underground locker facilities for professional and college teams (40,000 square feet as opposed to 10,120 of existing space), press interview and workrooms, marshalling areas dressing rooms for cheerleaders, officials and talent, and other field support areas.
- <u>Service Level</u> (See Figure III-9) This level houses the stadium loading dock, commissary, staff lockers and stadium operations offices.





- Lower Club/Plaza Suite Level (See Figure III-10) The lower seating bowl would contain approximately 36 rows (44 in the west end zone) of general patron and Club seating. This seating arrangement allows 19-inch wide armchair seats while the club patron seats would be 21-inches wide. Thirty-three-inch deep treads would extend from the field wall upward to the bulkhead in front of the Lower Bowl and Club section wheelchair seating positions. Lower Bowl, endzone suites are proposed below the Peristyle Plaza. On the south side of the stadium there would be a multi-level Club to serve the Lower Bowl Club seats.
- Plaza Level/Main Concourse (See Figure III-11) Access to the lower seating area would be from the Main Plaza Level along the sidelines and from the uncovered concourses in the end zones. The Main Concourse would provide restrooms and food court concessions necessary to serve the lower seating level's population. Concessions and restroom facilities would be located on the outer side of this level (away from the field), and behind the lower level suites. Suites are proposed along the north and south sides directly behind, and raised above the lower bowl seating area. On the south side of this level is the second level of the Lower Bowl Club. Outside the stadium and adjacent to the Club would be a garden area that would be available to Club patrons for outdoor dinning and socializing. At the east end of the Coliseum, on the north and south sidelines, there would be VIP entrances for the Club and Suite patrons.
- Mid-Suite Level (See Figure III-12) Directly above the main concourse level will be a Middle Suite Level, with additional suites located directly above the suites on the Main Concourse Level. The Middle Suite Level will be accessible via escalators and elevators at the east end of the Club.
- <u>Club Level</u> (See Figure III-13) The Club Level would include restrooms and vendor concessions and would primarily function as a lobby to access approximately 11 rows of club level seating. Club level seating would be provided on the north and south sides of the Coliseum bowl.
- <u>Upper Suite/Press Level</u> (See Figure III-14) The Upper Suite/Press Level would include suites directly above the Club Level on the north and south sides of the Coliseum bowl. The Upper Suite level could also include the press box. The Upper Suite level would provide space for concessions, restrooms, catering, and other general services to the upper suite.
- <u>Upper Concourse Level</u> (See Figure III-15) This entirely new level would serve the Upper Deck seating, which would consist of approximately 39 rows of general patron seating, with 19-inch wide armchair seats with 33-inch deep treads. Access from the upper deck seating area to the Upper Concourse level would be through vomitories located approximately one-quarter

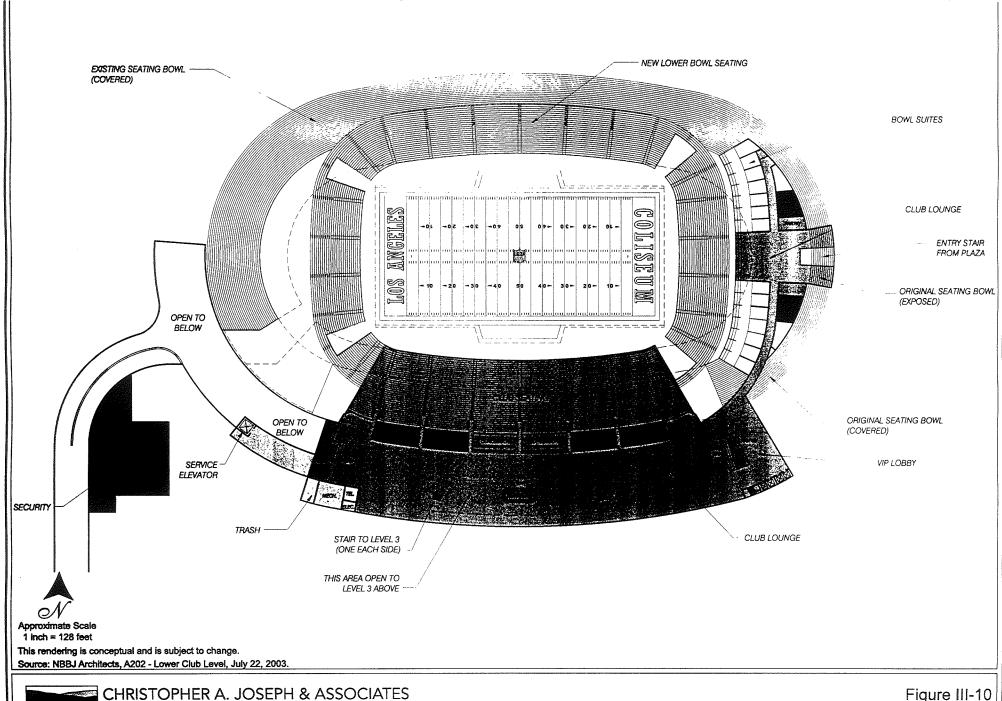
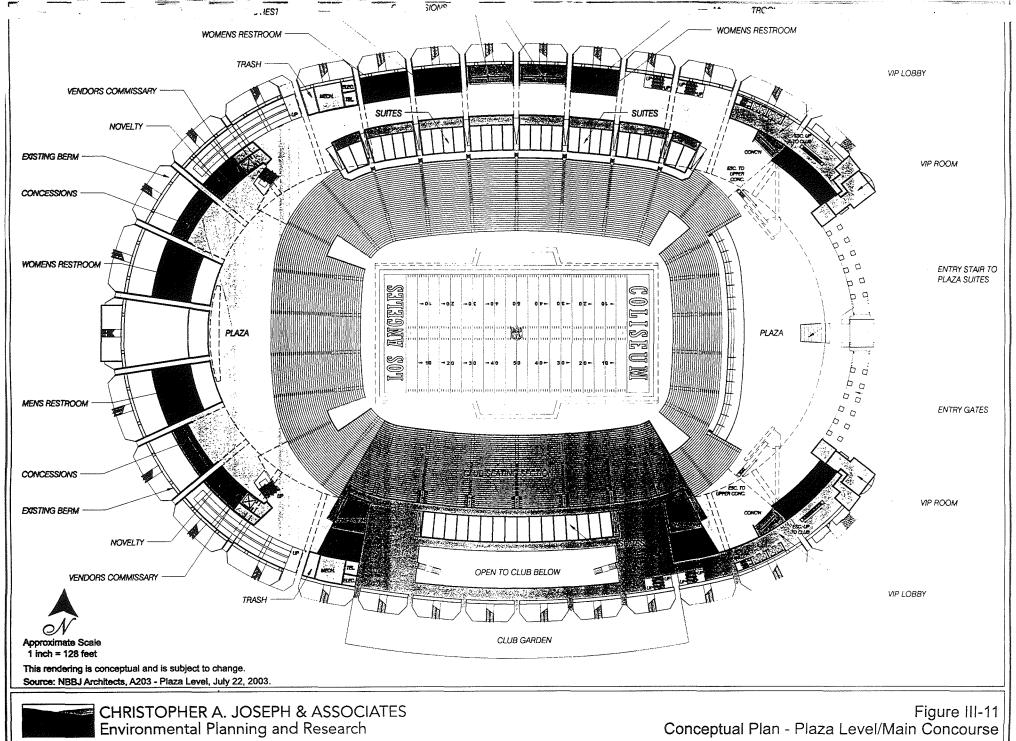
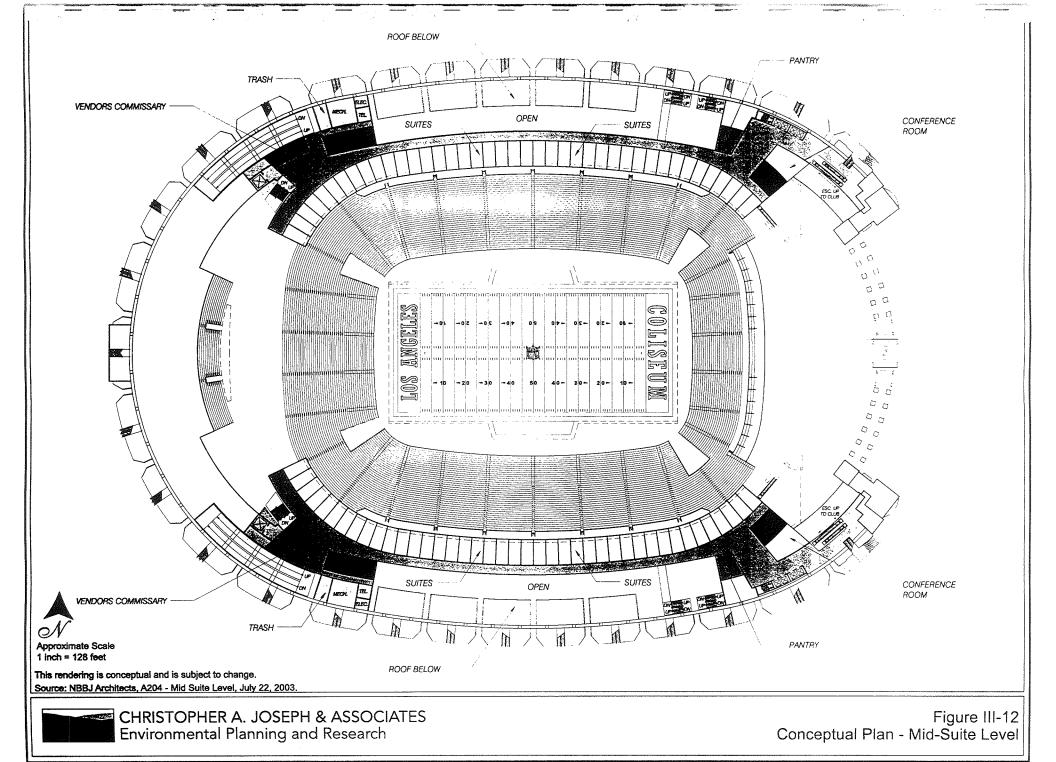





Figure III-10 Conceptual Plan - Lower Club/Plaza Suite Level





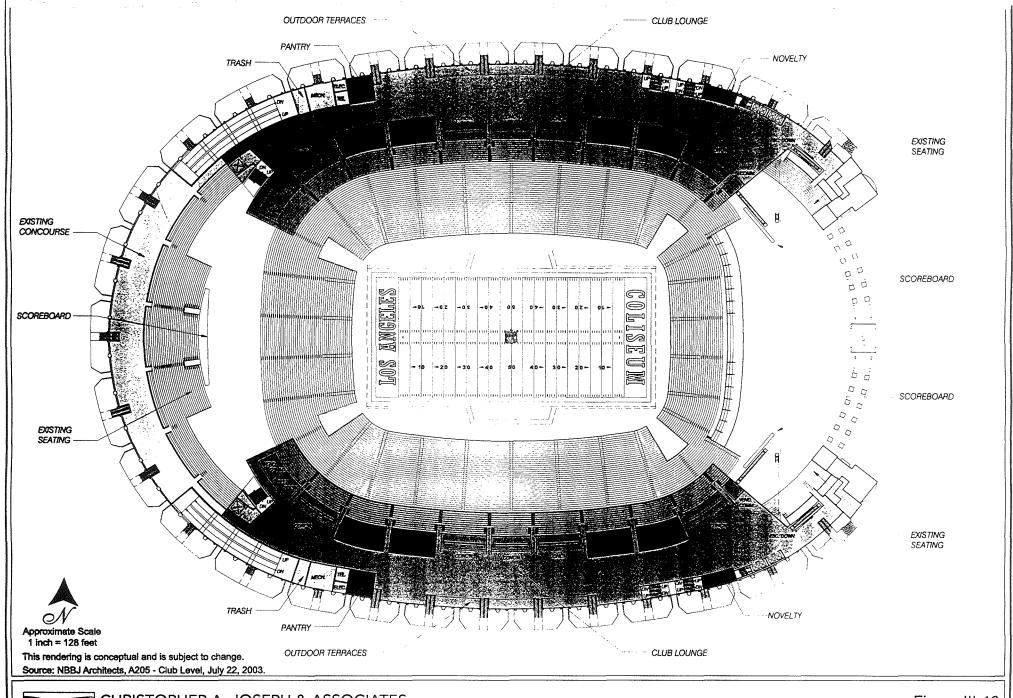
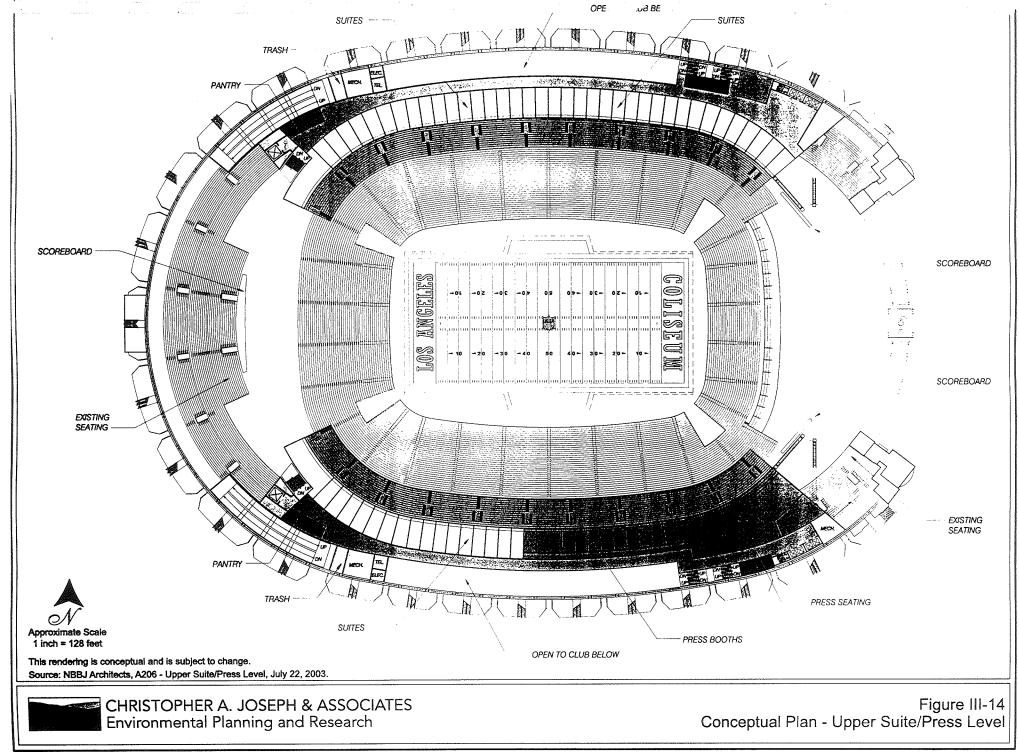
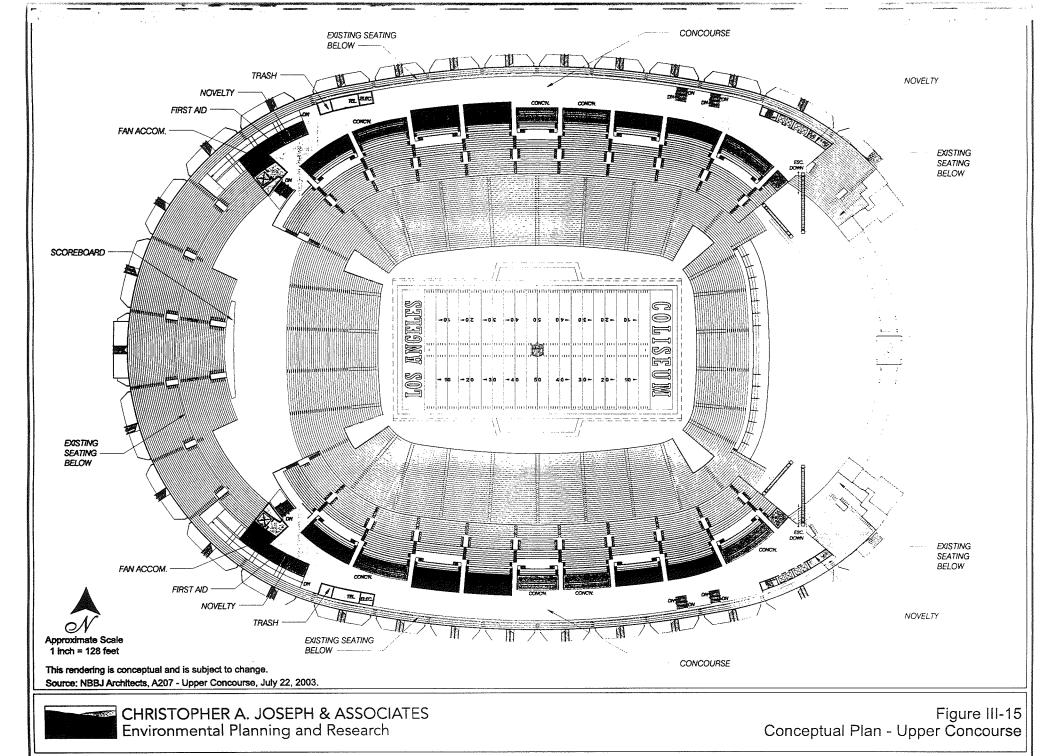




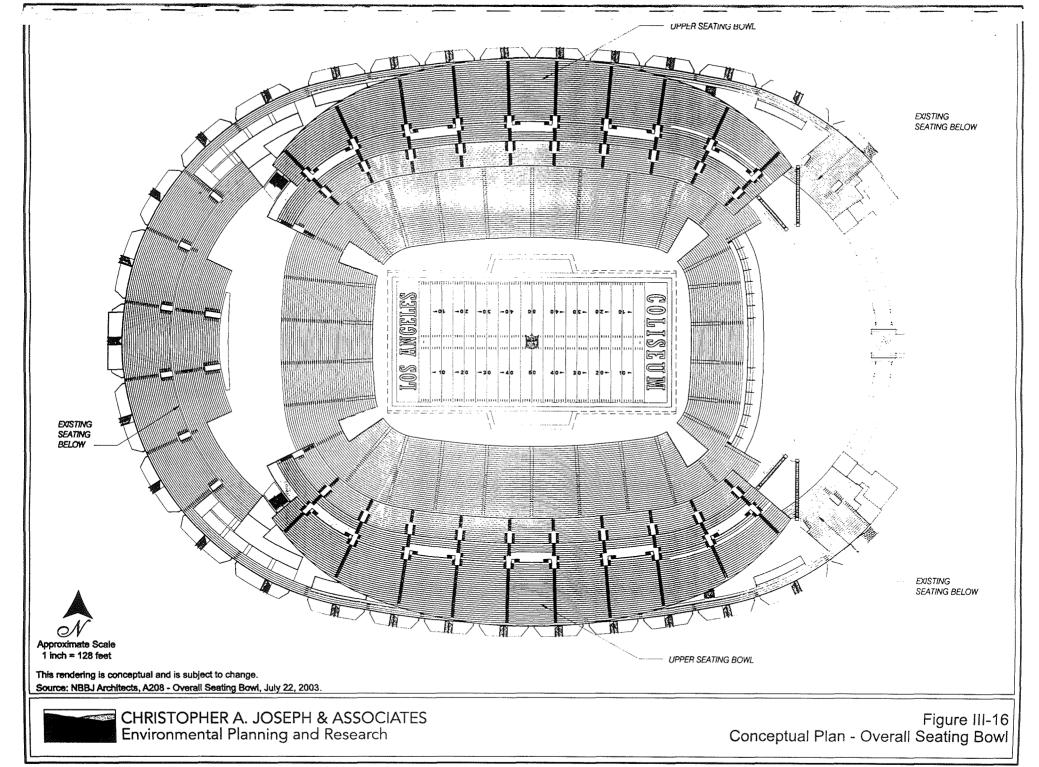


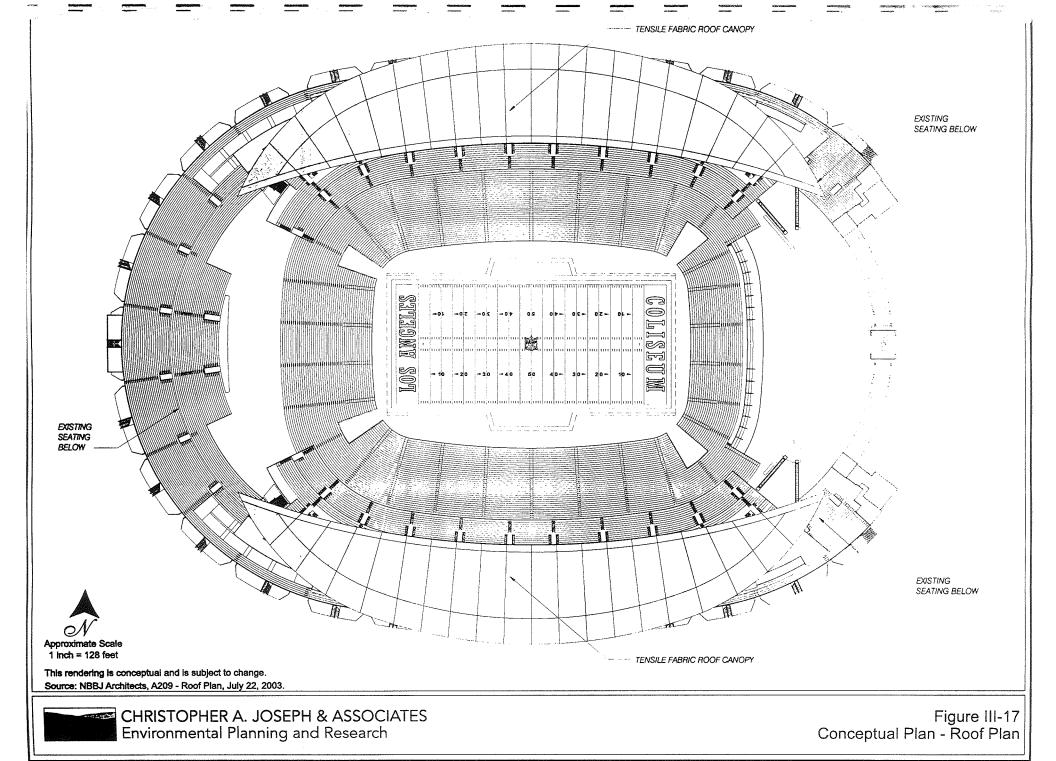

Figure III-13 Conceptual Plan - Club Level





of the Upper Deck's distance up from its front seating row. The Upper Concourse level would contain concessions, restrooms, and all other vending and support spaces necessary to serve the Upper Deck seating patrons. These facilities would be located on the field side of the Concourse, beneath the seating area. The floor of the Upper Concourse deck would be approximately six vertical feet below the existing height of the Coliseum's rim.


In addition to the new seating and service levels, two sections of the existing Upper Concourse Level would be retained on either side of the Peristyle to provide access to the existing bench seating which is to remain in this section of the Coliseum.


Conceptual illustrations of the overall seating bowl and the roof plan are depicted in Figures III-16 and III-17, respectively. A Temporary Expansion Seating Plan is provided in Figure III-18. Conceptual cross sectional elevations of the Proposed Project from the north, south, east, and west directional views are depicted in Figures III-19 to III-21.

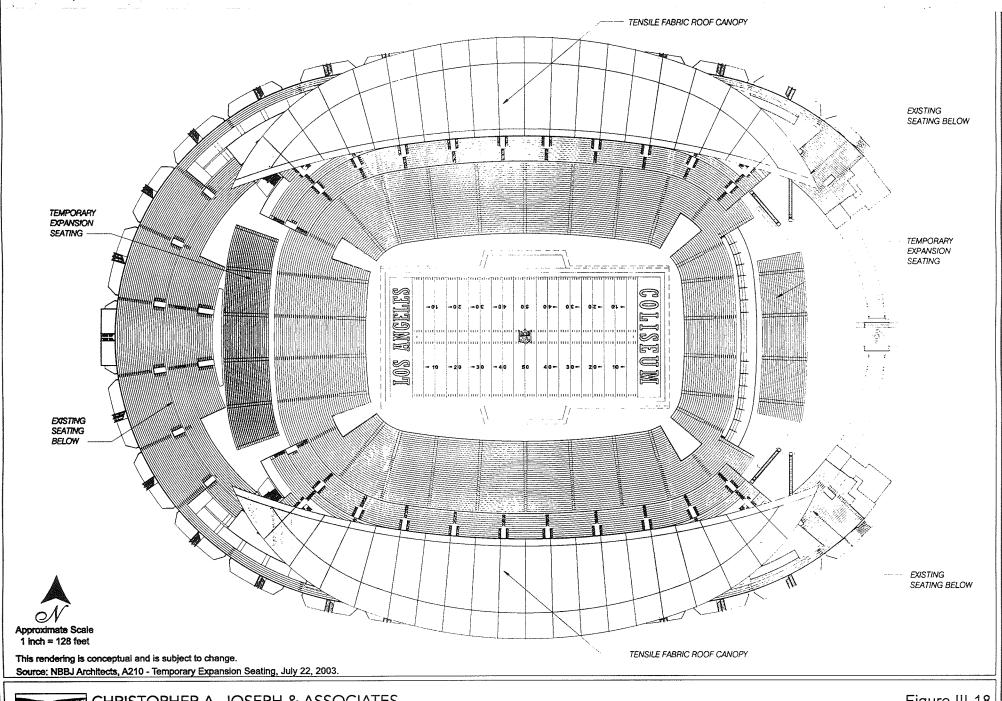
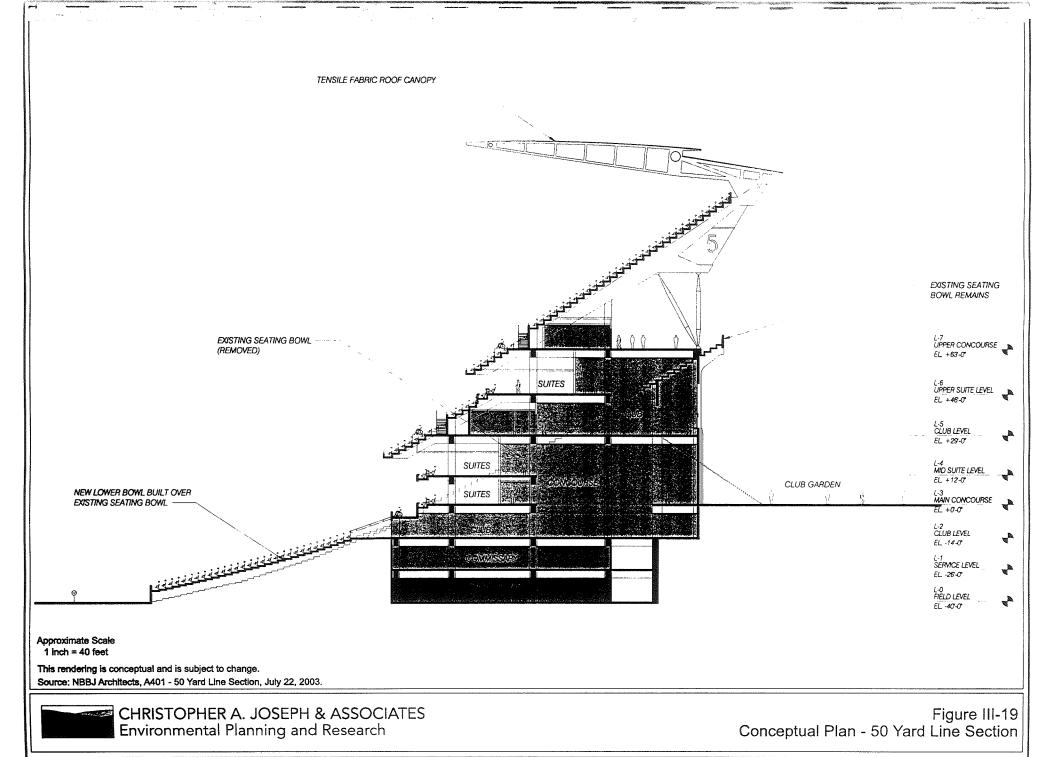
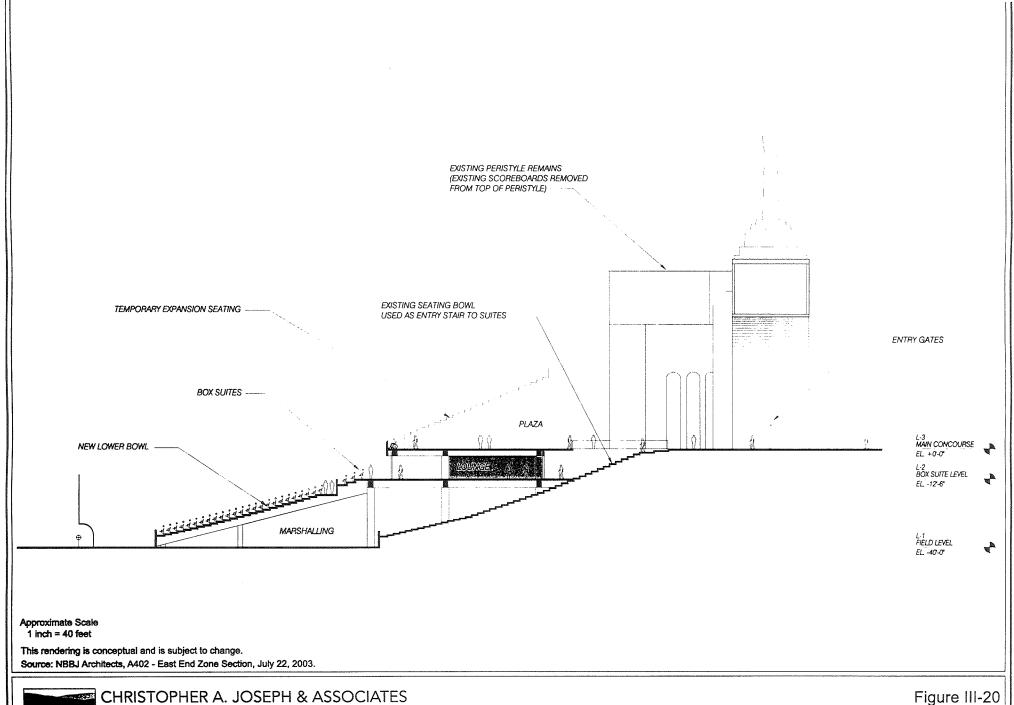
## Facilities Provided In the Renovated Coliseum

The Proposed Project would provide upgraded support functions such as concessions, restrooms, commissaries, and vendor service areas in an even distribution on each concourse level, as well as on the west end grade level, and sized according to seating counts in that area. In addition, closed circuit television monitors would be installed throughout the stadium, allowing attendees to monitor the progress of the event from all concourse levels, concession stands, and suites. Restroom facilities would be provided at an approximate ratio of 50 percent men to 50 percent women. In addition to the ticket booths to be located outside the Coliseum, advance sales booths would be located at the grade level, accessible from the stadium interior. The Project would also include a security command center for both private security forces and Los Angeles Police Department personnel at the press level. First aid facilities and security offices would be located throughout the stadium at each concourse level, as would handicapped assistance offices. Other general service facilities to be provided in the Coliseum would include fan assistance/information stations, public telephones, and drinking fountains.

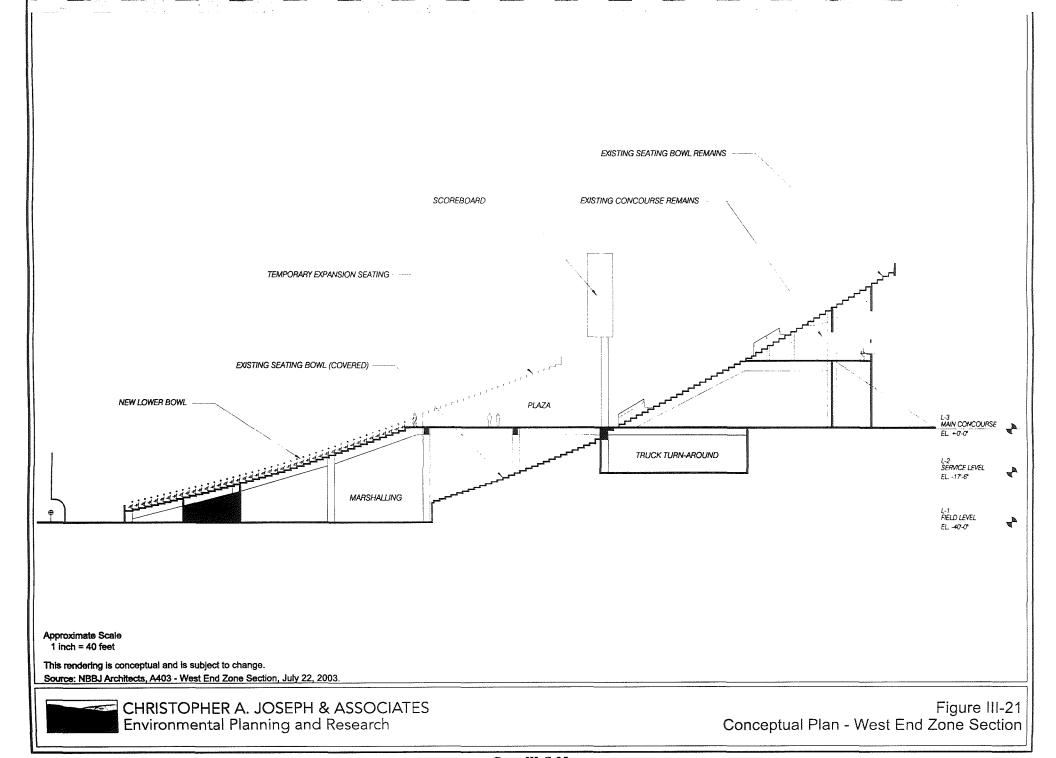
Media facilities developed as part of the Proposed Project would be largely confined to the press box in the Upper Suite Level on the south side of the Coliseum and at the southeast end of the Field Level. The new press box would contain approximately 19,000 square feet, as opposed to 18,400 square feet contained in the existing press box. The press box area would be segregated for the broadcast media and the writing press. The broadcast media portion of the press box would feature operable windows; numerous television monitors; television broadcast booths and associated storage; radio broadcast booths; and booths for home and visiting coaches, home and visiting owners, instant replay officials, public address announcers, sound system control, scoreboard/videoboard control, statisticians, and other miscellaneous storage and multi-purpose uses. The writing press portion of the press box would include stations for approximately 250 writers, control desks, telephone and internet service connections, facsimile connections, closed circuit television, and restrooms. The press box would also









Figure III-18 Conceptual Plan - Temporary Expansion Seating





Environmental Planning and Research

Figure III-20 Conceptual Plan - East End Zone Section



contain a press lounge and food service pantry. Other media facilities located at various positions within the Coliseum or immediately surrounding areas would include a graphics office, parking for four mobile television truck units with an adjacent lunchroom, and restrooms. Camera platforms will be placed in the seating as required.

Concession-related facilities would include offices and storage areas, a laundry room, vendor and catering commissaries on each served level, and concessions for general seating, club seating, and suite patrons, including lounges and catering kitchens. In addition, employee uniform lockers and distribution rooms, a maintenance shop, and equipment storage areas would be provided at specified locations within the Coliseum. Total square footage proposed for concession-related facilities would be approximately 35,000 square feet, as compared to 18,700 square feet of equivalent facilities in the existing stadium.

The existing field lighting located on posts outside the Coliseum walls will be removed and replaced. New lighting will be installed in the roof structures, to be angled toward the field. Similarly, the existing sound system would be replaced as part of the Proposed Project, with a new distributed sound system. The new sound system would be designed to provide intelligible coverage of all ticketed seats within the stadium, as well as to the press box and several other public areas.

#### **Access and Circulation**

Pedestrian access to the Project Site would continue to remain substantially as at present from the outlying parking areas off-site. The existing perimeter fence bordering the Peristyle area of the Coliseum would be removed, providing increased general public open space areas immediately surrounding the Coliseum façade.

Vehicular access to the field from the exterior of the stadium would continue to be provided via the existing service drive and tunnel from Menlo Avenue. One side of the service drive would be raised to meet the new Service Level. The new television truck parking area would be located along the east side of the security building at ground level. Pedestrian access to the subsurface locker rooms and operations area would be by way of the existing service drive, extending from the grade level to the field level and by stairs and elevators from the main concourse to the service level. Direct access to the field from the locker rooms and service building would be by way of field vomitories at the east and west ends of the stadium.

Service access by the way of freight elevators and handicapped elevators to all levels would be located in the northeast and southeast quadrants through openings in the existing berm adjacent to club exit stairs. A total of 8 escalators, 8 passenger elevators and 2 freight elevators would be installed, including elevators for freight use, handicapped accessibility, fire protection, security/first aid (shared), and press usage. Handicapped guest circulation would be facilitated by the inclusion of areas of rescue

assistance at each grade-separated level, with a handicapped assistance office providing orientation, group coordination, and other aid for handicapped guests.

No major alterations to the existing parking arrangement(s) at the Coliseum are contemplated as part of the Proposed Project (see Section IV.C, Cumulative Related Projects, for a discussion of added parking improvement projects within Exposition Park) except at the southwest quadrant, east of the security building, which would be utilized for TV truck and player parking. In general, areas outside the existing Coliseum perimeter fence would remain unchanged, except for the proposed removal of all extraneous Coliseum-related out-buildings.

# **Proposed Improvements Outside of the Coliseum**

In addition to renovating the Coliseum structure itself, the Proposed Project would include the demolition of all of the existing outbuildings surrounding the Coliseum structure (except for one original 1932 ticket boot) and would include the construction of two approximately 20,000 square-foot buildings to support ancillary retail or office uses. These structures are proposed as stand-alone ancillary facilities to support the future uses of the Proposed Project. While the architectural designs for these buildings have not been finalized, they will likely include 2-story structures with an architectural design that is compatible with other recent structures that have been built or are under construction in Exposition Park. These structures will be generally located in the southeast area of Exposition Park between the Coliseum and the Sports Arena.

# Signage

The proposed Signage Plan has not yet been finalized, however, it is anticipated that sponsorship elements and naming rights will play a major role in the operating revenue for an NFL franchise.

The Coliseum Commission currently operates one off-site, free-standing freeway sign in proximity to the Harbor Freeway. This sign will continue to be operated as part of the Proposed Project. In addition to this sign, it is anticipated that the proposed Signage Plan will include another free-standing sign of similar scale and character between the Coliseum's westerly end and Menlo Avenue. This sign will be detached from the Coliseum structure.

It is anticipated that the Signage Plan may include a signage element on the tensile roof canopy that is proposed above the north and south sides of the Coliseum's upper seating deck (See Figure III-17, Conceptual Roof Plan). While this signage element would not be visible to surrounding locations on the ground in or around Exposition Park, it would be visible to passing aircraft.

Directional and informational signage will also be included in and around the Coliseum to facilitate public access information, as needed.

# **Project Development Schedule**

Pending approval of the Proposed Project, it is anticipated that the Project would be constructed over an 18- to 20-month period of continuous construction activities. Based upon preliminary estimates, approximately 250,000 cubic yards of earth and/or building material are estimated to be excavated and removed from the site during the construction process. At this time, it is expected that removal of the portions of the seating bowl which are to be removed would begin at one "corner," and would proceed around the oval until complete.

Current plans call for the commencement of construction activities in 2005 with completion of the renovations to be achieved by 2006. During the construction period, it is expected that the USC Trojans football team would play their "home" games for one season at either Dodger Stadium, the Rose Bowl, or Anaheim Stadium. Provisions for the accommodation of the Trojans at alternate home facilities during the Project construction phase would likely be made following the completion of the Project approval process. These provisions would likely consist of private agreements between the team and the owners and operators of the respective stadiums.

## IV. OVERVIEW OF ENVIRONMENTAL SETTING A. ENVIRONMENTAL SETTING

#### PROJECT BOUNDARIES

The Project Site consists of the Los Angeles Memorial Coliseum, located at 3911 South Figueroa Street in the South Los Angeles District Plan area of the City of Los Angeles. The Project Site is located entirely within the boundaries of Exposition Park. The location of the Project Site is shown in Figure III-1, Regional Location Map and III-Figure 2, Project Vicinity Map. The State of California, Sixth District Agricultural Association is the current owner of the Project Site, which leases the land on which the Coliseum is located on to the Los Angeles Memorial Coliseum Commission (Coliseum Commission). Since the site of the Proposed Project is located within the context of a larger, cohesive public reservation (Exposition Park), the character of the existing land uses both within the Project Site boundaries and within the Exposition Park boundaries are evaluated below.

#### **Exposition Park**

Exposition Park is an approximately 160-acre reservation of public land established in 1908. Exposition Park is bounded by Exposition Boulevard on the north, Figueroa Street on the east, Martin Luther King Jr. Boulevard on the south, and Vermont Avenue on the west. Park streets accessing the internal portions of Exposition Park include State Drive, North Coliseum Drive, and South Coliseum Drive. Menlo Avenue, which parallels the western edge of the park (Vermont Avenue) between Exposition and Martin Luther King Jr. Boulevards, bisects Exposition Park from north to south.

While also a landscaped setting for community public recreation, Exposition Park is primarily a site for cultural, entertainment, and sporting facilities which draw visitors from much greater distances. Of the approximately 160 acres which comprise Exposition Park, 104 acres are developed with buildings and other structures, roadways and other accessways, and parking lots. Major public facilities within Exposition Park include the Coliseum, the California Museum of Science and Industry (CMSI), the Rose Garden, the County Museum of Natural History, the Los Angeles Memorial Sports Arena, the Exposition Park Intergenerational Community Center (EPICC) and Los Angeles Swim Stadium, the California African American Museum, the Aerospace Museum, the IMAX Theater, and the Los Angeles Unified School District's (LAUSD) Armory School.

In the mid-1980's, the CMSI began a program of expansion within Exposition Park. The primary components of this expansion included the construction of the Mark Taper Hall of Economics and Finance, the Aerospace Museum, the California African American Museum, the Space Garden, an IMAX Theater, and a Multi-Cultural Center. These facilities are concentrated in the northeast portion of Exposition Park and are separated from the Project Site by open lawn areas and internal access roads, including North Coliseum Drive. The Los Angeles Memorial Sports Arena, a 16,000-seat indoor facility constructed in 1959 and located in the southeast corner of Exposition Park, is owned and operated by the

Coliseum Commission under a ground lease from the State (CMSI) which is separate from the ground lease for the property on which the Coliseum is located. The Sports Arena has hosted numerous events, including concerts, rallies, and swap meets, and is currently the home of the USC Trojan basketball team.

The EPICC site occupies approximately six acres located in the southwestern portion of Exposition Park, southwest and adjacent to the Coliseum. The EPICC site is owned and operated by the City of Los Angeles Department of Recreation and Parks. EPICC was recently completed and opened during the preparation of this EIR. The EPICC complex includes three separate facilities and one open air amphitheater. The new recreation and aquatics center will consist of approximately 39,575 square feet of recreational and cultural program facilities, 2,500 square feet of storage space for a total of 48,075 gross square feet. A senior citizens center will occupy the existing Exposition Park Club house structure, which will be rehabilitated with a total new floor area of 5,575-square-feet. A 6,040-square-foot child care center and a 22,500-square-foot outdoor amphitheater will also be included in the improvements.

The remainder of Exposition Park is comprised of landscaped grounds, including an extensive rose garden adjacent to the north side of the Museum of Science and Industry, internal access roadways, and parking lots/areas. All land within Exposition Park is owned either by the State of California, the City of Los Angeles, or the Coliseum Commission. State-owned properties comprise the majority of Exposition Park and are characterized as follows:

- All State-owned land within Exposition Park not leased to other operating agencies is administered by the California Museum of Science and Industry (CMSI).
- The properties containing the Los Angeles Memorial Coliseum (the Project Site) and the Los Angeles Memorial Sports Arena are leased by the Coliseum Commission from the State (CMSI).
- A portion of Exposition Park containing the eastern part of the County Museum of Natural History is leased by the State to the County of Los Angeles and is managed by the Museum.

The Coliseum Commission owns the previously privately-owned parcels along the west side of Menlo Avenue which it has purchased for surface parking use. At some future time, it is likely that the Coliseum Commission will offer these parcels for sale to the State (CMSI), thereby consolidating ownership of Exposition Park.

**Table IV.A-1** Exposition Park Facilities

| Facility                                | Landowner                                                   | Facility<br>Owner/Operator                  | Construction<br>Date | Distance<br>From Site      |
|-----------------------------------------|-------------------------------------------------------------|---------------------------------------------|----------------------|----------------------------|
| Los Angeles<br>Memorial<br>Coliseum     | State of California (CMSI) <sup>1</sup>                     | Los Angeles Memorial<br>Coliseum Commission | 1921-1923            |                            |
| Los Angeles<br>Memorial Sports<br>Arena | State of California<br>(CMSI)                               | Los Angeles Memorial<br>Coliseum Commission | 1959                 | Approx. 150 feet southeast |
| Museum of Science and Industry          | State of California (CMSI)                                  | State of California (CMSI)                  | 1912-1960            | Approx. 300 feet north     |
| Museum of Natural<br>History            | State of California<br>(CMSI)/ City of Los<br>Angeles (DRP) | County of Los Angeles<br>(MNH)              | 1912                 | Approx. 400 feet north     |
| EPICC                                   | State of California (CMSI)                                  | City of Los Angeles (DRP)                   | 1932/2003            | Adjacent on southwest      |
| African American<br>Museum              | State of California<br>(CMSI)/ City of Los<br>Angeles (DRP) | State of California<br>(CMSI)               | 1984                 | Approx. 550 feet northeast |
| Aerospace Museum                        | State of California<br>(CMSI)                               | State of California<br>(CMSI)               | 1982-1984            | Approx. 900 feet northeast |
| IMAX Theater                            | State of California                                         | State of California<br>(CMSI)               | 1998ª                | Approx. 900 feet northeast |

<sup>&</sup>lt;sup>a</sup> Originally constructed in 1984 the IMAX Theater was demolished and rebuilt as part of the California Science Center in 1998.

Source: Christopher A. Joseph & Associates, 2003.

The City-owned properties within Exposition Park are characterized as follows:

- Portions of Exposition Park containing the Los Angeles Swim Stadium and the Rose Garden are owned by the City of Los Angeles and are administered by the City's Department of Recreation and Parks.
- The City-owns two discontinuous parcels along Exposition Park's eastern boundary (Figueroa Street) in the southwestern and north-central portions of Exposition Park.
- All City-owned land within Exposition Park not leased to other operating agencies is administered by the City of Los Angeles Department of Recreation and Parks.
- A portion of Exposition Park containing the western part of the County Museum of Natural History is leased by the City to the County of Los Angeles and is managed by the Museum.
- Portions of Exposition Park containing the IMAX Theater and the eastern part of the African American Museum are leased by the City to the State of California and are administered by the CMSI.

• The Science Museum School and Science Education Resource Center occupies a five-acre property in the northeast corner of Exposition Park and includes the historic Armory Building. The site is currently being redeveloped as a joint venture between the Los Angeles Unified School District (LAUSD) and the California Science Center.

#### Los Angeles Memorial Coliseum Site and Operations

The Project Site is an oval-shaped 27.40-acre portion of a much larger 160-acre parcel which encompasses the State-owned portions of Exposition Park. The site is located in the southwest corner of Exposition Park, and is generally bounded by North Coliseum Drive on the north, South Coliseum Drive on the east, the Los Angeles Swim Stadium and EPICC complex and surface parking lots on the south, and Menlo Avenue on the west. The Project Site is currently developed with the Los Angeles Memorial Coliseum and numerous ancillary structures, including, but not limited to, permanent concession stands, restrooms, ticket booths, maintenance and equipment storage facilities, and a gift shop. The Project Site boundary is within an approximately 10-foot high combination chain-link and steel-bar perimeter fence which surrounds the entire stadium, with the exception of the southwestern and eastern edges of the property where the boundary extends outward to include related Coliseum access areas. Figure IV.A-1 depicts an existing site plan indicating the boundaries of the Project Site. The site is generally flat, with the exception of the depressed playing field within the Coliseum structure.

The majority of the site is occupied by the Coliseum structure itself. The Coliseum is owned by the Los Angeles Memorial Coliseum Commission, which, as stated previously, leases the land from the State. The Coliseum is situated in the central portion of the site with an east-west orientation. The focal point of this open-air facility is a 4.5-acre grass playing field designed for football, soccer, and/or field hockey. Since its completion in 1923, numerous renovations and expansions have taken place which have both increased and alternately reduced the original spectator capacity of the stadium from 76,000 in 1923 to 105,000 in 1931 to the current level of 92,500. In addition, subsequent to the 1994 Northridge earthquake, the Coliseum underwent a major seismic upgrade and retrofit process. For a more detailed discussion of the history of the site, see Section V.C, Cultural and Historical Resources.

The width of the Coliseum structure measures 1,038 feet from east to west and 738 feet from north to south, with a constant height of 106 feet from the field level to the rim of the stadium. The exterior walls of the Coliseum stand 74 feet above the surface level of the site. The Coliseum is constructed primarily of cast concrete and concrete block material resting on an earthen berm and consists of a solid bank of seating circling the playing field. General access to the interior of the stadium is provided from two levels: the yard (ground) level and the concourse level, located approximately 34 vertical feet above the yard level. The concourse level is accessible from the yard level via three escalators and numerous stairways around the exterior of the Coliseum. The uniform bowl of the stadium is broken at its eastern end by the "Peristyle," a series of 15 arches which extends at the yard level between the edges of the two banks of spectator seating. Bench-type seating is provided between the arches and the

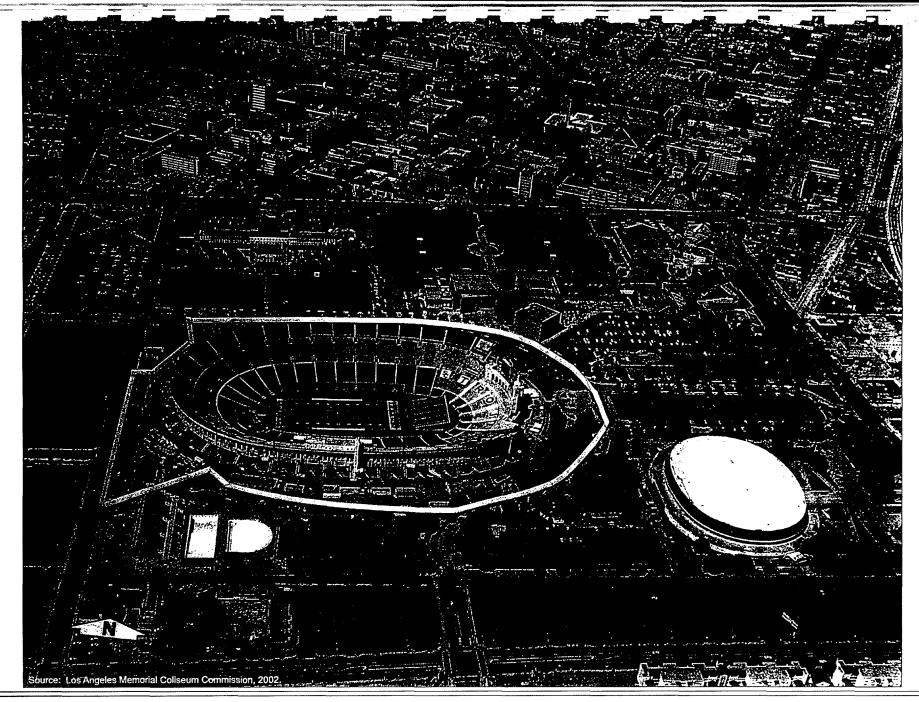





Figure IV.A-1 Aerial Photograph of the Project Site playing field in this end of the Coliseum, as well as in the two sections adjacent to each side of the Peristyle; all other seating in the stadium is individual theatre-style.

A three-leveled, 354-seat press facility, built in 1948, was located on the south rim of the Coliseum and is serviced via both a private elevator to the yard level on the southern exterior of the stadium and an aisle and stairway from the interior seating areas on the south side of the playing field. The press box has since been renovated as a result of structural improvements made after the 1994 Northridge earthquake. Vehicular access to the playing field is provided through a private underground ramp and tunnel from Menlo Avenue near the southwest end of the Coliseum. Dressing and locker room facilities for Coliseum tenants are accessed from this ramp and are located underground. The Olympic torch, perched above the central and largest arch in the Peristyle, was erected in 1931 and is the highest point along the rim of the Coliseum, reaching a height of 150 feet above the ground surface of the site. A matrix scoreboard, videoboard, and matrix clock-board are located in the Peristyle end of the Coliseum, with an auxiliary scoreboard located above the entrance to the tunnel ramp at the opposite end of the field. Field lighting is currently provided from a total of eight pole towers along both the north and south rims of the Coliseum (for a more detailed discussion of Coliseum lighting, see Section V.A.2, Light and Glare).

The yard (ground) level of the Coliseum consists of a surface-level asphalt concourse surrounding the stadium. Situated at various intervals along this concourse are a total of 11 permanent concessions buildings (not including portable stands), four restroom facilities, a 200-square-foot Los Angeles Police Department (LAPD) sub-station (located at the west end of the stadium), and a 1,700-square-foot concession storage building (also located at the west end of the stadium). The concourse level of the Coliseum consists of a continuous concrete walkway extending around the entire stadium with the exception of the Peristyle end. This walkway is enclosed on three sides and contains restroom facilities and concession counters. A series of 28 tunnels around the stadium connects the yard level concourse surrounding the Coliseum with the interior seating bowl. The Coliseum Commission offices are located in two three-story facilities expanded in 1948, totaling 3,000 square feet, located at each end of the Peristyle. The Peristyle arches contain numerous commemorative plaques acknowledging persons and/or events associated with the history of the Coliseum.

As stated previously, the Coliseum's yard level concourse is bounded by an approximately 10-foot combination chain-link and steel-bar fence surrounding the entire stadium. Approximately 12 gated entries to the yard level are available, including a press/media entrance along the south side of the stadium and a vehicular driveway gate from Menlo Avenue at the west end of the stadium. The approximately 74 open-air turnstiles through which all Coliseum event patrons pass are located at several of these gates along the perimeter fence. Ancillary structures located outside this fence but included on the Project Site include a 750-square-foot gift shop located adjacent to the southeast edge of the Coliseum, four permanent ticket booth structures at various locations (for event-day sales only), and a 6,000-square-foot equipment storage warehouse located adjacent to the field ramp entry at the southwest edge of the site and constructed in 1984. In addition, a television van parking area is located adjacent to the press gate outside the perimeter fence. Finally, a memorial statue consisting of two sculpted figures is located in the

Peristyle entrance approach to the east end of the Coliseum outside the fence. Table IV.A-2 presents the square footage of all of the existing structures on the Project Site.

Vegetation within the Project Site consists primarily of various forms of landscaped elements along the exposed portions of the Coliseum berm. Several native trees are planted along the base of the berm, including eucalyptus, deodar, yucca, agave, and palm trees and plants. Additionally, several specimens of the numerous native tree species planted throughout Exposition Park are included within the outer portions of the site, outside the Coliseum perimeter fence. No State or Federally protected plant species are currently known to exist on the immediate Project Site.

Throughout its history, the Coliseum has, in its role as a publicly owned and managed multi-purpose stadium, hosted numerous sporting, community, and entertainment events. Major tenants of the Coliseum have included the University of Southern California (USC) Trojans football team (1923-Present), the University of California at Los Angeles (UCLA) Bruins football team (1943-1981), the Los Angeles Rams professional football team (1950-1980), Los Angeles Chargers professional football team (1960), Los Angeles Express professional football team (1984-1986), the Los Angeles Dodgers professional baseball team (1958-1961), and the Los Angeles Raiders professional football team (1982-1994). In addition, the Coliseum has hosted numerous concerts, political rallies, soccer matches, track and field meets, and countless other sporting and community-oriented events, including the National Football League's (NFL) Super Bowl I (1967) and Super Bowl VII (1973), and, by virtue of the Los Angeles Dodgers' occupancy of the Coliseum at the time, three games of the 1959 World Series. The Coliseum has also been the central sporting and assembly facility for both the 1932 and 1984 Summer Olympic Games. For a more detailed description of the history of the Coliseum, see Section V.C, Cultural and Historical Resources.

#### OVERVIEW OF ENVIRONMENTAL SETTING

#### **Aesthetics/Visual Impacts**

The 27.4-acre site is generally bounded by 39<sup>th</sup> Street on the north, Hoover Street on the east, Menlo Avenue on the west, and Martin Luther King Jr. Boulevard on the south. The Los Angeles Swim Stadium<sup>2</sup> is located to the southwest of the Coliseum, while a surface parking lot and the Sports Arena are to the southeast. The existing improvements on the site consist of the Los Angeles Memorial Coliseum and numerous ancillary structures, such as concession stands, restrooms, ticket booths, and other facilities.

The Los Angeles Swim Stadium is located within the Exposition Park Intergenerational Community Center (EPICC), which also houses a child care center, a clubhouse, and a senior center.

Table IV.A-2
Existing Development on Project Site

| Structure/Use                                                                                | Approximate Size                                                                | Location                                              |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------|
| Los Angeles Memorial Coliseum <sup>a</sup>                                                   | 92,500-seat stadium.                                                            | Central majority of site                              |
| Coliseum Commission Offices                                                                  | 3,000 square feet                                                               | North and south ends of Peristyle at yard level       |
| LAPD Sub-Station                                                                             | 200 square feet                                                                 | West end of Coliseum at yard and concourse levels     |
| Press Box                                                                                    | 18,400 square feet                                                              | South rim of Coliseum at mid-field                    |
| Restrooms                                                                                    | 14 men's;<br>12 women's                                                         | Along entire concourse level                          |
| Concession Counters/Storage                                                                  | 11,000 square feet                                                              | Along entire concourse level; at west end of Coliseum |
| Collegiate Home Locker Room                                                                  | 5,000 square feet                                                               | Underneath southwest end of Coliseum                  |
| Collegiate Visiting Locker Room                                                              | 5,120 square feet                                                               | Underneath southwest end of<br>Coliseum               |
| Other Dressing Room Areas<br>(training, officials' locker,<br>player interview, x-ray, etc.) | 1,000 square feet                                                               | Underneath southwest end of<br>Coliseum               |
| Ticket Booths                                                                                | Four main buildings, 40 windows; five small buildings, eight additional windows | Scattered outside perimeter fence at yard level       |
| Gift Shop                                                                                    | 1,500 square feet                                                               | Outside perimeter fence at southeast end of Coliseum  |
| Concession Buildings                                                                         | 18,700 square feet                                                              | Along yard level surrounding Coliseum                 |
| Restroom Buildings                                                                           | Four buildings containing men's and women's facilities                          | Along yard level surrounding<br>Coliseum              |
| Concession Storage Shed/Office                                                               | 1,700 square feet                                                               | West end of Coliseum at yard level                    |
| Equipment Shed  a All uses listed under this heading are consider                            | 6,000 square feet                                                               | Outside perimeter fence at southwest end of Coliseum  |

All uses listed under this heading are considered part of the structure of the Coliseum itself. Other facilities in this table are separate buildings on the Project Site.

Table IV.A-3
Los Angeles Memorial Coliseum – Existing Event Profile

| Event Type                | Typical Day Of The<br>Week                              | Typical Time Of The<br>Year | Typical Start<br>Time(s) | Typical Finish<br>Time(s) | Average<br>Attendance <sup>a</sup> | Typical<br>Number Of<br>Events Per<br>Year |
|---------------------------|---------------------------------------------------------|-----------------------------|--------------------------|---------------------------|------------------------------------|--------------------------------------------|
| College Football          | Saturday (day/evening)                                  | September-December          | 12:30 – 7:00 p.m.        | 3:30-10 pm                | 48,775                             | 6-8                                        |
| Soccer                    | Weekday/Weekend                                         | Varies                      | 7:30 pm/1:00 p.m.        | 10:00 pm/4:00 p.m.        | 15,140                             | 13                                         |
| Concerts                  | Weekday and Weekend<br>Evenings, Weekend<br>(afternoon) | March-October               | 7:30 pm/1:00 p.m.        | 11:30 pm/7:30 p.m.        | 67,517                             | 0-4                                        |
| Off-Road<br>Vehicle Races | Saturday (night)                                        | June-July                   | 7:30 pm                  | 11:00 pm                  | 15,943                             | 2                                          |
| Other/Special<br>Events   | Varies                                                  | Varies                      | Varies                   | Varies                    | 44,715                             | 0-2                                        |

<sup>&</sup>lt;sup>a</sup> Based on a four-year average (1999-2002).

The XFL was a tenant at the Coliseum during its first and only season. The XFL is no longer in existence. Source: Los Angeles Memorial Coliseum Commission, 2002.

The exterior of the stadium presents an architectural style reminiscent of classical stadium architecture. Arched entranceways and window-like openings that suggest an arcade effect lend the flavor of the original Roman Colosseum without attempting to duplicate the Doric, Ionic, and Corinthian qualities of the Roman facade.

Landscaping on the site includes decorative trees and shrubs along the base of the berm including eucalyptus, deodar, yucca, agave, palm trees, and plants, along with several specimen tree species planted throughout Exposition Park. Most of the areas within Exposition Park that are adjacent to the site, including the outer portions of the site beyond the perimeter fence, are landscaped with grass.

In general, the aesthetic value of the project area relates primarily to its urban character rather than to any dominant natural feature. Low-level views from the Project Site (outside the Coliseum) consist largely of the surrounding areas of Exposition Park, as well as the commercial and retail uses surrounding Exposition Park to the south and west. Viewsheds of the site are, in general, intensely urban, which tends to make their boundaries irregular. The site is visually prominent from non-adjacent vantage points on the west and south, although not from the north and east due to both the relatively low profile of the existing Coliseum and the trees and other landscaping scattered about the site and the adjacent portions of Exposition Park.

#### Aesthetics/Light and Glare

Ambient lighting in the vicinity of the Coliseum consists of relatively low to high levels of lighting. The streets surrounding Exposition Park and the Coliseum, Figueroa Street, Martin Luther King Jr. Boulevard, Vermont Avenue, and Exposition Boulevard include streetlights for their entire length. The uses in Exposition Park all maintain mid-level lighting at night, and surface parking lots in Exposition Park are relatively brightly lit. Surrounding commercial uses along Figueroa Street and Vermont Avenue maintain high-level lighting, while residential areas along Martin Luther King Jr. Boulevard maintain a relatively low level of nighttime lighting. Overall, existing ambient lighting levels surrounding the Project Site range from low to high.

The existing permanent lighting at the Coliseum consists of small and moderate scale area lighting at the entrances and on the surrounding plaza as well as floodlights on the field for various events. Field lighting is currently provided from a series of eight floodlight towers located along and extending above the rims of the stadium. There are 360 existing floodlights on the Coliseum. The average height of floodlights above the north rim of the Coliseum is 16 feet, resulting in a cut-off angle to the opposite (south) rim of approximately one degree below horizontal. The average height of the floodlights above the south rim wall (and press box) is 29 feet, yielding a cut-off angle to the opposite rim of approximately two degrees below horizontal.

#### Air Quality

The project area is located within the South Coast Air Basin (SCAB), a 6,600-square mile basin encompassing all of Orange County, most of Los Angeles and Riverside Counties, and the western portion of San Bernardino County. Ambient pollution concentrations recorded in Los Angeles County

2

are among the highest in the four counties comprising the SCAB. Winter air quality problems are due to early and late evening emissions of carbon monoxide and nitrogen dioxide. Summer air quality problems result from the formation of photochemical smog, as hydrocarbons and nitrogen dioxide react under strong sunlight.

Air quality concerns in the South Coast Basin typically focus on changes in concentration levels of the following pollutants: carbon monoxide, nitrogen dioxide, sulfur dioxide, particulates (PM<sub>10</sub>), and reactive organic gases. A key characteristic of the Coliseum is that it generates a substantial number of vehicle trips and congestion for short periods prior and following events. Potential changes in carbon monoxide levels are one of the best relative indicators of potential air quality impacts because carbon monoxide is the pollutant that is most sensitive to mobile sources such as vehicular traffic.

#### **Cultural and Historic Resources**

Completed in 1923, the Coliseum had wood seats on three tiers of risers, the first being within the excavated bowl and the other two above grade on wood structural supports. Almost immediately after completion, an additional level of wood seats was added. In 1931 the Coliseum was greatly altered by adding another tier of seats with all the seating above the bowl not supported by concrete construction. There were now 25 rows of additional seating totaling 79 rows. The last four rows were cantilevered above the support structure and a series of concrete brackets pilasters and panels supported them giving the Coliseum its unique form that is familiar today.

The Coliseum is designated as a National Historic Landmark, a State Historical Landmark, and is listed on the National Register of Historic Places in Washington, D.C. The Coliseum is significant as the site of numerous historical sporting events, and for its "association with important personages." The Coliseum has been the site for many events including two Olympic Games, held in 1932 and 1984, two Super Bowls, Major League Baseball games including the 1959 World Series, numerous track meets, collegiate and professional football, political rallies, rock concerts and political gatherings. All of three of the above designations were undertaken in 1984 for the fiftieth anniversary of the Historic American Building Survey (HABS) and for the Olympic Games to be held in 1984, for the second time at the Coliseum.

Exposition Park, which includes the Coliseum and numerous surrounding structures, has been designated as a Cultural and Historical Site by the County of Los Angeles.

#### Geology/Seismic Hazards

The Los Angeles Basin is an extensive northwest-trending structural downwarped trough filled to capacity with Cretaceous through Pleistocene age marine and non-marine sedimentary bedrock formations and capped with late Pleistocene and Holocene age alluvial deposits. Regional subsidence in the basin reaches over 30,000 feet of depth and, in the immediate site area, the sediments are approximately 10,000 feet thick. Basement rock beneath the basin floor consists of Mesozoic age intrusive granitic rock types. Structural subsidence of the basin has been continuous throughout most of the Tertiary period, though relatively short

periods of uplift are evident. Regional uplift continues to occur to the present time, with the most recent inland seas regressing oceanward approximately 120,000 years ago.

The floor of the Los Angeles Basin is generally flat and represents a vast alluvial outwash plain. Prominent mountain ranges and a series of hills bound the basin to the north, south and east, with the coastline of the Pacific Ocean forming the western boundary. As the basin subsided, the adjacent uplands were elevated by both faulting and folding processes that, in some cases, continue today. As the uplands were elevated, erosion slowly degraded them and streams transported the debris to the basin floor where they have remained as alluvial deposits.

Though the area around the Coliseum has been completely urbanized, the main drainage systems remain near their natural prehistoric course locations. The Los Angeles River is the closest main drainage to the site and is located approximately 3.5 miles to the east. The river flows southward to the Pacific Ocean in the vicinity of the Los Angeles Harbor and drains all of the San Fernando Valley and a major portion of the Los Angeles Basin inclusive of the area immediately surrounding the Project Site. Surface drainage in the vicinity of the site is controlled by street drainage and storm drains that flow to the improved Los Angeles River channel.

The Coliseum was constructed on a relatively flat surface at an elevation of approximately 175 feet above sea level. The natural surface gradient slopes down to the southwest at roughly 25 feet per mile. The field level is presently at an average elevation of 135 feet above sea level. The alluvium on which the Coliseum was constructed is of Pleistocene and Holocene age and has been accumulating for at least one million years.

The Project Site is not located in a state-defined Alquist-Priolo Earthquake Fault Zone or Special Study Area, and no active or potentially active faults are known to exist beneath the Project Site.<sup>3</sup>

#### Land Use

The South Los Angeles District Plan identifies Exposition Park as both a Regional Recreational Site and a Cultural and Historical Site. The entire site is zoned R4-2 (Multiple Dwelling Residential), as is the majority of Exposition Park. Exposition Park, including the Project Site, is also located within the Exposition Sub Area of the City of Los Angeles' Community Redevelopment Agency's (CRA) Hoover Redevelopment Project. The Hoover Redevelopment Plan map designates the Project Site as Public Land. The Coliseum is also designated as both a State Historic Landmark by the California State Office of Historic Preservation and a National Historic Landmark by the U.S. Department of the Interior. The Coliseum was placed on the National Register of Historic Places, administered by the National Park Service, in 1984.

<sup>&</sup>lt;sup>3</sup> California Department of Conservation, Division of Mines and Geology, Digital Images of Official Maps of Alquist-Priolo Earthquake Fault Zones of California, Southern Region, 2000.

The land use pattern within the general vicinity of the Project Site and Exposition Park is largely characterized by low-rise (one to three stories) strip commercial uses along such major streets as Vermont Avenue, Figueroa Street, Jefferson Boulevard, and Martin Luther King Jr. Boulevard with intervening blocks primarily developed with multi-family dwelling units. Several single-family residential neighborhoods are also located at a greater distance from Exposition Park to the northwest, west, and southwest. Figueroa Street, which forms the eastern boundary of Exposition Park, represents the division between the South Los Angeles and the Southeast Los Angeles District Plan areas. Land uses within the Southeast District Plan area east of Figueroa Street in the vicinity of the Project Site are generally comprised of low- to mid-rise (four to six stories) retail commercial in the areas between Figueroa Street and the Harbor Freeway (Interstate 110) east of the site. Areas east of the Harbor Freeway are largely developed with light industrial uses. Multi-family residential areas predominate continuing to the east and southeast. For a more detailed discussion of the land use in the vicinity of the Project Site see Section V.E. Land Use.

The University of Southern California (USC) is located adjacent to Exposition Park on the north, across Exposition Boulevard, along which the tracks of the Southern Pacific Railroad are aligned. The USC campus, generally bounded by Vermont Avenue on the west, Jefferson Boulevard on the north, Figueroa Street on the east, and Exposition Boulevard on the south, when coupled with Exposition Park, forms a continuous reservation of public and quasi-public land extending north from the Project Site for approximately 1.2 miles. The Los Angeles Central Business District (downtown) is located approximately 1.5 miles to the northeast of the site. In addition, the Armory grounds situated within the northeast corner of Exposition Park is currently being remodeled for use as a LAUSD Elementary School.

#### Noise

The primary noise sources in the vicinity of the Coliseum are associated with traffic on the elevated Harbor Freeway (Interstate 110) as well as traffic on surface streets such as Vermont Avenue, Exposition Boulevard, Figueroa Street, and Martin Luther King Jr. Boulevard. The Coliseum is located within Exposition Park, which includes passive recreational spaces as well as County and State Museums. The majority of these areas are located north of the Coliseum. Within this park/institutional setting, the ambient noise environment is dominated by the Coliseum activities during special events. There are a number of land uses in the Coliseum vicinity that can be considered sensitive to noise. These uses include passive open space, multi-family housing, museums, USC dormitories, and the Los Angeles Child Guidance Center.

Noise generated at the Coliseum is largely contained within the bowl structure. There are circumstances and conditions, however, when the public address system or amplified concert music is discernible within Exposition Park and beyond.

#### **Public Services/Fire Protection**

Fire protection services for the project area are provided by the Los Angeles City Fire Department (LAFD). The closest Truck Company is currently located 0.6 mile from the Project Site. Three fire

stations serving the site currently have established emergency response plans for the Coliseum. These stations include Fire Station No. 15 located at 915 South Jefferson Boulevard, Fire Station No. 46 located at 4370 South Hoover Street, and Fire Station No. 14 located at 3401 South Central Avenue.

During concerts and other special events, there are as many as six on-duty Fire Department Safety Watch Officers located at the stadium. There is no Fire Command Post located on the current Coliseum grounds. Thus, the Safety Watch Officers may be both located in the press box and/or walking the grounds, staying in contact with fellow staff on-duty via radio communication. In addition, emergency medical technician (EMT) services are currently retained by the Coliseum and stationed on the site during large Coliseum events, such as football games and concerts. These services generally include the provision of at least one ambulance.

#### **Public Services/Police Protection**

Police protection is provided to the Project Site by the City of Los Angeles Police Department (LAPD). The site is located within LAPD Reporting District (RD) 378, which consists entirely of Exposition Park. The Southwest Area police station is located at 1546 W. Martin Luther King Jr. Boulevard, approximately 1.2 miles west of the site. The current average response time to emergency calls in the Southwest Area is 11.1 minutes, compared to the 2002 average citywide response time of 10.2 minutes. The Southwest Area currently staffs 327 sworn officers and 26 civilian support staff deployed over three watches. The Project Site is routinely patrolled at all times by officers assigned to the Southwest Area.

All spectator events at the Coliseum generate the need for additional police service in the area. During events, an additional complement of police personnel is provided and coordinated by the LAPD's Operations-South Bureau Special Events staff. Police protection during Coliseum events is provided through the use of patrol and footbeat units, motorcycle units, air units, horse patrols, mobile command posts, and a holding tank. During Coliseum events, the LAPD maintains a substation located at the west end of the stadium.

Portions of Exposition Park adjacent to the Project Site, except the Sports Arena, are under the jurisdiction of the Exposition Park Police force. In recent years, the LAPD has coordinated events with the help of the State Police in Exposition Park approximately twice a year. The State Police has utilized one or two patrol cars to monitor the area. During special events in Exposition Park, outside of the Coliseum itself, the Exposition Park Police has typically designated a detail of up to 12 police personnel to assist the LAPD in police protection with both footbeat units and patrol cars. The Exposition Park Police force is responsible for the patrol and protection of Exposition Park with particular emphasis on Exposition Park's museums and other public facilities. It is expected that this force will act as a support unit to existing on-duty LAPD personnel when necessary during Coliseum events.

#### Public Utilities/Energy Conservation

#### Electricity

Electrical utility service is currently provided to both the Project Site and the surrounding locale by the City of Los Angeles Department of Water and Power (DWP). Existing electrical service facilities on the Project Site consist of two Customer Stations, which are supplied from the DWP's 4.8 kilovolt (kV) distribution system, and three Industrial Stations, which are supplied from the DWP's 34.5 kV distribution system. These five facilities are situated at various locations around the Coliseum.

Electricity is currently consumed on the Project Site for a variety of uses, the most significant of these being field lighting, scoreboard operation, and videoboard operation. Other less intensive event-associated uses of electricity on-site include public address/sound system operation, television and radio transmission equipment, internal stadium lighting (locker rooms, press box, etc.), stadium and field maintenance equipment, and food preparation. The primary electricity-consumptive on-site use not associated with Coliseum events is the daily lighting of the Coliseum Commission offices, continual security and maintenance lighting, and the operation of office equipment. The majority of annual on-site electricity consumption occurs during ticketed Coliseum events.

#### Natural Gas

The Southern California Gas Company (SCG) provides natural gas to the City of Los Angeles through existing gas mains located under the streets and public right-of-ways. Natural gas service is provided in accordance with the Gas Company's policies and extension rules on file with the California Public Utilities Commission (PUC) at the time contractual agreements are made.

Natural gas service is currently provided to the site by the Southern California Gas Company from an existing four-inch main under Menlo Avenue and an existing three-inch main under Hoover Street. Individual service lines run from each of these gas mains to the Coliseum structure. Other lines serve the off-site portions of Exposition Park, including the Sports Arena, from main lines under Figueroa Street and Martin Luther King Jr. Boulevard. Natural gas is currently consumed at the Coliseum for water heating, space heating in the Coliseum Commission offices, locker rooms, and press box, operation of the Olympic torch, and boiler operation. It should be noted that the majority of natural gas consumption on-site occurs during ticketed Coliseum events.

#### Public Utilities/Water Conservation

Water service is provided to both the Project Site and the surrounding locale by the City of Los Angeles Department of Water and Power (DWP). In terms of the City's overall water supply, in addition to local groundwater sources, the DWP operates and receives water via the Los Angeles-Owens River aqueduct and is a member of the Metropolitan Water District of Southern California (MWD). According to DWP projections, these three sources will supply the City's water needs beyond the year 2020. According to recent projections, the City's water demand for 2020 is estimated at 900 cubic feet per second (cfs).

بر ب<sub>ید</sub> وزیرو Existing water lines serving the Project Site include a 16-inch main under Figueroa Street and a four-inch main under Menlo Avenue. Additional nearby lines include a 12-inch main under Martin Luther King Jr. Boulevard, a 61-inch main under the Figueroa Street easement, and an eight-inch main under Menlo Avenue.

The Coliseum structure is serviced from the DWP water mains via two main feeder (lateral) lines which merge inside the stadium. Water is currently being consumed on the Project Site for a variety of event-related uses, primarily field irrigation, landscaping, public restrooms, locker rooms, concession uses, concourse washdowns, and public drinking fountains. In addition to these uses, the daily operation of the Coliseum Commission staff offices and ticket offices consumes a smaller amount of water. Water consumption on-site is reduced during periods when no stadium events are being held, with landscaping and field irrigation being the primary uses.

#### Public Utilities/Sanitary Sewers

The City of Los Angeles Department of Public Works, Bureau of Sanitation Division provides sewer conveyance infrastructure and wastewater treatment services, respectively, to the project area. The Hyperion Treatment Plant (HTP), located directly west of the Los Angeles International Airport in Playa Del Rey, provides treatment capacity for all wastewater flows generated within the Central Business District Redevelopment Project Area.

Existing sewer lines serving the Project Site include a network of six-, eight-, and ten-inch lines adjacent to the Coliseum on the north, eight- and ten-inch lines adjacent to the Coliseum on the south, and an 18-inch line in Hoover Street and Coliseum Drive South adjacent to the Coliseum on the southeast. Additional sewage lines in the project vicinity include a 12-inch line in Menlo Avenue, an eight-inch line beneath Exposition Park, a 44-inch line in Exposition Boulevard, and a 12-inch line in Figueroa Street.

Sewage is currently being generated on the Project Site from a variety of uses, the most significant of these being public restrooms, showers in the locker rooms, and concession stand/food preparation uses. In addition to these event-specific uses, the daily operation of the Coliseum Commission staff offices and ticket offices generates a comparatively small amount of sewage. Similarly, landscaping around the exterior of the Coliseum structure requires frequent watering, which generates additional wastewater flowage. It should be noted that the majority of annual on-site sewage generation occurs during Coliseum events. Sewage generation on-site is reduced during periods when no stadium events are being held, with landscaping and field irrigation then being the primary sources.

#### Public Utilities/Solid Waste and Disposal

Within the City of Los Angeles, solid waste management, including collection and disposal services and landfill operation, is administered by various public agencies and private companies. Single-family residential and limited multiple-family residential refuse is collected by the City of Los Angeles Bureau of Sanitation. Waste generated by most multiple family residential sources and all commercial and industrial sources is collected by private contractors. Waste disposal sites are operated by both the City

and County of Los Angeles, as well as by private companies. In addition, transfer stations are utilized to store debris temporarily until larger hauling trucks are available to transport the materials directly to the landfills.

A private solid waste collector is currently retained by the Coliseum Commission to collect solid waste from the site on an "on-call" basis for all spectator events. In addition to the solid waste generated by Coliseum events, a small amount of solid waste is generated on a year-round basis by the operation of the Coliseum Commission administrative offices. This solid waste is taken to dumpsters located adjacent to the Los Angeles Memorial Sports Arena, which adjoins the site on the southeast, from which it is picked up by a private collector on a regular basis.

## IV. OVERVIEW OF ENVIRONMENTAL SETTING B. ANALYTICAL ASSUMPTIONS

#### ANALYTICAL ASSUMPTIONS

This section describes the analytical assumptions utilized in the preparation of this EIR, including those assumptions employed in the discussion of the "Environmental Setting," "Environmental Impacts," and "Cumulative Impacts" subsections of each respective environmental issue.

#### **Environmental Setting Assumptions**

Historically speaking, the NFL has had a professional team playing at the Coliseum for 48 of its 80 years in operation. The Coliseum was the home field of the Los Angeles Rams for 34 years (from Cleveland, 1946-79), and the Los Angeles Raiders for 14 years (from Oakland, 1982-1994). The Coliseum was also the expansion home of the San Diego Chargers (1960, AFL) and hosted the Los Angeles Xtreme for the XFL's first and only season. As such, the operational impacts of an NFL team relocating to the Coliseum would not be entirely new to the Coliseum or surrounding area. Notwithstanding the above, CEQA directs lead agencies to limit its examination to changes in the existing physical conditions in the affected area as they exist at the time the Notice of Preparation is published (CEQA Guidelines, Section 15126.2). The NFL has not played at the Coliseum in the past nine years (since 1994). As such the relocation of an NFL franchise to the Coliseum would represent a new use and would increase the intensity of the stadium's activities. Accordingly, an assessment of the recent operational characteristics of the Coliseum is necessary in order to compare the existing environmental conditions to any changes created and produced by the Proposed Project, and to identify any significant environmental effects of the Proposed Project. Due to the complexity of the operational characteristics of a regional sports and entertainment venue, the environmental analysis does not represent a conventional analysis based strictly on land use type. The impacts of the Proposed Project are therefore based on an evaluation of the "average annual operating impacts" and the "event-specific impacts" as discussed in the methodologies presented below.

#### **Methodology for Evaluating Annual Operational Impacts**

For purposes of this EIR, the recent operational operating characteristics can be defined by the conditions that have occurred over the last four years at the Los Angeles Memorial Coliseum. Such conditions were established by evaluating attendance records for 1999, 2000, 2001 and 2002, as well as the number and type of events each year. Because the number of events scheduled at the Coliseum fluctuates on an annual basis, this four-year data set is representative of the typical Coliseum operations. Appropriately, this data forms a representative baseline in which to analyze certain environmental impacts that are dependent upon the average annual operating characteristics of the Coliseum. This data also represents the frequency in occurrences that can be expected from the event specific impacts discussed below. The annual operational characteristics were evaluated in determining the effects of air pollution (Section V.B, Air Quality),

demands upon police and fire services (Section V.G, Public Services), and resource demands and consumption rates for public utilities (Section V.H, Public Utilities).

As depicted in Table IV.B-1, the Coliseum has hosted an average of 34 events per year over the past four calendar years (1999 through 2002). The type of events included professional and college football games, soccer matches, off-road vehicle races, concerts, and community-oriented events. The highest attendance level reached during this time period was recorded at 87,944. The total annual attendance levels for the Coliseum averaged approximately 837,071 persons over the last four years.<sup>1</sup>

#### Methodology for Evaluating Event-Specific Impacts

In addition to recent annual attendance data, specific field data for the traffic, parking and access, and noise analyses were collected at college football events held at the Coliseum during the last quarter of 2002. This data presents a measurable baseline of existing operations at the Coliseum with attendance levels near full capacity under existing conditions (i.e., maximum capacity of 92,500 seats). Full capacity at the Coliseum was not reached on any occasion during the aforementioned four-year study period, and has only been reached on infrequent occasions throughout the history of the stadium.<sup>2</sup> Event-specific characteristics were evaluated in determining the effects of noise (Section VF, Noise), traffic congestion (Section V.I.1, Traffic) and parking (Section V.I.2, Parking).

As defined in Section III.C, Project Characteristics, maximum seating capacity of the Coliseum would be reduced from the current level of 92,500 persons for all events to approximately 78,000 persons. In the event of occasional concerts and/or other non-sporting special events the seating plan would be rearranged to allow for additional seating and stage areas on the field. The seating plan for such events would likely include additional temporary seating on the field level. However, it is not expected that this arrangement would exceed the maximum seating capacity of the Proposed Project because the placement of the stage area on the field would displace a large number of seats within the stadium. Therefore, the maximum seating capacity of 78,000 would apply to all but the occasionally rare events such as the Super Bowl or the Olympic Games.<sup>3</sup>

These 34 average annual events do not include non-ticketed events. Source: Los Angeles Memorial Coliseum Commission, July 2003.

The January 1991 NFL playoff game between the Los Angeles Raiders and the Cincinnati Bengals was termed a "sellout" in terms of actual ticket sales. However, the attendance was 91,058 persons.

Exceptional events such as a Super Bowl or the Olympic Games represent rare exceptions to the normal event profile of the Coliseum and are not representative of the average operating characteristics of the Coliseum. As such, they are appropriately not considered within the scope of this EIR.

Table IV.B-1

Coliseum Event Profile – Average and Maximum Attendance Levels (1999-2002)

| Event Type                                    | Events<br>Per<br>Year | Average<br>Attendance | Maximum<br>Attendance | Average<br>Annual<br>Attendance <sup>a</sup> |
|-----------------------------------------------|-----------------------|-----------------------|-----------------------|----------------------------------------------|
| Miscellaneous Sports (High School Football)   | 2                     | 8,811                 | 24,278                | 17,622                                       |
| Motorsports (Monster Truck and Motorcross)    | 2                     | 15,943                | 17,569                | 31,886                                       |
| Religious (Our Lady of Guadalupe)             | 1                     | 45,000                | 45,000                | 45,000                                       |
| Miscellaneous (Revlon Run)                    | 1                     | 44,751                | 50,000                | 44,751                                       |
| Concerts (Metallica, one year only)           | 1                     | 67,517                | 67,517                | 67,517                                       |
| Soccer                                        | 13                    | 15,140                | 49,146                | 196,820                                      |
| USC Football                                  | 6-7                   | 48,775                | 87,944                | 341,425                                      |
| XFL Football (2001 season only <sup>b</sup> ) | 7                     | 13,150                | 29,527                | 92,050                                       |

#### Notes:

Source: Los Angeles Coliseum Commission, 2002.

#### **Environmental Impact Assumptions**

In order to present a conservative estimate of the environmental impacts of the Proposed Project, and to allow for flexibility in the planning stages of the project, this EIR is based on a stadium proposal that is representative of a possible design solution. In all actuality, a stadium with a seating capacity of 78,000 persons exceeds the maximum seating capacity of many modern NFL stadiums that have been constructed in recent years. Based on a survey of recently constructed or designed stadiums for nine NFL teams, the average seating capacity for a modern NFL stadium is approximately 68,000 seats.<sup>4</sup> Of these nine representative stadiums, the highest seating capacity is 76,125 seats. Thus, a stadium proposal with a seating capacity of approximately 78,000 seats is representative of a worst-case scenario with respect to the anticipated maximum density of the Proposed Project.

Notwithstanding the increase in use associated with 10 to 12 additional NFL games per year, the number of current events and event profile under the Proposed Project for all other events is expected to remain fairly consistent with the existing conditions, though it can reasonably be expected that the average attendance levels may rise as a result of the Proposed Project. While it can reasonably be expected that the modern

<sup>&</sup>lt;sup>a</sup> The average annual attendance levels were based on the recorded total annual attendance levels for each event averaged over a four-year period.

b The XFL was discontinued after its first season.

Supplemental Report: Sports Marketing Issues Impacting Potential NFL Stadium Site Selection, Prepared for the Community Redevelopment Agency of the City of Los Angeles, The Sports Business Group, January 2003. Appendix H. Stadium seating and Luxury Suite Capacity.

facilities contemplated by the Proposed Project could initially draw additional spectators to future Coliseum events, attendance levels would be expected to soon recede to levels that are based on demand and the general popularity of the type of event, irrespective of the nature of the facility. This is based on the assumption that other factors that determine attendance, such as the type of event, performance of the teams (i.e. winning/losing record), weather, ticket prices, etc., remain constant.

In addition to the existing average event profile, the Proposed Project would generate 10 to 12 additional professional football events per year. This would result in an approximate 35% increase in the average number of annual events held at the Coliseum. For purposes of this analysis, attendance levels at all future NFL events are conservatively anticipated to be at or near full capacity. While the Proposed Project would result in a reduction in the maximum seating capacity for any one event, the total attendance levels and average number of annual events would increase the intensity of the Coliseum's current use.

#### **Mitigation Measure Assumptions**

Any mention of the Project Applicant within the mitigation measure sections of this EIR refers to the Los Angeles Memorial Coliseum Commission. The Coliseum Commission is the Lead Agency responsible for implementation of the Proposed Project and the mitigation measures and operating conditions in which its approval is based upon.

#### **Cumulative Impact Assumptions**

Density-related cumulative impacts (impacts from related projects in conjunction with the Proposed Project) would also represent a "worst-case" scenario (higher than would be expected) because impact projections for related-projects have been calculated without subtracting existing uses on related-project sites. Moreover, each of the related projects would likely be subject to unspecified mitigation measures that may reduce cumulative impacts.

## IV. OVERVIEW OF ENVIRONMENTAL SETTING C. CUMULATIVE RELATED PROJECTS

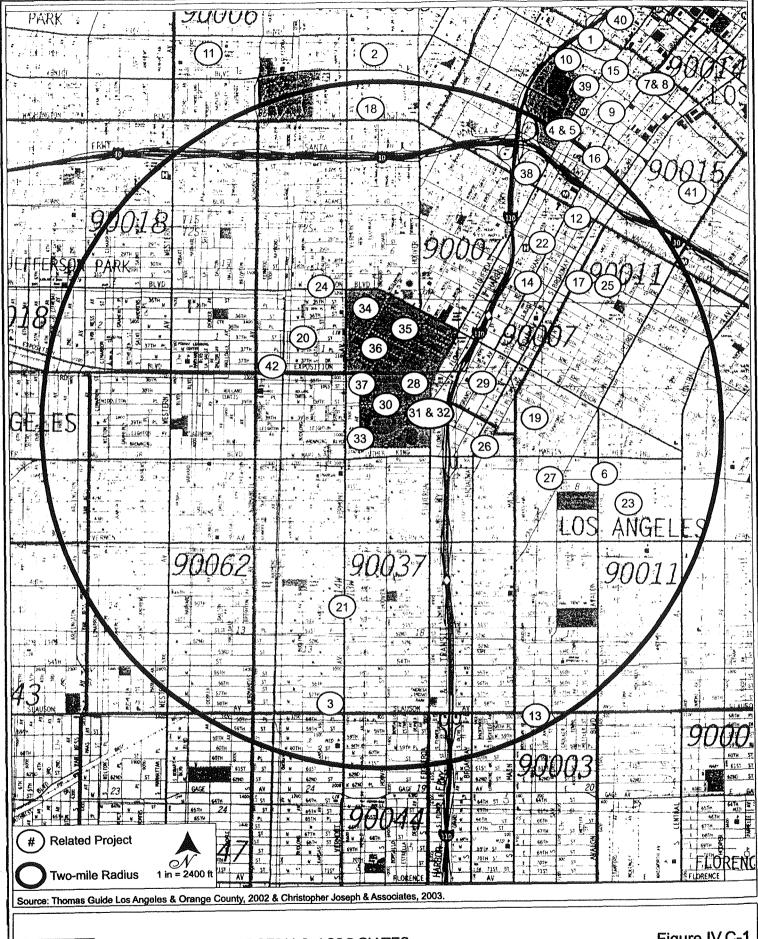
In determining the level of significance of the environmental effects of a project, CEQA requires not only an analysis of the Proposed Project alone, but an analysis of the cumulative impacts that are created as a result of the project evaluated in the EIR along with other related projects.

All known or reasonably foreseeable projects that could produce a cumulative impact on the local environment when considered in conjunction with the Proposed Project are included in this section. For an analysis of the cumulative impacts associated with these related projects and the Proposed Project, see the cumulative impact discussions under each individual impact category in Section V. of this report, Environmental Impact Analysis.

The projects listed in this section have either been approved, are pending approval, or are either proposed or under study and on file with the City of Los Angeles's Department of City Planning, Department of Building and Safety, Department of Transportation, Community Redevelopment Agency, and/or the Los Angeles County Metropolitan Transportation Authority (MTA), as of May 22, 2003 (the date of the NOP). Additional related projects included on this list have been proposed or are currently being studied by the University of Southern California (USC) and the California Science Center. The related project study area is generally comprised of a 2-mile radius around the Project Site. With few exceptions, projects located outside this designated area have been determined to be too far removed from the Project Site to substantially add to the cumulative effects attributable to the Proposed Project and the related projects within the designated area. In few cases, projects located outside of the 2-mile radius have been included due to the size or nature of each project.

A total of 42 related projects have been identified within the approximate boundaries of the designated area. Each of the related projects are identified by number and listed in Table IV.C-1, below, with descriptive characteristics with regard to the specific location, size and type of each respective project. Related project locations are shown in Figure IV.C-1.

Of particular importance are the related projects within Exposition Park that are being constructed or planned as part of the Exposition Park Master Plan. These projects include related project numbers 30, 31, 32, 33, and 37. It should be noted that related project number 32 includes a four-level subterranean parking garage that includes 2,210 parking spaces. Construction of this parking facility has already commenced and it is anticipated to be completed and operational prior to the construction of the Proposed Project.


### Table IV.C-1 Related Projects List

| Map<br>No. | Project Name                                       | Project Location                          | Type of Development/Use                                                                                      | Size         |
|------------|----------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------|
| 1          | McDonald's Restaurant                              | 730 Olympic Boulevard & Flower            | Fast food restaurant w/ drive-<br>thru                                                                       | 2,301 sf     |
| 2          | Junior market                                      | 1450 Venice Boulevard                     | Junior market                                                                                                | 8,720 sf     |
| 3          | Shopping Center                                    | 5837 Vermont Avenue & 58 <sup>th</sup>    | Shopping center                                                                                              | 57,640 sf    |
| 4          | Apartment                                          | 1300 Figueroa Street & Pico               | 179-unit apartment                                                                                           | 179,000 sf   |
| 5          | Restaurant                                         | 1300 Figueroa Street & Pico               | Restaurant                                                                                                   | 8,000 sf     |
| 6          | Bilal Islamic Center                               | 4016 Central Avenue                       | Religious institution                                                                                        | 41,140 sf    |
| 7          | Accessory Mart                                     | Main Street & Olympic Boulevard           | Retail store                                                                                                 | 32,530 sf    |
| 8          | Accessory Mart                                     | Main Street & Olympic Boulevard           | Storage space                                                                                                | 7,910 sf     |
| 9          | Balasco Theatre                                    | 1050 Hill Street                          | Variance to use existing theater to entertain                                                                | 33,420 sf    |
| 10         | Staples Entertainment<br>District                  | Figueroa Street & 11 <sup>th</sup> Street | Hotel, cinema, theater, restaurant, retail, office space and apartments                                      | 3,500,000 sf |
| 11         | Food Market<br>convenience store at gas<br>station | 1570 South Western Avenue                 | A convenience market w/ 12 fueling stations                                                                  | 5,990 sf     |
| 12         | LA Mart                                            | 1933 South Broadway                       | 2 stories building, adjacent to LA Mart for special wholesale trade events during weekends                   | 215,000 sf   |
| 13         | LA County Office Park                              | Slauson Avenue & Los Angeles<br>Street    | Office park, w/child care center & 1,690 parking spaces                                                      | 447,500 sf   |
| 14         | Orthopaedic Magnet<br>High School                  | Grand Avenue & Adams Boulevard            | Construct medical magnet high school from grades 9-12 for 1,054 students                                     | N/A          |
| 15         | Quality Restaurant & nightclub                     | 605 Olympic Boulevard                     | Quality restaurant and<br>nightclub in existing office<br>bldg w/18 on-site & 100 off-<br>site parking space | 7,142 sf     |
| 16         | Medical Center/Clinic                              | 1530 Olive Street                         | 6-story clinic w/off site parking space                                                                      | 31,660 sf    |
| 17         | Jefferson New<br>Continuation High<br>School #1    | 1921 South Maple Avenue                   | New Continuation High<br>School for 87 students                                                              | N/A          |

| Map | Project Nome                                                                 | Deciset Legation                                               | Type of Davidson ment/Use               | C:           |
|-----|------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------|--------------|
| No. | Project Name                                                                 | Project Location                                               | Type of Development/Use                 | Size         |
| 18  | Central LA Area New<br>High School #2                                        | 1500 W. Washington Boulevard                                   | New High School for 2,142 students      | 635,976 sf   |
| 19  | Jefferson New Primary<br>Center #6                                           | 3601 South Maple Avenue                                        | New Primary Center for 344 students     | 78,408 sf    |
| 20  | Weemes Playground                                                            | 1260 West 36 <sup>th</sup> Place                               | Playground Expansion                    | 27,878 sf    |
| 21  | Manual Arts New<br>Primary Center #2                                         | 1017 W. 47 <sup>th</sup> Street                                | New Primary Center for 804 students     | 72,745 sf    |
| 22  | Orthopaedic Hospital<br>High School                                          | 300 West 23 <sup>rd</sup> Street                               | New Magnet High School for 762 students | 180,774 sf   |
| 23  | Jefferson New<br>Elementary School #2                                        | 899 East 42 <sup>nd</sup> Place                                | New Elementary School for 931 students  | 194,713 sf   |
| 24  | Manual Arts New<br>Elementary School #3                                      | 3020 S. Catalina Street                                        | New Elementary School for 804 students  | 112,385 sf   |
| 25  | South Central LA Area<br>New High School #1                                  | 1921South Maple Avenue                                         | New High School for 2,112 students      | 806,731 sf   |
| 26  | Accelerated Charter<br>School                                                | 116 East Martin Luther King<br>Boulevard                       | Expansion and Reuse for 797 students    | _192,100 sf  |
| 27  | Jefferson New<br>Elementary School #1                                        | 401 East 40 <sup>th</sup> Place                                | New Elementary School for 919 students  | 156,816 sf   |
| 28  | Manual Arts New<br>Elementary School #1                                      | 700 State Drive                                                | New Elementary School for 712 students  | 217,800 sf   |
| 29  | Central LA Area New<br>Middle School #4                                      | 3500 South Hill Street                                         | New Middle School for 1,512 students    | 378,536 sf   |
| 30  | California Science Center<br>Phase II & III Expansion                        | Exposition Park, West & East side of California Science Center | Museum expansion & addition             | 165,000 sf   |
| 31  | Science Museum School<br>and Science Education<br>Resource Center            | Northeast corner of Exposition Park                            | Renovation and expansion                | 172,000 sf   |
| 32  | California Science<br>Center/African American<br>Museum Parking<br>Structure | Exposition Park, south of the California Science Center        | Subterranean parking facility           | 2,400 spaces |
| 33  | Exposition Park Intergenerational Community Center                           | Exposition Park, South of the Coliseum                         | Expansion and renovation                | 6,040 sf     |
| 34  | Molecular Biology                                                            | USC Campus                                                     | Addition to Science<br>Complex          | 135,000 sf   |
| 35  | Tudor Hall                                                                   | USC Campus                                                     | New addition                            | 105,000 sf   |
| 36  | Events Center                                                                | USC Campus                                                     | New addition under study                | 10,000 seats |
| 37  | Natural History Museum                                                       | North side of Exposition Park                                  | Renovation and expansion                | 491,000 sf   |

| Map<br>No. | Project Name                      | Project Location                            | Type of Development/Use                                                | Size         |
|------------|-----------------------------------|---------------------------------------------|------------------------------------------------------------------------|--------------|
| 38         | Retail - No Name                  | West of Figueroa between 17th & 18th Street | Retail space                                                           | 17,200 sf    |
| 39         | Transamerica (phase II)           | 11th Street & Hope Street                   | Office Space and 100<br>Apartments                                     | 2,106,000 sf |
| 40         | CIM Group                         | 9th Street & Flower                         | 50,000 sf supermarket,<br>2,021 unit residential,<br>retail/restaurant | 1,302,175 sf |
| 41         | Light Industrial                  | San Pedro & Pico                            | Light Industry employing 700                                           | 700,000      |
| 42         | East Central Interceptor<br>Sewer | Under Exposition Boulevard                  | Sewer infrastructure tunnel.                                           | 18.4 km      |

Source: Christopher A. Joseph & Associates, 2003.



CHRISTOPHER A. JOSEPH & ASSOCIATES Environmental Planning and Research

Figure IV.C-1 Related Projects Location Map

# V. ENVIRONMENTAL IMPACT ANALYSIS A. AESTHETICS 1. VISUAL IMPACTS

#### **ENVIRONMENTAL SETTING**

#### **Existing Visual Character**

The Project Site is located at 3911 South Figueroa Street, in the southwest corner of Exposition Park, in the South Central Los Angeles District Plan area of the City of Los Angeles. The site is situated in the central portion of the Los Angeles Basin, approximately 3.5 miles southwest of downtown Los Angeles. The 27.4-acre site is generally bounded by 39th Street on the north, Hoover Street on the east, Menlo Avenue on the west, and Martin Luther King Jr. Boulevard on the south. The Los Angeles Swim Stadium<sup>1</sup> is located to the southwest of the Coliseum, while a surface parking lot and the Sports Arena are to the southeast. The existing improvements on the site consist of the Los Angeles Memorial Coliseum and numerous ancillary structures, such as concession stands, restrooms, ticket booths, and other facilities. The Coliseum itself, a reinforced concrete structure oriented in an east-west axis, is 1,038 feet long and 738 feet wide. The rim of the Coliseum is situated 114 feet above the field level, which, in turn, is situated 40 feet below the surrounding grade of the yard level (Main Concourse Level). The Coliseum's exterior wall rises 74 feet above the surrounding portions of Exposition Park and slightly beyond (see Section IV.A of this report, Overview of Environmental Setting).

As stated previously, existing development on the Project Site includes the Los Angeles Memorial Coliseum, a 92,500-person capacity outdoor, multi-purpose stadium utilized for a wide variety of public assembly and sporting events, and various ancillary structures scattered around the exterior wall of the stadium. General pedestrian access to the site from the surrounding portions of Exposition Park, including off-site parking areas, is currently accomplished via several gates through the 10-foot-high fence around the general perimeter of the site. Access to the internal seating area of the Coliseum is currently provided from both the yard (ground) level concourse, located within the perimeter fence but outside of and encircling the stadium itself, through a series of 28 tunnels, and from the concourse level, located within the Coliseum approximately 34 vertical feet above the yard level and accessed via stairways and escalators from the yard level. The uniform design of the seating bowl within the stadium is broken at its eastern end by the "Peristyle," a series of 15 arches extending at the yard level between the edges of the two banks of spectator seating. The seating in this portion of the stadium (east end) is bench type; all

The Los Angeles Swim Stadium is located within the Exposition Park Intergenerational Community Center (EPICC), which also houses a child care center, a clubhouse, and a senior center.

other seating in the Coliseum is individual theater-style. The uniformity of the stadium's rims is also broken at mid-field on the south side by a three-level (two stories and a roof platform) press box, which was added to the Coliseum in 1948. The press box is serviced by a private elevator from the yard level on the outside of the exterior wall. Vehicular access to the field level is provided via Tunnel 30, a ramp from Menlo Avenue extending beneath the Coliseum's superstructure at its southwest corner. Dressing and locker room facilities are accessed from this ramp and are located underground. Field lighting is currently provided from a series of floodlight towers located along and extending above the rims of the stadium.

The Coliseum is surrounded by a chain-link and steel bar fence approximately 10 feet in height. A total of 11 permanent concession stands, four restroom buildings, a concession storage building, a maintenance/equipment shed, and a security/police substation are located around the exterior of the Coliseum on the site within the fenced area and/or form a part of the fence perimeter itself. No aesthetic attempt was made at the time of construction to make the ancillary buildings compatible in design with the main stadium structure, as most are shed-like rectangular structures of modern design, constructed of concrete block, and framed with glass, wood, or metal sidings.

Landscaping on the site includes decorative trees and shrubs along the base of the berm including eucalyptus, deodar, yucca, agave, palm trees, and plants, along with several specimen tree species planted throughout Exposition Park. Most of the Park areas adjacent to the site, including the outer portions of the site beyond the perimeter fence, are landscaped with grass. Landscaping along the northern and eastern sides of the stadium provides a sense of continuity with the groupings of the larger Exposition Park complex. Landscaping on the south and west sides is more sparse and essentially isolated, due largely to the parking areas that dominate the open spaces on these frontages.

Coliseum Interior. The primary interior features of the stadium can be described as follows:

- The Coliseum's interior is an elliptical bowl that rises from a green (grass) playing field in an unbroken sweep to the stadium rim. The green color of the playing field varies during the year with the type of grass planted, either hybrid bermuda or bluegrass. When empty, the interior presents three tiers of seats, each in a colored band. The first (lowest) seating tier is russet-colored, the second tier is pink, while the third is russet again, except for the east Peristyle end which is equipped with grey benches. The seating bowl is interrupted by the Peristyle at the east end of the stadium and the press box situated along the south rim.
- The Peristyle is an important visual element within the stadium, contrasting, in its verticality and busy architectural features, with the bowl-like effect and simplicity of the stadium as a whole. The Peristyle consists of a large central arch, the Propylaeum, which is topped by a 150-foot-high (above ground level) concrete flame holder with a brass bowl, constructed and used for the Olympic torch in 1932. The central arch is flanked by seven smaller arches on each side. Two 40-foot-high, block-shaped towers, one housing a clock and the other a thermometer, stand at

either end of the Peristyle, facing the interior of the stadium and separating it from the stadium bowl. A concrete wall extends outward from the outside edge of each tower, further separating the seating from the Peristyle area. The Peristyle architecture is compromised by modern amenities added to the structure in subsequent years, including structural supports, a matrix scoreboard and a video board as well as two speakers attached to the Peristyle in the shape of large band boxes, their aesthetic qualities being subordinated to their functions. Below the Peristyle area, a tier of bench seating completes the continuity of the stadium's seating bowl. The surface of the Peristyle is a travertine veneer, that was added to the structure in the late 1960s. The ceiling of the Propylaeum supports a mural depicting a sun in an Aztec motif. Bronze plaques decorate the pillars of the Peristyle, and remind the viewer both of the individuals who had meaningful influence upon the stadium as well as of events that have taken place there.

• The south rim of the stadium contains the three-level press box, designed in a moderne, functional architectural style in steel and glass and added to the rim in 1948. The press box juts out over the stadium, conflicting aesthetically with the parabolic shape of the stadium. The press facility shares its superstructural effects with the light poles that hover above the stadium's south rim in that their design does not appear to coordinate with the aesthetics of the stadium. A series of 28 tunnels and numerous stairways penetrate the stadium at the yard level, leading to either the seats or to the concourse level which provides concessions and restrooms within the interior of the structure. When viewed from the interior of the stadium, the two rings of entrance tunnels tend to break up the smooth curve of the bowl, though they are an expected statement and could be viewed as architecturally enhancing. No particular aesthetic statements are made within the interiors of the entrance tunnels, stairways, or concourse level.

Coliseum Exterior. The exterior of the stadium presents an architectural style reminiscent of classical stadium architecture. Arched entranceways and window-like openings that suggest an arcade effect lend the flavor of the original Roman Colosseum without attempting to duplicate the Doric, Ionic, and Corinthian qualities of the Roman facade. Exterior features of the Coliseum can be described as follows:

- The exterior of the stadium is a large concrete structure consisting of a continuous pilaster and panel wall system that extends over the top of an earthen berm. The top four rows of the stadium are cantilevered beyond the wall and supported by concrete brackets, that were added during the 1931 expansion (for a detailed description of changes to the Coliseum over time, see Section V.C, Cultural and Historical Resources).
- The Peristyle entrance on the stadium's east approach is less massive when compared to the height and mass presented by the rest of the exterior. Design and decor are different here as well, with the entrance consisting of 15 vaulted arches in a wall approximately 30 feet in height above the yard (ground) level. The Peristyle rises to a height of approximately 50 feet above the yard level at its center, where the Olympic torch stands. The Peristyle's white facade contrasts

2000

4

markedly with the concrete-gray coloring of the rest of the exterior. The Peristyle is decorated with a neon sign reading "Los Angeles Memorial Coliseum," with the five interlinked Olympic rings situated beneath. Two large pieces of rock, one from the Colosseum in Rome and the other from Altis Olympia in Greece, rest on bases to either side of the main arch. The rear of both the matrix scoreboard and the videoboard are prominently visible above the Peristyle. Two one-story office buildings, a ticket and accounting office on the north and the Coliseum Commission offices on the south, flank the Peristyle. These offices are designed in the style of 1930s Moderne architecture, consisting of smooth simplified exteriors, combining rounded and flat surfaces with a minimum of decoration. To either side of the Peristyle are the tower buildings, massive four-story structures with tall arched and vaulted doorways piercing the recessed front walls. A sculpture depicting the torsos of two athletes, added for the 1984 Olympics, is placed at the approach to the Peristyle at the edge of the site.

Other prominent exterior features include on the Coliseum's south facade: a Moderne-style press box elevator tower leading from the yard level to the press box on the south rim; Tunnel 30, a large entrance ramp and tunnel on the southwest side of the Coliseum to allow for vehicular access from Menlo Avenue to the playing field and track; a three-story reinforced concrete structure which extends out from the west wall of the stadium and is used as a storage building and a police substation.

General Vicinity. The site is located within the approximately 145-acre Exposition Park complex, which consists of several museums and exposition halls located north and northeast of the Project Site, as well as landscaped park areas, walkways, and tree-lined thoroughfares. The Park is bounded by Exposition Boulevard on the north, Figueroa Street on the east, Martin Luther King Jr. Boulevard on the south, and Vermont Avenue on the west. Major public facilities within the Park include the California Science Center, the Los Angeles County Museum of Natural History, the African-American Museum, the LAUSD Armory School site, the Aerospace Museum, and the IMAX Theater. The southern half of Exposition Park is developed with sports- and assembly-related facilities. In addition to the Coliseum, two other permanent structures are located within this portion of the Park: the Los Angeles Memorial Sports Arena in the southeast corner and the Los Angeles Swim Stadium in the southwest corner. Portions of the southern and southwestern areas of the Park are dedicated to surface parking lots. Exposition Park also extends westerly from Menlo Avenue to Vermont Avenue. This area is currently developed with a series of surface parking lots and additional open-space park facilities.

Other prominent land uses in the area outside of Exposition Park include the University of Southern California (USC) campus to the north, Manual Arts High School near the southwest corner of Vermont Avenue and Martin Luther King Jr. Boulevard, and residential areas south of Martin Luther King Jr. Boulevard and west of Vermont Avenue. The location of the USC campus adjacent to Exposition Park has effectively created a large public and quasi-public land reservation that dominates the vicinity and which is surrounded by the non-related residential and commercial land uses comprising the basic fabric

of the community. Structures on the USC campus include some high-rise (above six stories) buildings. The mix of land uses in the area contrasts distinctively with the uses contained in both Exposition Park and the USC campus. Exposition Park, while developed with a variety of public facilities, retains a bucolic, park-like quality that is removed from the modern architectural landscapes found to the north across Exposition Boulevard on the USC campus. However, while each of these publicly-oriented land use conglomerations differ substantially in visual character from each other, they each also differ greatly from the general character of the surrounding portions of the City of Los Angeles, generally comprised of the aging commercial, residential, and industrial neighborhoods. These neighborhoods, while somewhat segregated by land use, are largely homogeneous in appearance, without many visually distinctive features. Adjacent to Exposition Park on its eastern, southern, and western borders are mixed commercial and residential land uses. Most of the properties in these areas are developed with low-rise buildings and residences, with the exception of the mid-rise (four to six stories) Social Services Building on Vermont Avenue, approximately 0.25 mile west of the site. Areas to the east of Figueroa Street (the eastern boundary of Exposition Park) are developed with low-rise commercial retail structures. The land strip containing the elevated Harbor Freeway (Interstate 110) is located immediately to the east of these properties. Areas to the east of the Harbor Freeway in the vicinity of the Proposed Project are densely developed with a mix of multi-family residential, commercial, and light industrial uses.

In the general vicinity of the site, Vermont Avenue, Figueroa Street, and Martin Luther King Jr. Boulevard can be characterized as commercial corridors. Vermont Avenue provides access from the Coliseum area to the Mid-Wilshire District of Los Angeles on the north and to the South Bay cities of Gardena and Torrance to the south. Similarly, Figueroa Street provides direct surface-street access to Downtown Los Angeles to the north and the Los Angeles Harbor area to the south. Martin Luther King Jr. Boulevard is both a commercial and residential corridor to the west, providing access to the Baldwin Hills area, as well as to the Crenshaw District of Los Angeles. Development along each of these streets extending outward from the vicinity of the Proposed Project is primarily characterized by a highly urban mix of densely developed residential neighborhoods and strip commercial areas largely defined by lowand mid-rise structures. Industrial land uses are prominent to the east of the Harbor Freeway, although the general pattern of low visual relief characterizing the area is broken intermittently by high-rise industrial facilities. Exposition Boulevard, adjacent to the Park on the north and separating it from the USC campus, is generally characterized by commercial and light industrial uses to the west of Vermont Avenue and is situated parallel to a set of Southern Pacific railroad tracks. The Shrine Auditorium, a large mid-rise public assembly facility, is located to the northeast of the site, adjacent to the north edge of the USC campus. Overall, the high density of development in the greater project locale is characteristic of a major urban area, although not of an urban business center.

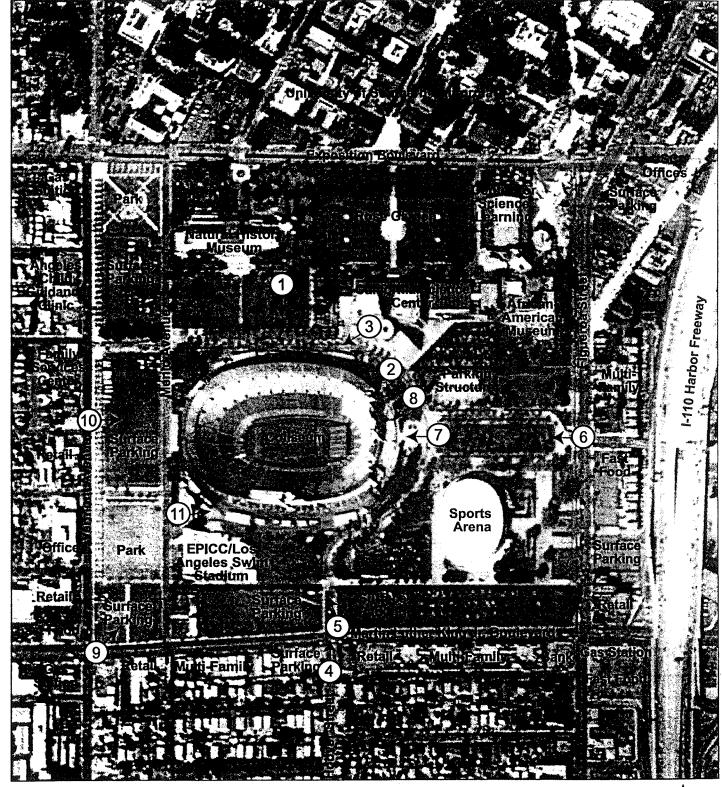
#### Viewsheds

Views From the Site. In general, the aesthetic value of the area surrounding the Project Site relates primarily to its urban character rather than to any dominant natural feature. Low-level views from the

Project Site looking outward consist largely of the surrounding areas of Exposition Park, as well as the commercial and retail uses surrounding the Park to the south and west. Views from the site to the north and east are limited by the presence of the Museum of Natural History and the California Science Center, and the Sports Arena, respectively, as well as by vegetation and stands of trees within the open space portions of the Park. Similarly, views to the southwest from the south and southwest portions of the site are shielded by the Swim Stadium, located adjacent to the site on the southwest.

During periods of good air quality, the urban skyline of Downtown Los Angeles (approximately 3.5 miles east) is clearly visible from the rim of the Coliseum and the press box. The downtown skyline forms a backdrop against which the lower-relief urban development in the intervening areas may be seen. Intermittent views of the more distant San Gabriel Mountains beyond the downtown skyline may also be obtained from the Coliseum's rim during periods of exceptional air quality. Views to the north from the stadium rim consist of urban landscapes punctuated by the distant high-rise offices along the Wilshire Boulevard corridor (approximately five miles distant) and the more distant Santa Monica Mountains (Hollywood Hills). Similar views to the northwest can include, depending upon ambient air quality conditions, the Santa Monica Mountains extending west to the Pacific Ocean near Santa Monica (approximately 15 miles distant), although the ocean itself is not visible. Views to the west and southwest from the stadium rim consist of commercial and residential land uses extending west to the partially developed Baldwin Hills (approximately 3.5 miles distant). Views to the south are the least limited of any direction by topography, and can extend to the Palos Verdes Peninsula (approximately 12 miles distant) on clear days. The intervening areas are seen as a continuous blanket of low- and mid-rise urban land uses, punctuated by scattered high-rise structures, particularly in the vicinity of the Los Angeles International Airport (approximately six miles distant). In general, landscaping and vegetation is not a prominent part of the visual character of the region surrounding Exposition Park when seen from any position along the rim of the Coliseum. Rather, views in all four directions are characterized by heavily urban land uses.

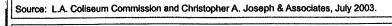
It should be noted that existing vantage points from within the Project Site are limited to the yard (ground) level outside the Coliseum structure and the rim of the stadium itself, including the press box. No intermediate level exists from which the surrounding area may be viewed.


Views Of the Site. Viewsheds of the site are, in general, intensely urban, which tends to make their boundaries irregular. The site is visually prominent from non-adjacent vantage points on the west and south, although not from the north and east due to both the relatively low profile of the existing Coliseum and the trees and other landscaping scattered about the site and the adjacent portions of Exposition Park. In discussions of views of the site from regional vantage points, the classification of distance becomes very important. The foreground, middleground, and background views are all very distinct and different in nature from any particular viewpoint.

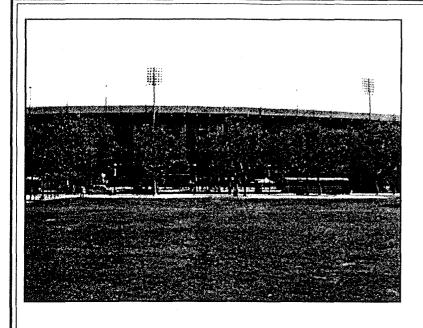
In general, views of the existing Coliseum are primarily foreground and middleground; few background views of the Coliseum are available from the general vicinity due primarily to its low profile and intervening landscaping and buildings. Only Hoover Street to the south affords a background view of the Coliseum; otherwise, the viewshed is primarily confined to the area generally bordered by Exposition Boulevard on the north, Figueroa Street on the east, Martin Luther King Jr. Boulevard on the south, and Vermont Avenue on the west. The site is also visible from a southbound section of the Harbor Freeway. The stadium can be perceived as a unified whole at very few viewpoints, as the public views of the site are principally foreground and these views are seldom unobstructed. For most viewers approaching the stadium, from any direction, the Coliseum appears as a large structure immediately in front of them, the form of which is suggested by the circular sweep of its mass. The closer the viewer gets to the structure, the more this phenomenon imposes itself. Consequently, the color and texture of the building materials, the climbing vines, and the numerous dark alcoves and recesses in the facade create an ambience and an aesthetic declaration independent of the architectural statement made by the structure as a whole. In general, views vary greatly depending on the perspective of the observer. As the viewer moves closer to the site, the Coliseum becomes a more visually dominant feature. At greater distances from the site, particularly on the east, the Coliseum recedes from visual prominence, primarily due to the presence of intervening landscaping, foliage, and other facilities within Exposition Park. Views from directional perspectives surrounding the site offer varying degrees of visibility to the Coliseum itself and are described below. A photo location map, Figure V.A.I-1, illustrates where each photo view was taken, and in which direction.

- Views from North to South: The view toward the site from the north is predominately a foreground perspective from locations within Exposition Park. From the location of View 1, in Figure V.A.1-2, generally proximal to the southern entrance to the Museum of Natural History, views consist of the north facade of the stadium, with the pierced walls, alcoves, and recesses in the facade plainly visible. Some foliage, including trees and grass, is visible in the foreground and partially blocks the continuity of the view toward the main structure. The view of the stadium from the north can be partially obstructed by outbuildings, such as ticket booths, concession stands, and restrooms on the site. No ground level views of the Coliseum are available from Exposition Boulevard or the USC campus due to the intervening presence of the Museum of Natural History and the California Science Center. Figure V.A.1-2, View 2 provides a closer view of the Coliseums exterior, as seen from the northeast side of the structure, facing west. Figure V.A.1-2, View 3 presents a view of the Project Site from the steps of the California Science Center, located northeast of the Project Site, looking southwest. The edge of the Coliseum's rim as it curves to the south is visible, as well as outbuildings, access tunnels, and surrounding foliage.
- Views from South to North: Public views of the site from the south are afforded by Martin Luther King Jr. Boulevard and the Hoover Street/South Coliseum Drive corridor. Viewpoints along South Coliseum Drive within Exposition Park, between the Sports Arena on the east and

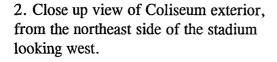
the EPICC/Swim Stadium on the west provide a picture of the Coliseum in the foreground which encapsulates the idea of the whole structure, though the perspective is somewhat cramped due to the proximity of the roadway to the Project Site. This view is also intermittent because of the presence of outbuildings around the perimeter of the stadium on the site. The view of the Project Site from along Martin Luther King Jr. Boulevard near the Hoover Street intersection is foreground in perspective and intermittent, obstructed on the east by the Sports Arena and on the west by the EPICC/Swim Stadium complex. Various outbuildings also tend to obscure the view. At times, the whole south facade of the Coliseum is visible from Martin Luther King Jr. Boulevard, while at other points, the press box and light masts along the south rim are the only distinguishing features visible. The greatest variety of views of the Coliseum from the south are available from Hoover Street, as the street extends the viewshed three miles south to Florence Avenue. Approaching the Project Site on Hoover Street, the viewer is presented with a direct view of the Coliseum's south facade in the background, middleground, and foreground, depending upon distance south of the site. As Hoover Street is aligned in a straight north-south line, which is forced to curve around the Coliseum's east end (South Coliseum Drive), it affords a constant view of the edifice from the southerly approach. A section of the structure is prominent in the middleground from Vernon Avenue north, until the site merges into the foreground near 40th Place. Figure V.A.1-3, View 4 provides a view of the Coliseum as seen from 40th Place and Hoover Street. The structure is visible, but almost entirely obscured by foliage on either side. From Florence Avenue, the stadium is barely visible in the background and no distinguishing features can be seen. From this distance, the stadium would be identifiable only to a viewer who was familiar with the area. The stadium emerges in its distinguishing shape near Gage Avenue, and becomes relatively identifiable at Slauson Avenue. Thereafter, proceeding north, the Project Site becomes more and more a prominent feature in the background until the background merges with the middleground. Figure V.A.1-3, View 5 provides a view of the Coliseum from the northeast corner of Martin Luther King Jr. Boulevard and Hoover Street. The western edge of the Coliseum is visible as it curves around, but much of the structure is obscured from view by trees and outbuildings.

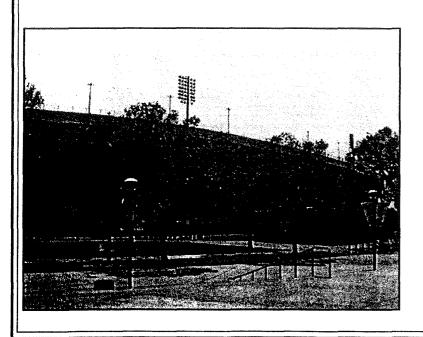

• Views from East to West: Figure V.A.1-4, View 6 presents the site as viewed from Figueroa Street, at the eastern edge of Exposition Park. The area behind the location of this photograph, on the east side of Figueroa Street, is currently developed with strip commercial retail businesses, and backed by the Harbor Freeway. In the foreground of the photo is the construction of a new parking structure at the California Science Center. Beyond the construction and the foliage, a portion of Christmas Tree Lane, the Coliseum's Peristyle and Olympic torch are visible. Without construction, Christmas Tree Lane obscures much of the otherwise direct view from this location to the Coliseum structure. Intermittent views of the Peristyle and Olympic torch may be obtained from this location, with the scoreboard and videoboard attachments to the Peristyle also partially visible through the trees. From closer to the stadium, inside Exposition Park, several of the concession stands, restroom facilities, and ticket booths lining the yard level along the north edge




(#) View Number and Orientation

 $\mathcal{O}$ 

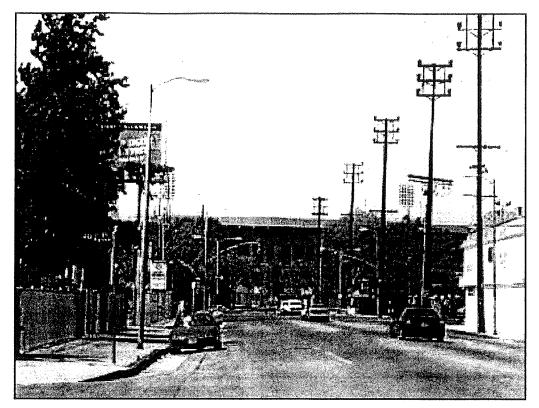

Approximate Scale 1" = 500'








1. South facing view of the project site from the north side of the Coliseum.






3. Southwesterly view of the Coliseum from the steps of the California Science Center.

CHRISTOPHER A. JOSEPH & ASSOCIATES Environmental Planning and Research

Figure V.A.1-2 Views of the Project Site, Views 1, 2, and 3



4. Northerly view of the Coliseum from Hoover Street and 40th Place, south of the Coliseum.



5. Northwesterly view of the Coliseum from northeast corner of Hoover Street and Martin Luther King Jr., Boulevard.



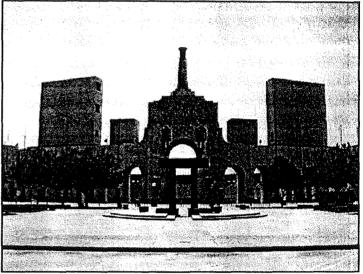

CHRISTOPHER A. JOSEPH & ASSOCIATES Environmental Planning and Research

Figure V.A.1-3 Views of the Project Site, Views 4 and 5



6. West facing view of the east side of the project site. The view was blocked by construction activities at the time this EIR was written, but normally includes a view of Christmas Tree Lane and a portion of the Peristyle entrance of the Coliseum.

7. A west facing view of the Peristyle entrance on the east side of the Coliseum. The view is from inside Exposition Park.



8. A southwesterly view of the project site, from inside Exposition Park. The view is from the northeast side of the Coliseum.

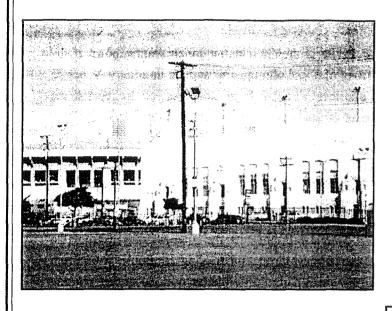
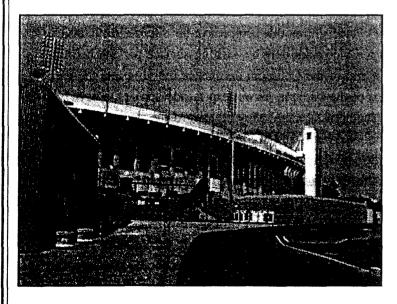

CHRISTOPHER A. JOSEPH & ASSOCIATES Environmental Planning and Research

Figure V.A.1-4 Views of the Project Site, Views 6, 7, and 8

of the site are visible. Views through the Peristyle arches into the inner seating bowl of the Coliseum can also be obtained from the front of the Coliseum, as shown in Figure V.A.1-4, Views 7 and 8, but trees effectively shield this level of detail from street views. In general, the character of the view from this perspective is of landscaped, tree-planted public park grounds, with only intermittent vistas of the Coliseum and/or other structures on the site obtainable from this vicinity. Middleground and background vistas from this vicinity are largely non-existent, shielded by both vegetation and the mass of the Coliseum structure. No residential areas currently have uninterrupted visual access to the site from the east.

Views from West to East: Figure IV.A.1-5, View 9 presents the site as viewed from the southwest at the intersection of Vermont Avenue and Martin Luther King Jr. Boulevard. From this perspective, the southwest end of the Coliseum is partially visible beyond the surface parking lots and park facilities along the west side of Menlo Avenue. The southern exterior of the Coliseum is shielded from view by the imposing mass of the Swim Stadium in the foreground. No views of the interior of the stadium, or of any portion of the Peristyle, are available from this Several of the restroom facilities and concession stands, as well as the police substation/storage building and concession storage/offices building which are located on the site are visible at the west end yard level from the west. Development behind the location of this photograph, generally proximal to the southwest corner of the intersection, consists of strip commercial retail businesses, gas stations, and, on the northwest corner of the intersection, a mini-mall. Middleground and background vistas from this location largely consist of the view to the east along the Martin Luther King Jr. Boulevard corridor to the Harbor Freeway. These views are characterized by a mix of commercial and multi-family residential uses, as well as of facilities in Exposition Park. No other residential areas currently have uninterrupted visual access to the site from the southwest.


Figure V.A.1-5, View 10 presents the site as viewed from the west along Vermont Avenue, generally opposite its intersection with 39th Place. From this perspective the site is directly visible in the foreground, being separated from the viewpoint only by existing surface parking between Vermont and Menlo Avenues. The west end of the Coliseum dominates the vista into the Park from this area. Because of the oval shape of the stadium, its western facade appears to have less breadth and mass than the northern and southern facades. Moving toward the stadium from the location of View 10, the view from Vermont Avenue and Menlo Avenue is mostly unobstructed from north of the Swim Stadium to 39th Street, although some foliage and Coliseum outbuildings occasionally obscure the lower parts of the Coliseum. In terms of the overall visibility of the Coliseum, the Menlo Avenue perspective adjacent to the stadium suffers somewhat from being too close to the structure. Development behind the location of Figure V.A.1-5, View 10 is generally comprised of strip commercial businesses along the west side of Vermont Avenue, behind which is a mixed single-family and multi-family residential neighborhood. Middleground and background vistas from this vicinity are largely non-existent, shielded by both vegetation and

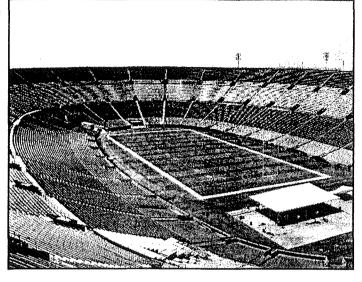


9. A northeast facing view of the Coliseum, with the Los Angeles Swim Stadium in the foreground, from the corner of Martin Luther King Jr. Boulevard and Vermont Avenue.

10. The west end of the Coliseum as seen from Vermont Avenue.

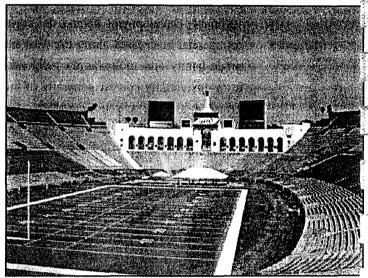


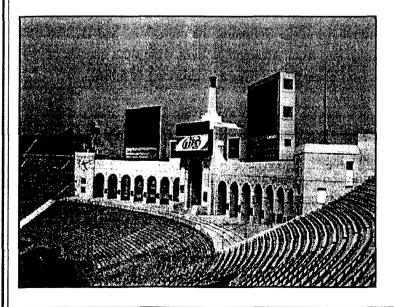



11. A view of the south side of the Coliseum, taken from Menlo Avenue, just north of the Los Angeles Swim Stadium, facing east.

the mass of the Coliseum structure in the foreground. Some views of the museum complexes in the northern portion of the Park are visible, though they are partially obscured by foliage within the Park. Aside from the first few residences west of Vermont Avenue along Leighton Avenue and 39<sup>th</sup> Place, from which the site is partially visible along the view corridors afforded by each street, no other residential areas currently have uninterrupted visual access to the site from the west. The view of the site as viewed from the northwest, at the intersection of Vermont Avenue and 39<sup>th</sup> Street is similar to the one presented in Figure V.A.1-5, View 10.

The Coliseum occupies the center and right foreground, with both the west end and northern facade of the stadium clearly visible, as are the various outbuildings in these locations. The remainder of the view consists of vegetation and landscaping in Exposition Park between the museum complexes, of which portions are visible through the trees, and the Coliseum. No portion of the Peristyle is visible from this vicinity, nor are views available of the interior of the stadium. Development behind the corner of Vermont Avenue and 39th Street consists of strip commercial businesses along the west side of Vermont Avenue, behind which is located a mixed single-family and multi-family residential neighborhood. Middleground and background vistas from this vicinity consist generally of views down the tree- and grass-lined corridor between the Coliseum and the museum complexes within the Park toward Figueroa Street to the east. These properties currently have direct views of the Coliseum to the southeast, as well as of the Museum of Natural History to the east. Aside from the first few residences west of Vermont Avenue along 39th Street, from which the site is partially visible along the street's view corridor, no other residential areas currently have uninterrupted visual access to the site from the northwest. Figure V.A.1-5, View 11 provides a close-up view of the south side of the Coliseum, looking west from Menlo Avenue, just north of the Los Angeles Swim Stadium.


Internal Views. As the Coliseum is a multi-purpose public assembly facility by function, the internal layout of the stadium also lends itself to viewshed characterization. Views of the interior of the stadium are generally confined to locations within the seating bowl of the Coliseum, the press box, and the two office facilities on each side of the Peristyle. Photographs from three perspectives within the interior of the existing Coliseum are presented in Figure V.A.1-6. These perspectives are described as follows:


- View 12 presents a view of the Coliseum's interior from the top of the seating area on the southeast side of the stadium, facing northwest. From this perspective, the Coliseum's northerly and westerly rim is visible, as are the lighting fixtures along the rim. This view along the length of the field encompasses virtually the entire bowl, with the exception of the bench seating immediately below the Peristyle platform near this vantage point. The Tunnel 30 entrance is also clearly visible from this vantage point (at the southwest corner of the stadium at field level).
- View 13 presents a view of the Coliseum's interior from the southwest side of the seating bowl. From this location, the view northeast includes the interior side of the Peristyle, with its attached



12. A northwesterly view of the interior of the Coliseum, from the southeast end.

13. A view of the Peristyle, Olympic torch, and matrix and scoreboard at the east end of the Coliseum, as seen from the southwest end of the stadium.





14. A close view of the Peristyle entrance, the Olympic torch, and the matrix and scoreboard, facing northeast from the southeast side of the stadium.

matrix and scoreboard, the interior side of the Coliseum Commission offices, and the opposite portion of the seating bowl, including the bench style seating just below the Peristlye.

• View 14 presents a view of the interior of the Coliseum's Peristyle from the southeast end of the seating bowl. From this location, the Peristyle, Olympic torch, and eastside seating are the dominant visual features. The theater-style seating that constitutes most of the stadium is visible in the immediate foreground, and the bench seating below the Peristlye is visible beyond. Evidence of some foliage on the outside of the stadium is visible, as palm trees can be seen beyond the stadium walls, at the northeast corner of the Coliseum.

#### **ENVIRONMENTAL IMPACTS**

# Thresholds of Significance

The California State CEQA Guidelines requires the assessment of aesthetic impacts to consider whether a project would result in (a) a substantial adverse effect on a scenic vista, (b) substantial damage to scenic resources, including but not limited to trees, rock outcroppings, and historic buildings within a state scenic highway, or (c) substantial degradation of the existing visual character or quality of the site and its surroundings. However, since no empirical criteria exist with which to assess visual impact, the assessment of visual impact is, by nature, a subjective undertaking.

As directed by the City of Los Angeles' <u>Draft L.A. CEQA Thresholds Guide</u>, the determination of significance shall be made on a case-by-case basis, considering the following factors:

- The amount or relative proportion of existing features or elements that substantially contribute to the valued visual character or image of a neighborhood, community, or localized area, which would be removed, altered, or demolished;
- The amount of natural open space to be graded or developed;
- The degree to which proposed structures in natural open space areas would be effectively integrated into the aesthetics of the site, through appropriate design, etc.;
- The degree of contrast between proposed features and existing features that represent the area's valued aesthetic image;
- The degree to which a proposed zone change would result in buildings that would detract from the existing style or image of the area due to density, height, bulk, setbacks, signage, or other physical elements;

- The degree to which the Proposed Project would contribute to the area's aesthetic value;
- The Proposed Project's consistency with applicable design guidelines and/or regulations.

#### **Project Impacts**

#### Architectural Features

The Proposed Project would reconfigure the Coliseum's seating area into three separate levels. In addition, temporary expansion seating areas would be provided adjacent to the east and west end zones of the renovated plaza areas for use during certain events when larger attendance levels are anticipated. The Proposed Project would include a new lower bowl seating level situated closer to the playing field, a luxury suite and lounge level beneath the plaza, and an expanded plaza area fronting the Peristyle (See Figure III-13). The seating rows themselves would consist of floor and riser-mounted armchair seats with the first row situated approximately 5½ feet above the field. The new sideline seating would have the same approximate proximity to the field while the end zone seating would be up to 100 feet closer to the field. Upon the completion of all renovation activities presented as part of the Proposed Project, the Coliseum field would be sized to accommodate American football games or soccer matches.

Exterior Treatment. The existing exterior wall of the Coliseum would remain virtually intact, with few alterations, and existing extraneous out-buildings (ancillary structures on-site, but separate from the stadium) would be removed from both the outside of the Coliseum structure and from the adjacent grounds on the site. These ancillary buildings include mechanical and electrical equipment and sheds, restrooms, concession stands, storage buildings, and ticket booths, as well as buildings, escalators, elevators, and non-original stairways which have been added over time. One original (1932) ticket booth located outside the Coliseum in the northeast corner of the site would be retained and two new buildings would be constructed. These buildings include an approximate 20,000 square foot sports and Coliseum athletic history museum and an approximate 20,000 square foot ancillary retail use. Both buildings would be ancillary to the Coliseum, but operational on a day-to-day basis throughout the year. The structures are proposed to be located near the southeast corner of the Coliseum, between the Coliseum and the Sports Arena and/or on the south side of the Coliseum. The Peristyle end of the Coliseum would remain intact as it currently exists, along with the adjacent Coliseum Commission and ticket offices.

The existing openings in the exterior wall of the Coliseum would remain intact and cleared of any miscellaneous piping and wiring. The concrete brackets and upper seating tiers that provide the cornice to the existing wall would also remain. The original exterior lighting fixtures would be reused or recreated where feasible. The existing press box would be completely removed. The new press facilities would be integrated into the Upper Suite Level. The existing earth berm against the exterior wall would remain intact, except for ground-level modifications required to accommodate the new entrances, as described above.

Interior Treatment. The interior of the renovated Coliseum would continue to feature the Peristyle as the dominant architectural element in the east end of the bowl. The existing matrix and scoreboards and sound cluster would be removed from the Peristyle. The new seating construction would be consistent with the existing bowl effect, beginning and ending at the Peristyle. The new lower bowl profile would match the existing seating profile at the north and south sidelines. The new club seating decks on the north and south sides of the field are separated from the Lower Bowl by two levels of suites. An additional level of suites and the press box separate the Club Level from the Upper Deck. Several of the existing upper seating rows which currently extend out over the top of the existing exterior wall of the Coliseum would be retained, even though views to the field from these abandoned seating areas on the north and south sideline would be entirely blocked by the new stadium construction. The Upper Concourse Level would occupy the intervening space between the old rim and the new upper deck.

Landscaping. While the proposed landscaping plan is still in the conceptual design phase, it is anticipated that much of the existing landscaping on the Project Site would remain following development of the Proposed Project. Portions of the existing landscaped areas to remain would be supplemented by additional landscaping. The proposed landscape plan around the exterior walls of the renovated Coliseum would involve improvements to the following areas: 1) the berm against the exterior wall; 2) the "yard" level plaza; and 3) the area outside of the Peristyle up to the curb of Coliseum Drive. Following is a discussion of each of these elements:

- The plantings on the berm are thought to have originally consisted of Deodar Cedar, Spanish Broom, Acacia, Arizona Cypress, and Eucalyptus trees, with Cotoneaster hedges around the archways of the Peristyle. Numerous non-original plantings have been added on the berm, including a variety of palm trees, with no apparent regularity. It is envisioned that non-original plantings would be removed from the berm and that they would be replanted and reshaped to achieve the regular pattern of the original design.
- The yard level plaza area would consist of a paved area approximately 50 feet wide adjacent to the berm. The continuous paved area would be of either concrete or asphaltic cement. A double row of palm trees set in tree grates is planned down the center of the paved area. These palm trees would align with the exterior wall's pilasters and would provide a colonnade affect, continuing around the stadium yard. It is anticipated that this colonnade of trees would stop short of the Peristyle. These trees would aid in the characterization of the plaza by: 1) reorganizing the yard with a formal order; 2) providing a vertical counterpoint to the horizontal nature of the existing Coliseum exterior wall; and 3) establishing a distant view of the Coliseum with the tree tops of the palms.

# Impact on the Visual Character of the Site and Locale

Coliseum Interior. The planned interior modifications to the Coliseum structure would, as discussed previously, leave the Peristyle intact, thus assuring that it would continue to remain as the dominant

architectural element on the renovated Coliseum. Part of the current effect of the Peristyle is a result of its relationship to the simplicity of the oval it counters. The proposed alterations to the seating bowl of the stadium would modify this simplicity with the consequence that the Peristyle could present less of a contrast in visual simplicity to the remainder of the stadium than under existing conditions. However, the Peristyle would continue to offer a striking contrast in architectural style with the modern improvements, a contrast that could be heightened in effect following the development of the Proposed Project.

The primary alteration to the existing visual character within the stadium would be the separation of the currently continuous seating bowl into different levels on the north and south sidelines. The construction of the Club Seating Level (on the north and south sides only), three suite levels, and Upper Seating Deck would alter the stadium's inner design. Even so, the basic geometry of the bowl would be retained through the retention of the upper bowl ring (above the concourse level) and a large section of seating in the west end zone and by the actual fabric of the Peristlye being retained in the east end. The character of the existing stadium's symmetry would be retained, if not its actual construct. However, the existence of the suite levels and cantilevered upper deck could noticeably alter the existing visual character of the seating sections. The existing rim of the stadium, to be retained outside of the new upper deck, would not be visible from most seating areas within the renovated stadium. The existing upper seating bowl would only remain visible in the west end and on the east end on the north and south sides flanking the Peristyle.

Other features contributing to the general appearance of the Proposed Project would include the scoreboard and matrix, and sound clusters, all of which would be removed from the top of the Peristyle. In addition, the travertine veneer, which was added to the Peristyle in the 1960s, would be retained. The new press box facility would be integrated into the Upper Suite Level and would no longer appear as an obvious structural addition towering over the Coliseum's rim. As a result, it would be expected to provide an improved visual effect as compared to the existing press box. The new field lighting fixtures would be affixed to the underside of the roof canopy. The new lighting system would improve upon the existing pole mounted lights by including improved directional lighting and glare control. The lighting fixtures would have a narrow beam distribution and would be mounted high enough to eliminate shallow aiming angles that can cause light to "spill" out of the stadium. Locating the lights within the roof structure would shield spill over lighting from the neighboring areas and reduce, if not eliminate most glare problems.

Finally, two rings of vomitory entrances would encircle the field on the north and south sides. These tunnel entrances, one on the club seating level and the other on the upper seating deck, would have a similar effect to the existing tunnel openings, interrupting the curve of each seating deck. As with the existing openings, they are necessary features that could be viewed as architecturally enhancing. The addition of new elements segregating the Coliseum's seating into separate levels, however, would constitute a more prominent interruption of the stadium's symmetrical seating bowl.

Coliseum Exterior. The planned exterior modifications would leave the existing exterior wall and the Peristyle intact, with few alterations. The removal of the concession storage/police substation building at the existing stadium's west end would have the effect of exposing that portion of the original Coliseum facade now obscured by the building. The concrete brackets and upper seating tiers that form the existing cornices would remain visible. Existing escalators, elevators and most non-original stairways would be removed. New escalators would be placed within the concourse, rather than exposed on the exterior of the façade as the existing escalators are. This escalator positioning would reduce existing visual obscurance of the exterior stadium wall and create a more harmonious, less cluttered effect on the exterior, as would the proposed removal of ancillary outbuildings on the site. These exterior modifications would result in net beneficial aesthetic impacts, as they would improve sight-lines of the Coliseum's exterior walls from the surrounding areas with in Exposition Park.

As with existing conditions, the Coliseum itself would continue to be the most visually prominent feature on the site, continuing its existing visual relationship to the adjacent facilities within Exposition Park. Current ground-level views from the surrounding off-site portions of Exposition Park would remain substantially similar to existing views obtainable from these areas, with the notable exception that the exterior yard level of the Coliseum would appear more open due to the removal of many of the ancillary structures currently situated there. The new upper seating deck of the Coliseum, rising to a height of approximately 130 feet above the exterior yard level (approximately 65 feet above the existing rim), and would be visible from ground-level areas surrounding the base of the exterior stadium wall. At the center of the Coliseum, the outer edge of the new upper seating bowl is approximately in alignment with the exterior wall of the Coliseum. At this point the canopy roof overhangs the exterior wall by approximately 22 feet. Moving east and west from the center of the building, the new construction curves inward, away from the Coliseum exterior wall. This would create the perception to approaching spectators of an altered Coliseum design with modern features contrasting with the Coliseum's historic facade. This feature is anticipated to be the most substantial alteration to existing exterior views from ground-level areas to result from implementation of the Proposed Project, providing an obvious distinction of the modern renovation within the historic structure. It is anticipated that the new architectural improvements will highlight the retention of the original historic façade.

Development of the Proposed Project would not be expected to increase or decrease the visibility of the site relative to the surrounding area. The construction of the new upper deck and tensile fabric roof canopy would slightly alter the perception of the Coliseum structure itself from distances around the site, but would not detract from the visual character of the stadium facade. Some views of the Coliseum interior could be obtained through the Peristyle arches from areas in reasonably close proximity to the stadium's east end, although little detail would be distinguishable from these locations. Aside from the new upper deck and roof construct, the primary visual alteration to the site visible from surrounding areas would be the removal of the concession stands, restrooms, and other associated facilities currently haphazardly lining the yard level of the site. These alterations would not constitute an adverse visual

impact, as the removal of these structures would provide viewers with more uninterrupted views of the Coliseum facade.

#### Alterations to Viewsheds

Views Of the Site. Street level locations from which the Proposed Project would be visually distinctive would be limited to the streets immediately surrounding the site on the west, north, and south. Even so, few specific aspects of the Proposed Project would be visible, and none dominantly visible, from locations surrounding the exterior of the Coliseum. Views from other residential and commercial streets in the outlying vicinity would not be adversely affected since the Proposed Project would be seen only intermittently and would not substantially alter the existing character of the Coliseum. Similarly, the new construction would not obstruct any existing views either onto the site or over the site to areas beyond from any properties in the general vicinity. Views of the Coliseum from directional perspectives surrounding the site would be impacted as follows:

- Views from North to South: The removal of the ancillary buildings around the base of the Coliseum's exterior would allow greater visual access to ground-level elements of the exterior wall (refer to Figure V.A.1-2 Views 1 and 3 for existing views of the Coliseum with ancillary buildings and surrounding gate visible). The added sports and Coliseum athletic history museum and ancillary retail structure would not be visible from the north side of the Project Site. From the north part of Exposition Park, the renovated stadium would be visible. Both the existing stadium rim, which stands approximately 65 feet above ground level, as well as the new upper deck and tensile roof canopy, which would rise approximately 130 feet above ground level, would be visible from the north side of the stadium. The removal of outbuildings and the gate surrounding the Coliseum would enhance views from the north toward the Project Site. The addition of upper deck seating and the roof structure would add modern architectural aspects to the historic structure. As the Proposed Project would retain the historic façade of the Coliseum, visual impacts from these vantage points would be less than significant.
- Views from South to North: This view would be modified slightly, with the rise of the new upper seating deck over the Coliseum's rim being most prominent from Hoover Street, south of the Coliseum. This is the only location surrounding the Coliseum where the angle of sight allows it to be viewed at distances greater than approximately 600 feet (see Figure V.A.1-3, Views 4 and 5 for existing views). With increasing distance from the site to the south along Hoover Street, the visual impact of this upper deck extension becomes less imposing. The removal of the press box and exterior elevator to the press box would eliminate an interruption of a continuous view of the southern facade of the stadium. The ancillary structures currently visible would be removed, and the two new ancillary structures would be visible. The tensile fabric roof canopy structure would be visible from the south, as it would sit above the rim and upper deck of the stadium. From a southerly vantage point, views would consist of the ground level of the existing stadium, up to the

existing rim, along with the added upper deck and roof structure. These visual impacts are not considered significant, as the historical structure would remain intact and more visible than under current conditions. The renovated structure would not affect viewsheds beyond or above the stadium due to an increase in stadium height, as no views beyond or above the existing Coliseum are currently visible.

- Views from East to West: While views of the Project Site from Figueroa Street are obscured by Christmas Tree Lane, some characteristics of the Coliseum are visible from certain angles, including the Olympic torch and the existing matrix scoreboards (refer to Figure V.A.1-4, Views 6, 7, and 8). These views would be modified by the removal of the scoreboards and sound clusters that currently sit on top of the Peristyle. Since the matrix and scoreboards were added elements to the Peristyle and were not a part of its original construct, historic preservationists would perceive this modification as an improvement. This change would be visible to viewsheds of the Coliseum's entrance that already exist. The gate currently surrounding the Coliseum would be removed, and the exterior wall of the stadium would become accessible to visitors who are not entering the stadium. The sports and Coliseum athletic history museum and ancillary retail use would not be visible from Figueroa, but would likely be visible from the Peristyle area. From this vantage point, however, views of the Coliseum would not be affected by the ancillary structures. Also visible from some vantage points on the east would be the upper seating deck and roof structure rising up from the north and south sides of the Coliseum's interior. These alterations would be visible from easterly vantage points but would not be considered significant, as the renovation would retain the Peristyle entrance as a dominant architectural feature.
- Views from West to East: The view of the Coliseum from the west facing east would be perceptively modified. As seen in Figure V.A.1-5, Views 9 and 10, the existing rim of the Coliseum is visible from westerly vantage points. The Coliseum's exterior wall and rim would remain intact while the existing outbuildings and gate around the Coliseum's exterior would be removed. From this vantage point the new ancillary structures may be visible to the south of the Coliseum and toward the southeast end. In addition, the elevators that are now visible from the exterior will be relocated inside, thus exposing more of the original facade. The Proposed Project would not adversely affect the exterior view of the existing Coliseum structure, but would improve the view at ground level. Above and beyond the existing rim, the tensile fabric roof canopy and new upper deck seating would be visible on the north and south sides of the stadium. The alterations to the west-to-east views are not considered adverse, as views of the new architectural additions would not obstruct views of the Coliseum's existing facade, which would continue to be prominent in the foreground.

# **Impact Summary**

The Proposed Project would renovate the interior of the Coliseum, altering its existing interior appearance. The separation of the stadium's seating into three main sections, with two suite levels positioned in between the lower bowl level and the club level, and one suite level positioned between the club level and the upper concourse level, would effectively change the perception of the existing stadium as a homogeneous symmetrical, elliptical bowl. The addition of a new upper seating deck above the new suite levels and horizontally positioned closer to the field would create the general visual effect of a smaller, less expansive stadium. The overall alteration of the interior of the Coliseum would be considered to be a significant visual change. From an aesthetic point of view, this change could be considered to be either adverse or beneficial, depending upon the perception of the viewer. The interior modifications proposed as part of the Proposed Project would not be anticipated to be clearly visible from any location surrounding the exterior of the stadium, and would therefore not be expected to produce an adverse visual impact on views toward the site.

One of the main objectives of the Proposed Project are to renovate the Coliseum in conformance with the generally accepted standards of design for NFL stadiums, thus enabling the Coliseum Commission to acquire and maintain an NFL franchise in the City of Los Angeles. In obtaining this goal, the proposed architectural design is oriented around improving sight-lines and bringing the seats closer to the field level for optimum views of the playing field. In this regard the appearance of the stadium structure is diminished by improved sight-lines to the playing field. In keeping the exterior facade intact and retaining as much of the original seating fabric as possible, the existing portions of the seating areas would remain visible behind the new seating areas from the main concourse and club level areas. As a result, the Coliseum would retain its historic image and feel within a modern state-of-the art sports venue.

# **CUMULATIVE IMPACTS**

Development of the Proposed Project, in conjunction with the related projects, would cumulatively contribute to visual character and viewshed impacts in and around the Exposition Park area. The renovation and expansion of the EPICC complex and Los Angeles Swim Stadium, the California Science Center, the Science Museum School and Education Resource Center, planned renovation and expansion of the Natural History Museum, and the development of the LAUSD Armory School site are all related projects in Exposition Park. The Proposed Project and the related projects, are in accordance with the objectives stated in the Exposition Park Master Plan. The objectives of the Plan include enhancing the Park's character, preserving the historical legacy of the Park and generally encouraging recreational uses in the Park.<sup>2</sup> The Proposed Project and the related projects located

<sup>&</sup>lt;sup>2</sup> California Museum of Science and Industry, Exposition Park Master Plan Draft Environmental Impact Report, May 1993.

within Exposition Park aim to encourage passive and active use of the Park by renovating existing uses but restoring the historic character present.

# **MITIGATION MEASURES**

Development of the Proposed Project would not result in a significant aesthetic impact to any view, view corridor, or visual resource. Therefore, no mitigation measures are required.

# V. ENVIRONMENTAL IMPACT ANALYSIS A. AESTHETICS 2. LIGHT AND GLARE

#### ENVIRONMENTAL SETTING

#### **Project Vicinity**

Ambient lighting in the vicinity of the Project Site consists of relatively low to high levels of lighting. The streets surrounding Exposition Park and the Project Site, Figueroa Street, Martin Luther King Jr. Boulevard, Vermont Avenue, and Exposition Boulevard include streetlights for their entire length. The other uses in Exposition Park all maintain mid-level lighting at night, and surface parking lots in the Park are relatively brightly lit. Surrounding commercial uses along Figueroa Street and Vermont Avenue maintain high-level lighting, while residential areas along Martin Luther King Jr. Boulevard maintain a relatively low level of nighttime lighting. Overall, existing ambient lighting levels surrounding the Project Site range from low to high.

## **Project Site**

The existing permanent lighting at the Coliseum consists of small and moderate scale area lighting at the entrances and on the surrounding plaza as well as floodlights positioned around the Coliseum for various events. Because the former has little or no effect on adjacent properties, attention in this section is focused on the primary lighting component, the field lighting. There are 360 existing floodlights within the Coliseum.

The impact of the field lighting on the surrounding community at the Coliseum can be measured through the evaluation of two conditions: light trespass and light pollution.

# Light Trespass

Light trespass is defined as the unwarranted or uninvited incursion of light from one property onto adjacent propertyies or surrounding land uses. The magnitude of this condition can be analyzed through the evaluation of the intensity of *direct glare* on the surrounding properties and the determination of the actual *area* which is affected. The comparison of values ascertained for the existing and proposed lighting schemes yields relative levels of trespass, allowing the determination of improvement or degradation of the existing light trespass condition expected to result from implementation of the Proposed Project.

Direct Glare. Direct glare is the annoyance or discomfort resulting from high luminances or insufficiently shielded light sources in the field of view. An analysis of the luminaire aiming angles, architectural configuration, and intensity of light at angles which project light directly onto adjacent properties, produces a metric which can be used as an evaluative barometer of direct glare.

4.3

The architectural configuration of the Coliseum causes direct visual shielding of the luminaires from view on adjacent properties surrounding the stadium, the magnitude of which can be determined through analysis of the concept known as architectural cut-off (shielding) angles. The average height of floodlights above the north rim of the Coliseum is 16 feet, resulting in a cut-off angle to the opposite (south) rim of approximately one degree below horizontal. The average height of the floodlights above the south rim wall (and press box) is 29 feet, yielding a cut-off angle to the opposite rim of approximately two degrees below horizontal.

Given an average vertical aiming angle for all floodlights of 16 degrees below horizontal, a vertical angle of 15 degrees above floodlight beam center is, on average, the photometric plane which projects over the opposite parapet walls and beyond. In the existing condition, a viewer to the north of the Coliseum sees a maximum of 204 floodlights when looking south. A viewer to the south looking north sees a maximum of 156 floodlights.

Affected Area. Though not an indicator by itself, the size and location of the area(s) upon which the stadium floodlighting projects direct illumination is also relevant. The inner perimeter of the area affected is determined by evaluation of the cut-off, or shielding, provided by the stadium parapets themselves. The outer perimeter or maximum extent of the area affected by direct glare is determined by the cut-off, or light source shielding, provided by and integral with the floodlights. Land uses within the area approximated by Exposition Boulevard to the north, Figueroa Street to the east, Vernon Avenue to the south and Vermont Avenue to the west could be potentially affected by direct glare from distances away from the Coliseum. The inner perimeter of the affected area starts approximately 4,000 feet from the stadium exterior on the south side and approximately 2,000 feet to the north. It should be noted that there is no outer perimeter because the existing floodlights do not have any lamp shielding or controlled cut-off. However, potential glare annoyance would extend only to areas with a direct line-of-sight to the Coliseum. It is also noted that, in reality, direct glare and trespass dissipate over great distances.

#### Light Pollution

Light pollution is defined as the contamination of the atmosphere with unwanted light above and around an installation. A relative measurement of this factor can be achieved by the evaluation of direct and indirect light pollution independently. The combination of these two components will produce a fixed quantity of light which is projected directly from the floodlights into the atmosphere and reflected indirectly from the ground. The magnitude of the light pollution effect is variable depending upon the moisture content of the atmosphere as well as the amount of other air carried particles such as smoke, exhaust fumes, pollen, etc. A relative scale to quantify light pollution is utilized not only because of its variable nature, but also because its impact is highly subjective. The fixed quantity of light is measured below in *lumens*. Lumens is a measurement of the amount of fluid present, just as gallons are a measurement of the amount of fluid present.

Direct Light Pollution. Based upon the average vertical aiming angle of 16 degrees below horizontal for all floodlights, the quantity of direct light pollution is determined by the product of light emitted above a horizontal plane coincident with the floodlight times the total number of floodlights. Each floodlight projects

19,134 lumens above the floodlight's 15 degree horizontal photometric plane. With a total of 360 floodlights, the total contribution of direct light pollution is approximately 6.9 million lumens.

Indirect Light Pollution. The quantity of indirect light pollution (reflected light from the ground) is determined by the product of light emitted below a horizontal plane coincident with the floodlight, multiplied by the total number of floodlights. This product is then multiplied by the ground reflectance factor (the percentage of light which reflects off of the field and stands). An estimated ground reflectance factor of 10 percent was used for this evaluation. An average vertical aiming angle of 16 degrees below horizontal was used for all floodlights consistent with that used for the direct light pollution evaluation. Each floodlight projects 88,230 lumens below the floodlight's 15 degree horizontal photometric plane. With a total of 360 floodlights, and a ground reflectance of 10 percent, the total contribution of indirect light pollution is approximately 3.2 million lumens.

Under existing conditions, the direct and indirect light pollution components yields a total light pollution basis of 10.1 million lumens.

#### **ENVIRONMENTAL IMPACTS**

#### Thresholds of Significance

The California State CEQA Guidelines requires the assessment of aesthetic impacts to consider whether a project would create a significant impact. An impact to light and glare is considered to be significant if the project would result in a new source of substantial light or glare which would adversely affect day or nighttime views in the area.

#### **Project Impacts**

As discussed in Section III.C of this document, Project Characteristics, the Coliseum is currently limited to hosting 25 weekend or holiday events per year (for events exceeding 25,000 attendees), and will continue to be limited to this number with the NFL as a new permanent tenant. The field lighting, then, is assumed to be in operation for the same number of events under the Proposed Project as under the existing project.

#### Floodlight Description

A detailed lighting system has not yet been designed for the Coliseum. However, the Proposed Project includes the incorporation of a tensile fabric roof structure along the north and south sides of the

The 10 percent factor was derived using values from Figure 7-28 of the <u>IES Lighting Handbook (1984 Reference Volume)</u>.

stadium and the field will be illuminated by floodlights attached to this roof. Figure V.A.2-1, provides an illustrative rendering of the Coliseum while lit. The effects of the lighting system, located under the roof structure can be noted. Also visible is the ability of the roof structure to shield light from spilling to adjacent areas, and instead directing lighting toward the field. The new lighting system will improve upon the existing pole mounted lights by including directional light and glare control in the design criteria. The lighting fixtures will have a narrow beam distribution and will be mounted high enough to eliminate shallow aiming angles that can cause light to "spill" out of the stadium. Lighting will be employed in a manner that will not increase the reflectivity of the site.

Because the floodlight design of the Proposed Project directs lighting more accurately than the exisiting lighting system, a significant beneficial reduction in the amount of light projected onto adjacent properties would result as compared to existing conditions. Thus, the *magnitude* of direct light and glare from the field lighting will be reduced significantly with the Proposed Project. The reduction is primarily the result of the steeper floodlight aiming angles in the proposed scheme as compared with existing conditions.

Affected Area. Land uses that could be adversely impacted by glare and light trespass would be predominantly residential dwelling units in the area generally bounded by Martin Luther King Jr. Boulevard to the north, Flower Street to the east, Vernon Avenue to the south, and Vermont Avenue to the west. However, because of the steeper floodlight angles, and the directed field lighting, a smaller area is expected to be impacted by the project, and the magnitude of the brightness, or direct glare, would be reduced as compared to existing conditions.

#### **Anticipated Light Pollution**

Total light pollution would be slightly reduced in the proposed scheme, as compared to existing conditions. The reduction described herein results from a significant reduction in light pollution from individual floodlights because of their steeper aiming angles.

Currently, the Coliseum is lit by field lights located along the rim of the stadium, directed toward the field. The field lights are not designed to prevent light spill outside of the stadium, as are those in the Proposed Project's preliminary design. The Proposed Project will further reduce existing light and glare impacts through the incorporation of lighting located within the roof structures and directed toward the field. As such, the project's impact on light and glare will be less than significant.

100 A



No Scale

Source: NBBJ Sports & Entertainment, May 2003.



CHRISTOPHER A. JOSEPH & ASSOCIATES Environmental Planning and Research

Figure V.A.2-1
Illustration of the Proposed Project

#### **CUMULATIVE IMPACTS**

Development of the Proposed Project, in conjunction with the related projects, would cumulatively contribute to light and glare impacts in and around the Exposition Park area. While each related project's light and glare impacts would be evaluated by either the City of Los Angeles, State agencies or stakeholders in Exposition Park, or other agencies, as appropriate in accordance with applicable regulations, the cumulative effects of this development would be experienced as modifications to the light levels in the general vicinity in which each particular project is located. However, no significant alteration to light or glare impacts would be expected to occur in the immediate vicinity. Since the Proposed Project will reduce light and glare impacts from existing levels, the project will not contribute to significant cumulative light and glare impacts.

#### **MITIGATION MEASURES**

The project is not anticipated to result in any significant light or glare impacts. Therefore, no mitigation measures are required.

# V. ENVIRONMENTAL IMPACT ANALYSIS B. AIR QUALITY

#### ENVIRONMENTAL SETTING

#### **Regulatory Setting**

Federal Clean Air Act

Air quality in the United States is governed by the Federal Clean Air Act (CAA). The CAA is administered by the United States Environmental Protection Agency (USEPA). The CAA and its subsequent amendments provide the framework for all pertinent organizations to protect air quality. The USEPA's principal responsibilities under the CAA, as amended in 1990, include:

- setting National Ambient Air Quality Standards (NAAQS) for pollutants considered harmful to the public health and environment;
- ensuring the air quality standards are met or attained (in cooperation with the States) through national standards and strategies to control air emission standards from sources;
- ensuring the sources of toxic air pollutants are well controlled; and
- monitoring the effectiveness of the program.

In administering the CAA, the USEPA has set national air quality standards for six common pollutants (also referred to as "criteria" pollutants). These pollutants include carbon monoxide (CO), ozone (O<sub>3</sub>), nitrogen dioxide (NO<sub>2</sub>), sulfur dioxide (SO<sub>2</sub>), respirable particulate matter (PM<sub>10</sub>), and lead (Pb). A summary of these criteria pollutants and their adverse health effects is provided below:

#### Carbon Monoxide (CO)

Carbon monoxide (CO) is a colorless and odorless gas. CO interferes with the transfer of oxygen to the brain and can cause dizziness, fatigue, and can impair central nervous system functions. CO is emitted almost exclusively from the incomplete combustion of fossil fuels. In urban areas, CO is emitted by motor vehicles, power plants, refineries, industrial boilers, ships, aircraft, and trains. Automobile exhausts release most of the CO in urban areas. CO is a non-reactive air pollutant that dissipates relatively quickly, so ambient concentrations generally follow the spatial and temporal distributions of vehicular traffic. CO concentrations are

The Clean Air Act was first enacted in 1955 and was subsequently amended in 1963, 1965, 1967, 1970, 1977, and 1990.

influenced by local meteorological conditions—primarily wind speed, topography, and atmospheric stability.

#### Ozone (O<sub>3</sub>)

Ozone is a colorless toxic gas and is the chief component of urban smog. Ozone enters the blood stream and interferes with the transfer of oxygen, depriving sensitive tissues in the heart and brain of oxygen. It also inhibits the growth of vegetation. Although ozone is not directly emitted, it forms in the atmosphere through a chemical reaction between reactive organic gas (ROG) and nitrogen oxides (NO<sub>x</sub>) under sunlight. Ozone is present in relatively high concentrations within the South Coast Air Basin, and the damaging effects of photochemical smog are generally related to the concentration of ozone. Meteorology and terrain play major roles in ozone formation. Ideal conditions occur during summer and early autumn, on days with low wind speeds or stagnant air, warm temperatures, and cloudless skies. The greatest source of smog-producing gases is the automobile.

#### Nitrogen Dioxide (NO<sub>2</sub>)

Nitrogen dioxide is a brownish gas that is formed through a reaction between nitric oxide (NO) and atmospheric oxygen.  $NO_2$  irritates the lungs and can cause breathing difficulties at high concentrations. NO and  $NO_2$  are collectively referred to as nitrogen oxides ( $NO_x$ ) and are major contributors to ozone formation.  $NO_2$  also contributes to the formation of particulate matter (see discussion below). At atmospheric concentration,  $NO_2$  is only potentially irritating. In high concentrations, however, the result is a brownish-red cast to the atmosphere and reduced visibility. There is some indication of a relationship between  $NO_2$  and chronic pulmonary fibrosis. Some increase in bronchitis in children (two and three years old) has also been observed at concentrations below 0.3 parts per million (ppm).

#### Sulfur Dioxide (SO<sub>2</sub>)

Sulfur dioxide (SO<sub>2</sub>) is a product of high-sulfur fuel combustion. Main sources of SO<sub>2</sub> are coal and oil used in power stations, in industries, and for domestic heating. Industrial chemical manufacturing is another source of SO<sub>2</sub>. SO<sub>2</sub> is an irritant gas that attacks the throat and lungs. It can cause acute respiratory symptoms and diminished ventilator function in children. SO<sub>2</sub> can also cause plant leaves to turn yellow, and can erode iron and steel. In recent years, SO<sub>2</sub> concentrations have been reduced by the increasingly stringent controls placed on stationary source emissions of SO<sub>2</sub> and limits on the sulfur content of fuels. SO<sub>2</sub> concentrations have been reduced to levels well below the state and national standards, but further reductions in emissions are needed to attain compliance with standards for sulfates and PM<sub>10</sub>, of which SO<sub>2</sub> is a contributor.

Ž.

# Suspended Particulate Matter (PM<sub>10</sub> and PM<sub>2.5</sub>)

Particulate matter pollution consists of very small liquid and solid particles floating in the air. which can include smoke, soot, dust, salts, acids, and metals. Particulate matter also forms when gases emitted from industries and motor vehicles undergo chemical reactions in the atmosphere. PM<sub>10</sub> and PM<sub>2.5</sub> represent fractions of particulate matter. Respirable particulate matter (PM<sub>10</sub>) refers to particulate matter less than 10 microns in diameter. Fine particulate matter (PM<sub>2.5</sub>) refers to particulate matter that is 2.5 microns or less in diameter. Major sources of PM<sub>10</sub> include motor vehicles; wood-burning stoves and fireplaces; dust from construction, landfills, and agriculture; wildfires and brush/waste burning, industrial sources, windblown dust from open lands; and atmospheric chemical and photochemical reactions. PM<sub>2.5</sub> results from fuel combustion (from motor vehicles, power generation, industrial facilities), residential fireplaces, and wood stoves. In addition, PM<sub>2.5</sub> can be formed in the atmosphere from gases such as sulfur dioxide, nitrogen oxides, and volatile organic compounds. PM<sub>10</sub> and PM<sub>2.5</sub> pose a greater health risk than larger-size particles. When inhaled, these tiny particles can penetrate the human respiratory system's natural defenses and damage the respiratory tract. PM<sub>10</sub> and PM<sub>2.5</sub> can increase the number and severity of asthma attacks, cause or aggravate bronchitis and other lung diseases, and reduce the body's ability to fight infections. Suspended particulates also damage and discolor surfaces on which they settle, as well as produce haze and reduce regional visibility.

#### Lead (Pb)

Lead is a metal found naturally in the environment as well as in manufactured products. The major sources of lead emissions have historically been motor vehicles (such as cars and trucks) and industrial sources. Due to the phase-out of leaded gasoline, metals processing is the major source of lead emissions to the air today. The South Coast Air Basin is currently in compliance with the state and federal standards for lead. Thus, it is not analyzed in this EIR.

The sections of the CAA that most apply to the Proposed Project include Title I (Non-Attainment Provisions) and Title II (Mobile Source Provisions). Title I provisions were established with the goal of attaining the National Ambient Air Quality Standards for the above-mentioned criteria pollutants. The CAA established two types of National Ambient Air Quality Standards: "Primary" standards, which are designed to establish limits to protect public health, including the health of "sensitive" populations such as asthmatics, children, and the elderly; and "Secondary" standards, which set limits to protect public welfare, including protection against decreased visibility and damage to animals, crops, vegetation, and buildings. The Ambient Air Quality Standards are included in Table V.B-1. Title II Provisions were established with the goal of regulating mobile source emissions. These provisions require the use of cleaner-burning gasoline and other cleaner-burning fuels such as methanol and natural gas.

Table V.B-1
Ambient Air Quality Standards

|                                                         |                                                                                                                              | National S                                     |                                              |                                                                                                         |  |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------|--|
| Air Pollutant                                           | State Standard                                                                                                               | Primary                                        | Secondary                                    | Health Effect                                                                                           |  |
| Ozone<br>(O <sub>3</sub> )                              | 0.09 ppm, 1-hr. avg.                                                                                                         | 0.12 ppm, 1-hr. avg.<br>0.08 ppm, 8-hr. avg.   | 0.12 ppm, 1-hr. avg.<br>0.08 ppm, 8-hr. avg. | Aggravation of respiratory<br>and cardiovascular<br>diseases; impairment of<br>cardiopulmonary function |  |
| Carbon<br>Monoxide<br>(CO)                              | 9.0 ppm, 8-hr. avg.<br>20 ppm. 1-hr. avg.                                                                                    | 9 ppm, 8-hr. avg.<br>35 ppm, 1-hr. avg.        | None                                         | Aggravation of respiratory diseases (asthma, emphysema)                                                 |  |
| Nitrogen<br>Dioxide<br>(NO <sub>2</sub> )               | 0.25 ppm, 1-hr. avg.                                                                                                         | 0.0534 ppm, annual avg.                        | 0.0534 ppm, annual avg.                      | Aggravation of respiratory illness                                                                      |  |
| Sulfur Dioxide (SO <sub>2</sub> )                       | .25 ppm 1-hr.<br>0.04 ppm, 24-hr. avg.                                                                                       | 0.03 ppm, annual avg.<br>0.14 ppm, 24-hr. avg. | 0.50 ppm, 3-hr. avg.                         | Aggravation of respiratory diseases (asthma, emphysema)                                                 |  |
| Respirable<br>Particulate<br>Matter (PM <sub>10</sub> ) | 50 g/m³, 24-hr. avg.<br>20 g/m³ AGM¹                                                                                         | 150 g/m³, 24-hr. avg.<br>50 g/m³ AAM           | 150 g/m³, 24-hr.<br>avg.;<br>50 g/m³ AAM     | Increased cough and chest discomfort; reduced lung function; aggravation of                             |  |
| Fine Particulate<br>Matter (PM <sub>2.5</sub> )         | No 24-hr, State std.<br>12 g/m <sup>3</sup> AGM <sup>1</sup>                                                                 | 65 g/m³, 24-hr. avg.<br>15 g/m³ AAM            | 65 g/m³, 24-hr. avg.<br>15 g/m³ AAM          | respiratory and cardio-<br>respiratory diseases                                                         |  |
| Sulfates (SO <sub>4</sub> <sup>2-</sup> )               | 25 g/m³, 24-hr. avg.                                                                                                         |                                                |                                              | Increased morbidity and mortality in conjunction with other pollutants                                  |  |
| Lead<br>(Pb)                                            | 1.5 g/m³, monthly avg.                                                                                                       | 1.5 g/m³, calendar<br>quarter                  | 1.5 g/m³                                     | Impairment of blood and<br>nerve function; behavioral<br>and hearing problems in<br>children            |  |
| Hydrogen<br>Sulfide<br>(H <sub>2</sub> S)               | 0.03 ppm, 1-hr. avg.                                                                                                         |                                                |                                              | Toxic at very high concentrations                                                                       |  |
| Vinyl Chloride                                          | 0.010 ppm, 24-hr. avg.                                                                                                       |                                                |                                              | Carcinogenic                                                                                            |  |
| Visibility-<br>Reducing<br>Particles                    | In sufficient amount to reduce prevailing visibility to less than 10 miles at relative humidity less than 70%, 1 observation |                                                |                                              |                                                                                                         |  |

Will become effective after approval by the Office of Administrative Law, expected in May 2003.

Notes:

 $\overline{ppm} = parts \ per \ million \ by \ volume$  $g/m^3 = micrograms \ per \ cubic \ meter$ 

AAM = annual arithmetic mean

AGM = annual geometric mean

Source: California Air Resources Board, March 2003.

# California Clean Air Act

In addition to being subject to the requirements of the CAA, air quality in California is governed by more stringent regulations under the California Clean Air Act (CCAA). The CCAA is administered by the California Air Resources Board (CARB) at the state level and by the Air Quality Management Districts at the regional and local levels. The CARB divides the State into air basins that share similar meteorological and topographical features. The City of Los Angeles is in the South Coast Air Basin (SCAB), a 6,600-square-mile area comprised of Orange County and the non-desert portions of Los Angeles, Riverside, and San Bernardino counties. The SCAB's climate and topography are highly conducive to the formation and transport of air pollution. Peak ozone concentrations in the SCAB over the last two decades have occurred at the base of the mountains around Azusa and Glendora in Los Angeles County and at Crestline in the mountains above the City of San Bernardino. Both peak ozone concentrations and the number of days the standards were exceeded decreased everywhere in the SCAB throughout the 1990s. Carbon monoxide concentrations also dropped significantly throughout the SCAB as a result of strict new emission controls and reformulated gasoline sold in winter months.

#### **Regional Conditions**

The South Coast Air Quality Management District (SCAQMD) has divided the South Coast Air Basin into 37 Source Receptor Areas, each area is represented by data collected at an air quality monitoring station operated by the SCAQMD. The Coliseum is located within Source Receptor Area Number 1 (Central Los Angeles). This Receptor Area covers approximately 110 square miles and is roughly bounded by Mulholland Drive on the north, the Long Beach Freeway (Interstate 710) on the east, Slauson Avenue on the south and La Cienega Boulevard on the west. The monitoring station for the area is located at 1630 North Main Street. This location is approximately five miles northeast of the Coliseum.

Air quality concerns in the South Coast Basin typically focus on changes in concentration levels of CO, NO<sub>2</sub>, SO<sub>2</sub>, particulates (PM<sub>10</sub>), and reactive organic gases (ROG). Potential changes in carbon monoxide levels are one of the best relative indicators of potential air quality impacts because carbon monoxide is the pollutant that is most sensitive to mobile sources such as vehicular traffic. Worst-case carbon monoxide concentrations typically occur at night and during early morning hours during the fall and winter when temperature inversions trap carbon monoxide close to the ground. As the sun warms, the inversion dissipates and the carbon monoxide can disperse. Events at the Coliseum typically occur in the afternoon or evenings. Thus, there is generally no time when Coliseum events would occur simultaneously with worst-case meteorological conditions that contribute to the highest carbon monoxide concentrations. In addition, the highest attendance Coliseum events (USC football games) typically occur on weekends. According to sample daily pollution indices prepared by the SCAQMD, carbon monoxide concentrations on Saturdays and Sundays for the Los Angeles area are about 75 percent of weekday concentrations.

Historical air quality monitoring data from the North Main Street station are shown in Table V.B-2. As indicated in this table, the highest carbon monoxide concentration recorded in 2001 was 6 parts per million (ppm) for the one-hour period and 4.57 ppm for the 8-hour period. The eight-hour federal standard of 9.5 ppm and state standard of 9 ppm were not exceeded at all in the year 2001. Monitoring data for 2001 recorded for other pollutants show that the state ozone standard was exceeded eight days. The particulate  $(PM_{10})$  standard was exceeded 20 days in 2001.

#### Local Meteorology

Near downtown Los Angeles, winds blow primarily from the southwest (30%) and south (13%), with lower frequencies for adjacent wind sectors (about 10% for west and for southeast, and about 8% for east), and still lower frequencies for opposing wind sectors (5% each for northwest and for north). Nocturnal drainage winds, especially in the cooler months, blow from the northeast, as do the occasional Santa Ana winds. The strongest average winds are from the west-southwest (7.7 miles per hour (mph), annual average) and southwest (6.9 mph), except during strong occasional Santa Anas, the lightest winds are normally from the north-northeast (3.6 mph).<sup>2</sup>

#### **Sensitive Receptors**

For purposes of this air quality impact assessment, air quality-sensitive locations are defined as areas where people may be exposed to pollution concentrations over a relatively long period of time prior to and following an event at the Coliseum. Identified sensitive receptors near the Project Site include:

- The Child Care Center and Senior Center at the Exposition Park Intergenerational Community Center;
- Passive recreational and open space areas in Exposition Park north and east of the Coliseum;
- Los Angeles County and State Museums in Exposition Park, including the Rose Garden;
- Multi-family housing located on the east side of Figueroa Street north of 39<sup>th</sup> Street;
- Multi-family housing located on the south side of Martin Luther King Jr. Boulevard between Figueroa Street and Menlo Avenue;
- Multi-family housing located on the south side of Martin Luther King Jr. Boulevard between Menlo Avenue and Vermont Avenue;

<sup>&</sup>lt;sup>2</sup> Meteorological data taken from California Department of Water Resources, 1978, Winds in California, Central Los Angeles SCAQMD Monitoring Station, 1956-76.

Table V.B-2
Air Quality Data Source Receptor Area 1- North Main Street Monitoring Station

| Pollutant                                               | California<br>Standard<br>(ppm) <sup>a</sup> | National<br>Standard<br>(ppm) | Year         | Maximum      | Days State<br>Standard<br>Exceeded |
|---------------------------------------------------------|----------------------------------------------|-------------------------------|--------------|--------------|------------------------------------|
|                                                         | 0.00                                         | 0.12                          | 1998         | 0.15         | 17                                 |
| Ozone                                                   | 0.09                                         | 0.12                          | 1999<br>2000 | 0.13<br>0.14 | 13                                 |
| TO THE WORLD TO THE | (1 hour)                                     | (1 hour)                      | 2000         | 0.14         | 8<br>8                             |
|                                                         | _                                            |                               | 1998         | 126          | ***                                |
| Particulate (PM <sub>10</sub> ) <sup>b</sup>            | 50 g/m <sup>3 c</sup>                        | $150 \text{ g/m}^3$           | 1999         | 88           | 19                                 |
| Tarriculate (Tivi <sub>10</sub> )                       | (24 hours)                                   | (24 hours)                    | 2000         | 80           | 15                                 |
|                                                         |                                              |                               | 2001         | 97           | 20                                 |
|                                                         |                                              | 150 g/m <sup>3</sup>          | 1998         | 80           | 10                                 |
| Total Suspended                                         | No State                                     | (24 hours)                    | 1999         | 138          | _                                  |
| Particulate <sup>d</sup>                                | Standard                                     | $260 \text{ g/m}^3$           | 2000         | 127          | -                                  |
|                                                         |                                              | (24 hours)                    | 2001         | 131          | -                                  |
|                                                         |                                              |                               | 1998         | 8            | 0                                  |
| Carbon Monoxide                                         | 20 ppm                                       | 35 ppm                        | 1999         | 0.13         | 13                                 |
| Carbon Monoxide                                         | (1 hour)                                     | (1 hour)                      | 2000         | 7            | 0                                  |
|                                                         |                                              |                               | 2001         | 6            | 0                                  |
|                                                         |                                              |                               | 1998         | 6.1          | 0                                  |
| Carbon Monoxide                                         | 9.0 ppm<br>(8 hours)                         | 9.0 ppm                       | 1999         | 0.11         | 13                                 |
| Carbon Wolloxide                                        |                                              | (8 hours)                     | 2000         | 6            | 0                                  |
|                                                         |                                              |                               | 2001         | 4.57         | 0                                  |
|                                                         |                                              |                               | 1998         | 0.17         | 0                                  |
| Nitrogen Dioxide                                        | 0.25 ppm                                     | 0.0534 ppm                    | 1999         | 0.21         | 0                                  |
| Minogen Dioxide                                         | (1 hour)                                     | (annual average)              | 2000         | 0.16         | 0                                  |
|                                                         |                                              |                               | 2001         | 0.14         |                                    |
|                                                         |                                              |                               | 1998         | 10.6         | 0                                  |
| Sulfate                                                 | $25 \text{ g/m}^3$                           | No Federal                    | 1999         | 17.9         | 0                                  |
| Sullate                                                 | 23 g/m                                       | Standard                      | 2000         | 16.4         | 0                                  |
|                                                         | **************************************       |                               | 2001         | 15.9         | 0                                  |
|                                                         | $1.5 \text{ g/m}^3$                          | 1.5                           | 1998         | 0.06         | 0                                  |
| Lead                                                    | (monthly                                     | (quarterly                    | 1999         | 0.13         | -                                  |
| LAGU                                                    | average)                                     | average)                      | 2000         | 0.06         | -                                  |
|                                                         | average/                                     | a vorago)                     | 2001         | 0.06         |                                    |

<sup>&</sup>lt;sup>a</sup> Parts per million.

Source: South Coast Air Quality Management District, Air Quality Data, 1998-2001.

Particulate standard for California was changed in 1984 to include only matter with an aerodynamic diameter of 10 micrometers or less (PM10). There was no State standard before 1987 for PM10.

<sup>&</sup>lt;sup>c</sup> Micrograms per cubic meter.

State standard for 1984 was 100 g/m³. For the federal standard the first number refers to the 150 g/m³ standard and the second number refers to the 260 g/m³ standard.

Ž.

- USC Parkside Dormitories located on the north side of Exposition Boulevard near Vermont Avenue;
- The Los Angeles Child Guidance Center on the west side of Vermont between 39<sup>th</sup> Street and 38<sup>th</sup> Street.

# **Existing Coliseum-Related Emissions**

A key characteristic of the Coliseum is that it generates a substantial number of vehicle trips on an average of 34 days a year that generates high levels of traffic congestion for short periods prior to and following events. The attendance level and associated vehicle trips generated by specific Coliseum events varies significantly from an average of approximately 8,000 for relatively small special events to approximately 87,944 for USC football games. Due to the broad and uncertain range of events that can be held at the Coliseum it is impossible to accurately estimate the level of daily air pollution associated with existing or future Coliseum operations with any degree of certainty. This task is further complicated by the fact that the SCAQMD's CEQA thresholds are based on daily emission rates, which do not accurately assess the true air quality impacts of a regional entertainment venue such as the Coliseum. Theoretically, an assessment of the worst-case air pollution impacts of a Coliseum event would be based on the maximum seating capacity for the venue. In this regard, the Proposed Project would result in a net beneficial air quality impact as the Proposed Project would decrease the maximum seating capacity of the Coliseum by approximately 14,500 seats. Based on a conservative average vehicle occupancy (AVO) of 2.7, the Proposed Project would decrease the amount of traffic that would be generated by a sold out event by approximately 5,370 vehicles. This would result in a decrease in the amount of air pollution emissions that would be generated for any single event. This methodology, however, does not account for the increased air emissions that would be generated by an increase in the number of events scheduled throughout any given year. It also does not account for the fact that the attendance levels at the Coliseum have rarely approached the current maximum capacity.

To provide a representative estimate of the amount of air pollution that would be generated under the Proposed Project, Table V.B-3 provides an estimate of daily pollutant emissions for two scenarios, (1) an event reaching the maximum capacity of 92,500 persons, and (2) an event with an average football event attendance level of approximately 48,775 persons. For all pollutants, the projected air pollutant emissions associated with existing operations exceed SCAQMD threshold criteria levels, (see Thresholds of Significance, below).

Table V.B-3
Existing Coliseum Mobile Emissions By Event Type

|                                                         | Pollutant Emissions a (lbs/day) |                 |          |                 |                  |  |  |
|---------------------------------------------------------|---------------------------------|-----------------|----------|-----------------|------------------|--|--|
| Event Profile                                           | ROG                             | NO <sub>x</sub> | СО       | SO <sub>2</sub> | PM <sub>10</sub> |  |  |
| 92,500 (max. seating capacity)                          | 2,025.09                        | 309.66          | 3,378.68 | 2.63            | 241.74           |  |  |
| 48,775 (Ave. attendance for current USC Football games) | 1,066.20                        | 161.11          | 1,757.81 | 1.37            | 125.77           |  |  |

Emissions calculated by the California Air Resources Board's Urbemis 2002 Microcomputer model. Model assumed an average 35 mile round trip for event patrons. Trip generation assumed to be 0.296 trips per seat.

Source: Christopher A. Joseph & Associates, 2003.

#### **ENVIRONMENTAL IMPACTS**

#### Thresholds of Significance

Appendix G of the California CEQA Guidelines offers the following five tests of air quality impact significance. A project would have a potentially significant impact if it:

- a) Conflicts with or obstructs implementation of the applicable air quality plan,
- b) Violates any air quality standard or contributes substantially to an existing or projected air quality violation,
- c) Results in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors),
- d) Exposes sensitive receptors to substantial pollutant concentrations,
- e) Creates objectionable odors affecting a substantial number of people.

Air quality impacts are considered significant if they cause clean air standards to be violated where they are currently met, or if they measurably contribute to an existing violation of standards. Any substantial emission of air contaminants for which there is no safe exposure, or nuisance emissions such as dust or odors, would also be considered a significant impact.

Many pollutants require further chemical transformation before they reach their most harmful form. Impact quantification on a single-project basis is therefore not feasible. To overcome this difficulty, the SCAQMD has designated significant emissions levels as surrogates for evaluating impact significance

Table V.B-4
SCAQMD Emissions Significance Thresholds (lbs/day)

| Pollutant        | Construction | Operation |
|------------------|--------------|-----------|
| ROG              | 75           | 55        |
| NOx              | 100          | 55        |
| СО               | 550          | 550       |
| SOx              | 150          | 150       |
| PM <sub>10</sub> | 150          | 150       |

independent of chemical transformation processes. As shown in Table V.B-4, projects in the SCAB with daily emissions that exceed any of the following emission thresholds are recommended by the SCAQMD to be considered significant. These threshold levels have been used in analyzing the air quality impact of the Proposed Project's implementation.

#### **Project Impacts**

#### Construction Emissions

Construction-related air quality emissions would be generally concentrated during the initial 18-20 months of construction. Construction of the Proposed Project would generate pollution emissions from the following activities: (1) demolition activities; (2) grading operations; (3) travel by construction workers to and from the Project Site; (4) delivery and hauling of construction materials and supplies to and from the Project Site; (5) fuel combustion from on-site construction equipment; and (6) the application of architectural coatings and other building materials that release reactive organic compounds (ROC).

Site preparation, clearing, grading, excavation and heavy equipment/truck use on unpaved surfaces would create large quantities of dust during the construction process. Earthwork would be required with respect to changes to the playing field, and the replacement of seating currently constructed on engineered earthberms. The SCAQMD, in its 1993 "CEQA Air Quality Handbook," estimates daily PM<sub>10</sub> emissions during construction to be 26.4 pounds per day per acre (lbs/day/acre) disturbed when standard dust control procedures required by SCAQMD Rule 403 are used. Rule 403 was subsequently strengthened to require enhanced dust control beyond regulatory minimums. Enhanced dust control procedures can further reduce the average daily PM<sub>10</sub> emission rate. Compliance with the SCAQMD Rule 403 (fugitive dust) can reduce PM<sub>10</sub> emissions to roughly 10.2 (lbs/day/acre) with the use of best available control methods (BACMs) for fugitive dust. The Project Site occupies an approximate 27.4-

acre parcel of land within Exposition Park.<sup>3</sup> Based on the above fugitive dust generation factors, and assuming earthwork activities include disturbance to the entire Project Site, such activities would generate approximately 279.48 lbs/day of fugitive dust with the use of BACMs. This is above the SCAQMD's threshold criteria of 150 lbs/day; thus the Proposed Project's fugitive dust emissions would result in a significant impact. The Environmental Protection Agency (EPA) indicates that the primary impact distance from large diameter construction dust is less than 100 feet. Since the perimeter of the Project Site is more than 500 feet from the nearest off-site sensitive receptor area (i.e., the Child Care Center and Senior Center at EPICC) dust emissions would likely be localized on-site and would not affect neighboring land uses. Nevertheless, since the PM<sub>10</sub> emissions will exceed the threshold criteria, daily PM<sub>10</sub> emissions would be considered significant during the initial earthwork and building pad excavation/preparation period.

Various forms of tractors and diesel equipment will be used during the demolition, excavation and site preparation phase of the Proposed Project. Table V.B-5 lists the equipment and associated pollutant emissions that are anticipated to be generated by the Proposed Project. As can be seen in Table V.B-5, the construction emissions would not exceed SCAQMD thresholds for ROG or  $SO_x$  criteria pollutants. SCAQMD thresholds would be exceeded for  $NO_x$  CO, and  $PM_{10}$ . These exceedances would be considered significant.

#### **Operational Emissions**

Table V.B-6 provides a summary of the operational future mobile emissions for the Proposed Project. As can be seen, future operational emissions are estimated based on the proposed maximum seating capacity of 78,000 persons. As can be seen in Table V.B-6, mobile source emissions would exceed SCAQMD thresholds for ROG, NO<sub>x</sub>, CO and PM<sub>10</sub> emissions on days when major events are held. The threshold would not be exceeded for SO<sub>x</sub> emissions. While the table indicates that the amount of air pollution generated for any one event would be reduced as compared to the current conditions, it does not accurately represent the increase in up to 12 events per year that would occur under the Proposed Project. This is largely a function of the standardized SCAQMD methodology and the fact that the project is unique and does not operate under a conventional 365 day schedule. Under the proposed project, up to 46 major events would be anticipated each year. Air emissions on the level projected would only be generated on days when major events are scheduled.

While the entire 27.4-acre area will not be graded over, the air quality impacts are based on the entire area of the Project Site as defined in Section III, Project Description. It should be noted that the SCAQMD methodology does not account for depth of excavation in estimating the impacts of earthwork and grading operations. Thus, utilizing the total area of the Project Site in this methodology provides a worst-case analytical assumption of the project's construction emissions.

#### **Local Carbon Monoxide Concentrations**

The Proposed Project will not include any new or expanded parking areas. Congested traffic conditions on roadways, surface parking lots and parking structures would continue to create high concentrations of carbon monoxide concentrations in the hour preceding and following events. Carbon monoxide concentrations would be found adjacent to slow-moving streets and adjacent to parking lots. Motorists waiting in queues, pedestrians walking along sidewalks, and area residents would each be subject to the adverse effects of pollution.

Table V.B-5
Maximum Daily Construction Emissions<sup>a</sup>

| Source                                | ROG   | NO <sub>x</sub> | CO     | SO <sub>2</sub> | PM <sub>10</sub>  |
|---------------------------------------|-------|-----------------|--------|-----------------|-------------------|
| Phase 1 Demolition Activities         |       |                 |        |                 |                   |
| Fugitive Dust                         |       |                 |        |                 | 0.94 <sup>b</sup> |
| Off-Road Diesel                       | 26.67 | 196.71          | 203.09 |                 | 8.71              |
| On-Road Diesel                        | 0.28  | 6.37            | 1.06   | 0.09            | 0.15              |
| Worker Trips                          | 0.37  | 0.70            | 7.46   | 0.00            | 0.03              |
| Maximum lbs/day                       | 27.32 | 203.788         | 211.61 | 0.09            | 9.83              |
| Phase 2 Site Grading Emissions        |       |                 |        |                 |                   |
| Fugitive Dust                         |       |                 |        |                 | 191.00            |
| Off-Road Diesel                       | 37.27 | 286.80          | 274.72 | ***             | 12.96             |
| On-Road Diesel                        | 19.30 | 351.45          | 72.15  | 5.88            | 10.23             |
| Worker Trips                          | 0.14  | 0.06            | 1.67   | 0.00            | 0.02              |
| Maximum lbs/day                       | 56.71 | 638.31          | 348.54 | 5.88            | 214.21            |
| Phase 3 – Building Construction       |       |                 |        |                 |                   |
| Bldg. Const Off-Road Diesel           | 19.55 | 145.59          | 146.86 |                 | 6.29              |
| Bldg. Const Worker Trips              | 0.00  | 0.00            | 0.00   | 0.00            | 0.00              |
| Architectural Coatings - Off-Gas      | 0.00  |                 |        |                 |                   |
| Architectural Coatings - Worker Trips | 0.00  | 0.00            | 0.00   | 0.00            | 0.00              |
| Maximum lbs/day                       | 19.55 | 145.59          | 146.86 | 0.00            | 6.29              |
| Total Construction Emissions          | 56.71 | 638.31          | 348.54 | 5.88            | 214.21            |
| SCAQMD Thresholds                     | 550   | 75              | 100    | 150             | 150               |
| Significant Impact? (Yes/No)          | NO    | YES             | YES    | NO              | YES               |

<sup>&</sup>lt;sup>a</sup> Based on a 20 month construction schedule with a total site disturbance of 19.5 acres.

Source: Christopher A. Joseph & Associates, 2003.

b All emissions are projected without the implementation of mitigation measures.

Pollutant Emissions a (lbs/day) Maximum **Event Type** Attendance ROG NO. CO SO,  $PM_{10}$ 78.000 1.705.04 257,64 2,811.06 2.19 Sold Out Event (78,000 seats) 201.13 **SCAQMD THRESHOLDS** 55 55 550 150 150 SIGNIFICANT IMPACT?(Yes/No) Yes Yes Yes No Yes

Table V.B-6
Future Coliseum Mobile Emissions by Event

Source: Christopher A. Joseph & Associates, 2003.

The severity of the potential impact would be a direct function of the level of attendance and resulting numbers of vehicles attracted to the Coliseum vicinity. The Coliseum currently operates with a maximum seating capacity of 92,500 seats. Based on the assumption of a sold-out event and an average vehicle ridership (AVR) of 2.7 persons per vehicle, the total number of vehicles that can be generated to the Coliseum during any event is approximately 34,259 vehicles. The Proposed Project will reduce the maximum seating capacity to 78,000 seats. As a result, the total number of vehicle trips and parking demands will be reduced under the Proposed Project. The net effect would be a reduction in the existing CO emissions. Consequently, local CO concentrations would be reduced as compared to existing conditions.

The parking demand for existing events is currently accommodated with parking lots within and around Exposition Park and the USC campus, with overflow parking being accommodated in the surrounding off-site areas. Under the Proposed Project, traffic accessing or exiting the Coliseum would continue to utilize the existing routes and facilities that are currently used for Coliseum events, with the exception of a new 2,210-space parking structure that is currently under construction within Exposition Park (California Science Center and the California African American Museum Parking Structure). While this structure is not directly associated with the Coliseum, it will be available to all Exposition Park uses and to Coliseum patrons on event days. The utilization of this structure, in addition to the other existing lots that are currently used for Coliseum events, would result in a net improvement over existing conditions with respect to CO concentrations. For one, it is anticipated that the use of the parking structure would improve traffic flow around Exposition Park as more on-site parking spaces would be made available. This would reduce the number of drive-by trips generated by people looking for parking spaces. Secondly, this structure will be equipped with adequate ventilation in accordance

Emissions calculated by the California Air Resource Board's Urbemis 2002 Model assumed 35 mile round trip for Coliseum patrons. Trip generation assumed to be 0.296 trips per person.

with the Uniform Building Code requirements.<sup>4</sup> Third, the reduction in the number of vehicles that could potentially be generated by a sold-out event would further reduce CO emissions as compares to existing conditions. As a result, the Proposed Project would result in a beneficial impact on localized CO emissions on a per event basis.

When compared to SCAQMD threshold criteria or to California Ambient Air Quality Standards, carbon monoxide emissions and/or concentrations from Coliseum events would continue to exceed these thresholds and the one-hour standard and would be considered significant impacts. To provide a context for the assessment of the impact, it should be noted that this is and would continue to be an infrequent occurrence, concentrated in the hour preceding and following a Coliseum event. On an annual basis, this would mean that carbon monoxide hot spots would be generated at least 78 hours out of a total of 8,760 hours during the year, or less than one percent of the time. Regardless of the frequency, however, the California Ambient Air Quality Standards dictate that any exceedance of a standard for any amount of time must be considered significant. Therefore, the operational impacts of the Proposed Project would result in a significant impact.

# Conformance With Air Quality Management Plan

The Proposed Project relates to the AQMP through the land use and growth assumptions used to forecast automotive air pollution emissions. The SCAB AQMP is based on the growth projections prepared by SCAG for the various planning subareas in the air basin. Those projections for downtown Los Angeles are large based upon land use designations contained in the City of Los Angeles General Plan. To the extent that the Proposed Project is consistent with the existing local City of Los Angeles General Plan, it is also consistent with and supportive of the SCAG policies to assist in the revitalization of under-utilized urban area and assure protection of cultural resources. The Proposed Project would continue the current and historic use of the Coliseum and would reduce the maximum seating capacity on an event-by-event basis. As such, the Proposed Project would be consistent with growth forecasts adopted by the City and therefore consistent with the local City of Los Angeles General Plan. The Proposed Project is therefore consistent with the AQMP.

#### **CUMULATIVE IMPACTS**

Table V.B-7 depicts the operational emissions from the related projects in the vicinity of the Coliseum. Daily emissions from approximately 101,323 vehicle trips (536,585 vehicle miles traveled) range from approximately 6,051.90 lbs/day of CO, 523.90 lbs/day of ROG, 1,106.02 lbs/day of NO<sub>x</sub>, 36.58 lbs/day of SO<sub>x</sub>, 45.76 lbs/day of PM<sub>10</sub>. The addition of emissions from the average number of trips

2

The Uniform Building Code requires ventilation in underground parking garages sufficient to exhaust a minimum of 1.5 cubic feet / minute/ square foot of parking level area (CFM/SF). California Museum of Science and Industry Exposition Park Master Plan Draft EIR, SCH#92031080, May 1993.

from Coliseum events in conjunction with related projects would substantially increase total cumulative emissions.

Related future projects that are included in adopted regional and local plans would be included in SCAQMD projections for the region. Where related projects propose plan amendments, environmental documentation will be required on a project-by-project basis to assess impacts and mitigation. Further, the SCAQMP, and continuing updates of that plan, are required to include air emission reduction strategies for the basin (such as increased stationary source emission controls, improved vehicle emission standards, transportation alternatives, etc.). These, in concert with individual project mitigation measures will help reduce cumulative air quality emissions. However, until the South Coast

Table V.B-7
Cumulative Project Operational Impact Analysis

|                                                                        | Operational Emissions (lbs/day) |        |                 |                 |                  |  |
|------------------------------------------------------------------------|---------------------------------|--------|-----------------|-----------------|------------------|--|
| Project                                                                | СО                              | ROG    | NO <sub>x</sub> | SO <sub>x</sub> | PM <sub>10</sub> |  |
| Total Cumulative Emissions (37 Related Projects Plus Proposed Project) | 6,051.90                        | 523.90 | 1,106.02        | 36.58           | 45.76            |  |
| Source: Christopher A. Joseph & Associates, 20                         | 003.                            |        |                 |                 |                  |  |

Air Basin (SCAB) as a whole attains all federal and state EPA standards, which is not anticipated to occur until 2010, cumulative air quality impacts are deemed significant.

#### **MITIGATION MEASURES**

The following measures are recommended to reduce short-term impacts related to construction activities. Mitigation measures shall be included in all contracts between the applicant and project contractors to assure compliance with the following:

- 1. Haul trucks shall be staged on-site in the vacant parking areas within Exposition Park. Haul truck staging plan shall be subject to review by the City of Los Angeles Department of Building and Safety and the Department of Transportation. Trucks shall be called to the site by radio dispatch.
- 2. Diesel-powered equipment shall be located as far away as possible from sensitive land uses and areas. Specifically, diesel compressors, pumps and other stationary machinery shall be located

202

から さん

...

to the extent feasible on the south side of the Coliseum or within the interior of the Coliseum to avoid air pollution impacts on passive recreational spaces in Exposition Park (such as the area north of the Coliseum and south of the museum complex).

- 3. Grading activities shall be restricted on exceedingly windy days (winds in excess of 25 mph) when fugitive dust emissions are likely to be carried off-site. All truck loads of export debris shall be covered or shall provide at least 2 feet of freeboard.
- 4. Ground wetting shall be required in accordance with SCAQMD Rule 403 for dust control during grading and construction.
- 5. Contractors shall cover any stockpiles of soil, sand and similar materials.
- 6. Equipment engines shall be maintained in proper tune.
- 7. Construction equipment shall be shut off to reduce idling when not in direct use for extended periods of time.
- 8. Contractors shall discontinue construction activities during second-stage smog alerts.

The following measures are recommended to reduce emissions from long-term mobile sources:

- 9. To reduce the traffic-related air quality impact on the affected intersections, the Proposed Project shall implement the required traffic management measures described in Section IV.C.6 of this report, Traffic, Parking, and Access.
- 10. The Proposed Project applicant shall comply with all requirements of the South Coast Air Quality Management District's Regulation 15, which attempts to reduce employee vehicle trips through the implementation of various transportation management strategies.

# LEVEL OF IMPACT AFTER MITIGATION

Short-term air quality impacts would result during the Proposed Project's 18-20 months of construction. As shown in Table V.B-8, implementation of the prescribed mitigation measures would reduce the construction-related air pollutants for  $PM_{10}$  emissions to below the level of significance. However, even with the inclusion of mitigation measures described above, the daily emission of pollutants from construction equipment would exceed threshold criteria established by the SCAQMD for ROG, CO,  $SO_x$  and  $NO_x$  emissions.

Implementation and compliance with the mitigation measures described above would reduce air quality emissions. For maximum-attendance Coliseum events, the amount of reduction achieved by the mitigation measures would not be sufficient to reduce impacts to acceptable levels.

Table V.B-8

Daily Construction Emissions Without and With Mitigation<sup>a</sup>

| Source                                            | ROG   | NO <sub>x</sub> | СО     | SO <sub>2</sub> | PM <sub>10</sub> |
|---------------------------------------------------|-------|-----------------|--------|-----------------|------------------|
| Total Construction Emissions (Without Mitigation) | 56.71 | 638.31          | 348.54 | 5.88            | 214.21           |
| Total Construction Emissions (With Mitigation)    | 56.71 | 638.31          | 348.54 | 5.88            | 10.95            |
| SCAQMD Thresholds                                 | 550   | 75              | 100    | 150             | 150              |
| Significant Impact? (Yes/No)                      | NO    | YES             | YES    | NO              | NO               |

<sup>&</sup>lt;sup>a</sup> Based on a 22-month construction schedule with a total site disturbance of 19.5 acres.

Source: Christopher A. Joseph & Associates, 2003.

# V. ENVIRONMENTAL IMPACT ANALYSIS C. CULTURAL AND HISTORIC RESOURCES

#### **ENVIRONMENTAL SETTING**

The Coliseum is located in Exposition Park, a 145-acre site established in 1908 under joint administration by the State, City, and County as an area for cultural and recreational activities. Its boundaries include Exposition Boulevard to the north, Figueroa Street to the east, Martin Luther King Jr. Boulevard to the south and Vermont Avenue to the west. Three buildings, the Armory and the Exposition Building, now part of the California Museum of Science and Industry, and the California Museum of History, Science and Art, now the County Museum of Natural History, as well as the Rose Gardens remain from the first group of improvements to the site in the 1910s. The Coliseum was added in 1923 and the Los Angeles Swim Stadium to the south dates from the 1932 Olympic Games.

Other buildings from the 1920s in Exposition Park include the small brick power station to the south of the Coliseum, and the Exposition Club House, now the Menlo Recreation Center, built in 1928 by the City of Los Angeles Playground Department to the south of the Los Angeles Swim Stadium. The Los Angeles Memorial Sports Arena, built in 1959, lies to the southeast of the Coliseum. In the 1980s, a number of buildings were added in the northeast section of the Park as part of the Museum of Science and Industry, including the Frank Gehry-designed Aerospace Museum, the California African American Museum, the IMAX Theater, the Space Museum, the Space Garden, a Multi-Cultural Center, and the Mark Taper Hall of Economics and Finance.

## **Architectural Description**

The Coliseum, an elliptical reinforced concrete bowl oriented east and west, is 1,038 feet long by 738 feet wide. It rises 74 feet above ground, and the playing field lies 32 feet below grade. The rows of seats rise in a continuous smooth line in three tiers. The construction and layout of the seats was determined by its location in an abandoned gravel pit. The first tier, consisting of 29 rows, was cast in place on the banks of the pit and the second tier, of 25 rows of seats, was cast on a compacted earth berm built up around the excavated pit. The third tier, also of 25 rows of seats, is a built-up reinforced concrete frame system supported on a continuous pilaster and panel wall system. The top four rows are cantilevered beyond the wall and are supported by concrete fin brackets. Seats are theater-type with the exception of those at the east end, which are wooden benches dating from 1932. The seats of these wooden benches have been covered with fiberglass.

The Peristyle, the dominant feature located at the eastern end of the Coliseum, consists of a large central arch, the Propylaeum, with seven smaller arches on either side. The Propylaeum is topped by a 107-foot flame holder of concrete with a brass bowl. Four-story towers, or pylons, which house accounting offices in the north building and Coliseum Commission-related functions in the south

F.

building, serve as buffers between the tiers of seats and the arches. A series of reinforced concrete walls step outwards and upwards from these towers; they are designed to hide the additional seating added on the third uppermost tier. Two overscale arches, in a wall with pierced decoration, contain steps leading from the east elevation to the upper level. Two one-story office building additions, a ticket office on the north and the Coliseum Commission offices on the south, extend from the intersection of the Peristyle and the concrete walls.

The Peristyle is clad in a travertine veneer, and has a mural of an Aztec sun painted by German-born Heinz Rosien, an Alhambra muralist and art teacher, on the ceiling of the Propylaeum. A matrix scoreboard and a video board as well as two speakers are attached to the top of the Peristyle. Below the flame is a matrix clock. There is also a large clock on the upper wall of the north tower and a thermometer on the south tower wall. Bronze plaques forming the Memorial Court of Honor decorate the pillars of the Peristyle. The front facade of the Peristyle is decorated with a neon sign, reading "Los Angeles Memorial Coliseum" with the five interlinked rings symbolizing the Olympics underneath. Two large pieces of rock, from the Colosseum in Rome and Altis Olympia, Greece, sit on the bases flanking the main arch.

A series of 28 reinforced tunnels at yard level lead through the earth berm to the interior of the stadium. Between each pair of tunnels is a flight of concrete steps with pipe railing leading to the concourse level, which contains bathrooms, concession stands, elevators, and storage. A series of passages lead from this concourse to the interior of the stadium.

On the exterior of the Coliseum, between stairs 4 and 5, 10 and 11, and 20 and 21, are escalators. A press box elevator tower and entry way, on the south facade of the Coliseum, lead to the three-level (two level plus roof deck) 354-seat press box which juts above the south rim of the Coliseum. Tunnel 30, entering from Menlo Avenue at the southwest side of the Coliseum, provides vehicular access to the playing field. An underground dressing room and locker facility is reached from this ramp and tunnel.

A three-story reinforced concrete structure, used as a concession storage building and Los Angeles Police Department substation, extends from the west facade at the yard level. A number of ancillary buildings ring the Coliseum at the yard level, including eleven permanent concession stands and four restroom buildings inside the 10-foot chain link and steel bar fence, four permanent ticket booths, a maintenance and equipment storage facility adjacent to Tunnel 30 at the southwest edge of the site, and a souvenir shop at the southeast edge of the Coliseum outside the fence. A memorial statue of two sculpted torsos is located at the Peristyle entrance approach to the east end of the Coliseum. The mature landscaping consists of eucalyptus, deodar, yucca, agave, and palms covering the berm, and vines which virtually cover the south and west elevations. The interior of the concourse level has bathrooms and concession stands, elevators, storage rooms, and first aid stations in the 1930 additions to the towers, or pylons, at each end of the Peristyle.

## History

The Coliseum was built in Exposition Park in 1923. In order for such a stadium to be realized, three separate individuals or groups, each concerned with civic pride and the beautification of Los Angeles, came together. The first was Judge William M. Bowen, the second was the executive committee of the California Fiestas Association, and the third was the architectural firm of John Parkinson and Donald B. Parkinson.

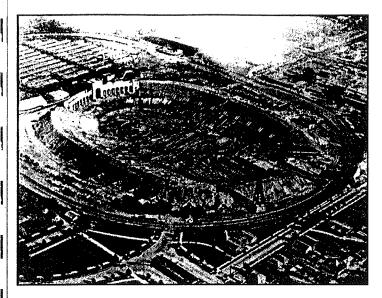
Exposition Park had been established as early as the 1870s as an Agricultural Park, owned by the Southern District Agricultural Society, and it contained a racetrack and fair grounds with covered stalls for exhibiting produce. Apparently its use degenerated into bull-fighting, horse racing, greyhound racing and gambling. Under the new owners, the Sixth District Agricultural Association of the State of California, the gambling continued. The surrounding neighborhood, including the Methodist-founded USC, led by William M. Bowen, a judge, law professor at USC, and Sunday school teacher, spent a decade attempting to shut down the racetrack and have the Park declared public property, a goal reached in 1908. That year the City, County, and State joined to develop Exposition Park. The northern half of it was laid out in 1911 in a formal Beaux Arts style by landscape architect Wilbur D. Cook, Jr. with a sunken rose garden with central fountain flanked by square formal gardens. By 1914, three civic buildings, the Exposition building, the California Museum of History, Science and Art, and the Armory, were erected in a "C" shape around the rose garden.

In 1919, a group of well-to-do Los Angeles citizens were appointed by the publishers of the daily newspapers to a committee, the "California Fiestas Association", to revive the old Spanish fiestas in Los Angeles. The committee realized that without a stadium in town, such fiestas could not be produced. An executive committee drawn from the larger Fiestas Association, headed by William May Garland, a real estate developer, and including Harry Chandler of the Los Angeles Times and former U.S. Senator Frank P. Flint, decided that a stadium should be built. They chose Exposition Park as its location and suggested a joint Association/City/County venture to create such a stadium, which was to be named the "Los Angeles Memorial Colosseum" (changed in 1920 to Coliseum) as a memorial to World War I dead.

Simultaneous with the suggestion to build the Coliseum came the idea that Los Angeles be the site of the 1924 Olympics. To this end, William Garland presented an invitation from the City and County of Los Angeles and the Association, plus plans for the stadium, to the International Olympics Committee at the summer games in Antwerp in 1920. He was advised that Paris had already been chosen for 1924 and Amsterdam tentatively for 1928, but was appointed to the International Olympic Committee. In Rome in 1923 he again formally asked that Los Angeles be the city chosen for the 1932 games, a suggestion which was accepted.

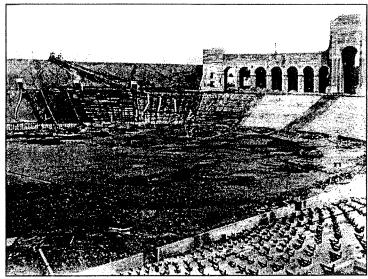
The architect, John Parkinson, donated his profit for the design of the Coliseum as a "citizen's contribution", being reimbursed solely for his costs. He began sketching plans in 1919, well before the

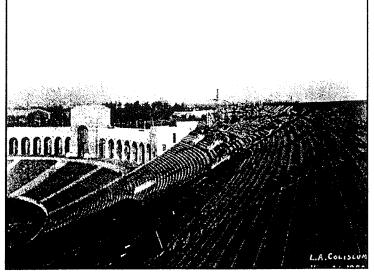
stadium was a definite project, in order for Garland to present the designs to the Olympics Committee. He was no stranger to participation in civic beautification. Moving to Los Angeles from Seattle in 1894, he became a charter member of the Los Angeles Municipal Art Commission, established to improve and beautify the city by cleaning streets and planting trees. When this committee brought the noted planner Charles Mulford Robinson to draw up plans for Los Angeles, Parkinson assisted him.


Between the years 1905 and 1915, Parkinson, with his partner G. Edwin Bergstrom, designed many ornate high-rise office and civic buildings, in the Beaux Arts style combining a symmetrical formality with classical ornamentation. Nineteen of these buildings on Spring Street are now listed as a Historic District on the National Register of Historic Places. Additionally, with his son Donald, also an architect who joined him in the firm in 1921, John Parkinson designed such other notable Los Angeles buildings as the City Hall, Bullock's Wilshire, and Union Station, as well as numerous buildings for the USC campus.

The Fiestas Association chose an abandoned gravel pit south of the formal gardens, Armory, and Museum in Exposition Park as the site of the bowl because excavation would be cheaper. One of Parkinson's early plans showed the Coliseum oriented north and south, rather than east and west, presumably to make use of the configuration of the existing pit. Possibly the east-west orientation was ultimately chosen to be aligned with the old race track which encircled it in an east and west direction.

The Coliseum, begun in December 1921 and finished in June 1923, was created from this pit by excavating 20 feet below grade and compacting the excavated dirt into a large berm which rose in an elliptical shape around the central field. As shown in Figure V.C-1 (See Views 1, 2 and 3), the wooden Coliseum seats were built in three tiers upon this earthen structure: the lowest, on the excavated section, were set on concrete steps poured in place; the middle tier, on the compacted berm, were set on redwood 2" x 4"s placed over 3" x 6" stringers; the upper level of nine rows were set on a raised redwood frame constructed above the berm. This upper tier of seats was reached by flights of wooden stairs built on the exterior of the berm. The Coliseum seated a total of 76,000 people in 53 rows.


As shown in View 2 in Figure V.C-1, a reinforced concrete Peristyle, with flanking pylons, was built at the east end of the Coliseum. Concrete retaining walls above and around the pylons formed the ends of the seats at north and south. The 1921 plan, shown in Figure 108, showed the pylons with hipped red tile roofs, which were omitted in favor of simple flat roofs with parapets. The rectangular pylons, four stories high, radiated outward from a point at the center of the field. A low concrete wall linked the ends of the Coliseum beyond the Peristyle. Pipe flag poles decorated both the interior and the exterior of the Peristyle's arches, and single lights illumined its interior roof. A row of lights along the east side of the Coliseum lit the entrance. Bases for statuary extended from the Propylaeum on both the interior and exterior elevations. Boxes were indicated on the plans in the front rows of both the north and the south sides of the field. Occupants sat on folding wooden chairs.


3.3



View 1: Aerial view of the Coliseum under construction in December 1921.

View 2: View looking towards the north end of the Coliseum while still under construction in 1923.





View 3: View of the top level at the north end while under renovation in November 1930 to accommodate the spectators of the 1932 Olympics.

Source: Images of America Los Angeles Memorial Coliseum, Chris Epting, 2002.



CHRISTOPHER A. JOSEPH & ASSOCIATES Environmental Planning and Research

Figure V.C-1 Historic Views of the Project Site, Views 1, 2 and 3 A 1923 sketch by the landscape architect indicated that the berms were to be planted with deodar cedar, Spanish broom, acacia, Arizona cypress, eucalyptus, with cotoneaster hedges around the archways and begonia and Boston ivy at the top. A simple rectangular Athletes Building, housing dressing rooms and showers, was built to the south of the Coliseum and was connected to the playing fields by underground Tunnel 29. Four toilet buildings were built, two on the north and two on the south. Tunnel 30, entering from the west, was built to provide vehicular access to the field.

The Coliseum was finished in June of 1923 and the USC Trojans played their first home football game there, against Pomona College, in October, with 12,836 spectators attending. Over the next nine years, USC packed the stadium with its football games against Stanford University, the University of California, and the University of Notre Dame, the latter of which it first played in 1926. Paavo Nuurmi of Finland was featured in a track meet and Jack Dempsey held a boxing exhibition in the Coliseum. Additional uses of the Coliseum for non-sporting events in these first years of its existence showed its appeal to a wide variety of audiences. The Los Angeles Philharmonic played there in 1925, the Shrine and the Elks held their conventions and electrical pageants there, Lindbergh was honored at a reception, and Easter Sunrise services and a pontifical mass were celebrated in the Coliseum.

As early as 1923, the Coliseum had been chosen for the 1932 Olympics and, by 1928, a one million-dollar state bond issue was passed to finance the Olympic Games. To handle the expected crowds, the Coliseum's seating of 76,000 was enlarged to 101,573, and various other improvements were made. The enlargement took from February 1930 to May 1931 to complete and cost \$950,293, which was financed by the City and the County. To add approximately 25,000 seats, the Parkinsons removed the third wooden tier, and built up a new third tier of concrete with 25 rows of seats for a total of 79 rows.

The addition of these extra sixteen rows necessitated a major change in the exterior of the Coliseum. A large concrete superstructure was built, consisting of a continuous pilaster and panel wall system which extended over the top of the berm and halfway down the outside. The top four rows were cantilevered beyond the wall and were supported by concrete brackets. The newly created upper concourse included restrooms and concession stands.

Major changes were necessary at the east end of the Coliseum to hide the ends of the new third tiers, which rose well beyond the existing pylons. The retaining walls at the ends of the pylons were incorporated into new units, which formed stepped parapet walls radiating outward from the existing pylons. These walls were decorated with pilasters, pierced wall designs, and cast concrete screens. The ground floor of these units contained staircases beneath overscale arches leading to the concourse level, and the concourse level contained hospital rooms and storage created by the new units. Two lamp standards lit the entrance to each arch. Low concrete walls with large blocks for statues connected the new sections with the old sections. The existing pylons were slightly changed during this expansion: a new concrete slab was poured on the roof and was topped with composition roofing.

3

Doors and windows were replaced on the Peristyle side and new steps and an opening into the top floor of the pylon were added on the seating side.

The existing wooden stairs leading down the outside of the berm were replaced with double-width concrete steps with pipe railings, firmly set into the berm with footings. The tunnels had new concrete foundation slabs poured. A new poured concrete concession building, with storage rooms, a service elevator, and truck docks, was attached to the exterior wall of the Coliseum at the west end. A police substation was also housed in this building. A series of pole lamps with twin lights lit the rim of the Coliseum, doubling as vents for the restrooms on the upper level. A press stand, centered at the top of the south wall of the Coliseum provided cubicles and desks for reporters on one side of the central staircase and cameras and radio on the other. A scoreboard was built on the stadium side of the propylaeum, consisting of a built-up arched extension three floors high and deep enough for operators to stand in to manipulate the letters and numbers of the winners as needed on the actual board, which measured 22 feet by 44 feet. Additionally, the top deck held the flag loft where Navy men were trained to quickly hoist the flags of the three winners as the results were placed on the scoreboard. To handle the expected record crowds for the Olympics, twelve square ticket booths and six rectangular concession booths were built on the perimeter of the Coliseum.

All Olympic track and field events, gymnastics, field hockey finals, demonstration lacrosse and football, and the equestrian jumping finals, as well as the beginning and end of the marathon, and the opening and closing ceremonies, were held in the Coliseum, with the Armory hosting the fencing and sword competitions and the Swim Stadium hosting the aquatic events. Sixteen world track records were broken, by such athletes as William Carr, Eddie Tolan, and Babe Didrickson.

The Olympic Games in the Coliseum included a number of firsts: the use of a victory podium where flags of the winning nations were raised; the use of a photo-finish camera; the playing of the national anthems of winners during the awards ceremonies; the use of a stadium press box where teletype operators were able to transmit the results of the competition to the wire services; and the full participation of women athletes under international track and field competition according to Olympic Games' standards. Additionally, the creation of an Olympic Village to house the men enabled many countries, impoverished by the Depression, to send athletes who otherwise would have been unable to attend. This village, consisting of 500 pre-fabricated residences, an administration building, amphitheater, post office, hospital, bank, and telegraph offices, was built in Baldwin Hills on 331 acres of land loaned by the heirs of the Baldwin estate. After the Games, the buildings were removed, but the idea of such a Village became a requirement for subsequent Olympic Games.

Over the years, other changes have been made to the Coliseum. By 1937, some settling in the floors of the tunnels and some water damage had occurred, which caused the reinforcing bar inside the concrete tunnel walls to rust. As a result, extensive repairs of the tunnels were called for in 1937. All hollow spaces in the walls were dug out, the reinforcing bar cleaned, and the areas patched with gunite. The

floors of all the tunnels except 13, 29, and 30 were to be dug up to the depth of two feet or to the existing subfloor, backfilled and compacted, and new floors poured.

The Olympic scoreboard was replaced in 1936-7 by an electric board, "the first all-electric, all-purpose announcing tableau of its kind in the world", courtesy of the Tide Water Associated Oil Company. The Coliseum continued to be used by the USC football team and for such other sporting events as the 1934 National Collegiate Athletic Association (NCAA) track meet, the 1936 Olympic final trials, as well as a ski jump, tennis match, and a golf clinic and exhibition. In addition, the Coliseum hosted two appearances by then-President Franklin D. Roosevelt, a campaign rally in 1932 and a eulogy of Will Rogers in 1935, Shrine and American Legion conventions, the Sonja Henie Ice Show, and various rodeos.

A cluster of post-war additions, from 1946 to 1955, caused the next major visible changes to the appearance of the Coliseum. In 1945, a new Coliseum Commission was formed, and a new contract authorized surplus revenues to be given to the Coliseum alone, without payments to the City and County. A new manager, William Nicholas from the Pasadena Parks Department, was hired; he used the surplus money for a number of necessary repairs and renovations. The Pasadena architectural firm of Bennett and Bennett was retained for this work. Robert Bennett chose to design the additions in the 1930's Moderne style, defined by smooth simplified exteriors combining rounded and flat surfaces with a minimum of decoration, in order to link the Coliseum visually to the neighboring Los Angeles Swim Stadium which had been built for the Olympics, also in the Moderne style.

The first improvement was the addition of six curved banks of floodlights in 1946, an innovation which allowed for night football games. A Moderne six-story elevator tower to the press box, reached through a special press entrance, was built in 1947, followed by a new three-level press box in 1948. This press box was honored in 1949 by the National Sports Writers Association as the "outstanding press box in the country." The USC football team continued to use the Coliseum as its home stadium, and in 1949 the Cleveland Rams relocated to Los Angeles, giving both the City and the Coliseum its first professional football team.

The same year, the present one-story Moderne addition, housing general offices and the Coliseum Commission boardroom, was built onto the walls of the south pylon addition of 1931, somewhat obscuring the 1930-31 design. A new rounded ticket booth was built southeast of the Peristyle entrance. In 1950, a 13,000 square foot underground dressing room complex was built adjacent to Tunnel 30, on the southwest side of the stadium. At this time, no doubt as a result of the construction of these state-of-the-art facilities for athletes, the 1922 Athletes Building on the south side was torn down.

Three additional rounded ticket booths were added to the perimeter of the Coliseum by 1951. A onestory office for event staff was added to the north pylon in 1953. In 1955, escalators were built, necessitating a change in the angle of stairs 4 and 20. The same year, additions such as concession booths, restrooms, and the souvenir shop were constructed around the perimeter of the Coliseum. The neon sign was added to the exterior of the Propylaeum. The Memorial Court of Honor, consisting of brass plaques honoring athletes, coaches, or contributors to the world of sports who have been affiliated with the Coliseum, was instituted in 1955, and now consists of 38 plaques on the Peristyle walls. Plaques honoring athletes who played in the Coliseum or events which occurred there are placed on the inside wall of the Peristyle, while plaques for coaches or other contributors are placed on the exterior wall.

In 1943, the University of California at Los Angeles (UCLA) Bruins football team became tenants of the Coliseum, playing there until 1982. In 1958, the Brooklyn Dodgers relocated to Los Angeles, and from that year until 1962 when they moved to their new stadium in Chavez Ravine, they played at the Coliseum, necessitating temporary changes to the field, which were reversible for football games. National League champions in 1959, the Dodgers played three World Series games against the Chicago White Sox in the Coliseum.

During the 1940s and 1950s, the Coliseum was also host to such varied activities as political rallies for Wendell Wilkie, Thomas Dewey, and Dwight Eisenhower, religious occasions including a pontifical mass, the annual Mary's hour, war rallies such as the "I am an American" Day, the Army and Navy War Show, the reception for Generals Patton and Doolittle, and the Victory celebration, the Shrine Convention, as well as midget automobile races, rodeos, circuses, and fireworks shows.

By the 1960s, water damage had stained the concrete walls of the Peristyle. In 1969, with the hope that the 1976 Olympics would be held in Los Angeles, the Peristyle was given a cosmetic facelift with the addition of marble veneer, and the ceiling of the Propylaeum was painted by Alhambra artist Heinz Rosien. The track was replaced in 1962. At some time between 1960 and 1962 an aluminum window was added in the third floor of the south pylon. Folding and removable grandstands, with a 3,000 seat capacity, were used at the east end of the Coliseum for the first time in 1964, to bring the spectators closer to the field. These grandstands reduced the seating capacity by blocking off the end zone wooden seats, and were used primarily for Rams games, and occasionally for USC games which were not sold out. They were last used in 1978. Many of the old wooden end zone seats were replaced with theater type seats over a ten-year period from 1964 to 1974, resulting in an overall reduction in seating capacity from 101,573 to 92,800. A computer scoreboard replaced the old electric board in 1971. More concession stands were built in 1973. The press box and elevator were remodeled in 1976.

During these years, two National Football League (NFL) Super Bowls were played at the Coliseum, Super Bowl I in 1967 in which the Green Bay Packers defeated the Kansas City Chiefs, and Super Bowl VII in 1973 when the Miami Dolphins beat the Washington Redskins. Professional soccer teams such as the Los Angeles Aztecs and the Cosmos played at the Coliseum. Additionally, such events as the Royal Lippizan Stallions, the Super Bowl of Motocross, and Evel Knievel's jumping exhibition were

staged at the Coliseum. John F. Kennedy accepted the Democratic Party's Presidential nomination there in 1960, and Billy Graham held his "Crusade for Christ" there in 1963.

A number of changes were made for the 1984 Olympic Games. The scoreboard was replaced in 1983 by the present color video board, measuring 36 feet by 48 feet, the largest in the world, which was added to the top of the Peristyle, necessitating the placement of steel I-beams in the arches to support it. A black and white matrix board, 30 feet by 50 feet, was also added to the Peristyle, as was the current matrix clock board. A new track was installed with the front wall moved back to accommodate it, resulting in the removal of approximately 300 seats, bringing the Coliseum's total seating capacity to the current level of 92,500.

For the XXIII<sup>rd</sup> Olympiad, all track and field events, the beginning and the end of the marathon, the medal awards, and the opening and closing ceremonies were held in the Coliseum. Eighteen Olympic records were set by such athletes as Valerie Brisco-Hooks, who received three gold medals, Evelyn Ashford, and Carl Lewis, who received four gold medals. The 1984 Olympic Games included such firsts as the introduction of seventeen new sports, thirteen of them for women, such as the marathon, 3,000 meter race, and 400 meter hurdles; and funding entirely through the private sector, through such methods as sponsorships, television rights, and ticket sales. The number of nations participating in the 1984 Games, 139, was also the largest ever.

# **Historical Designations**

The Coliseum is designated as a National Historic Landmark, a State Historical Landmark, and is listed on the National Register of Historic Places (National Register) in Washington, D.C. The Coliseum is significant as the site of numerous historical sporting events, and for its "association with important personages" rather than for its architectural design. As noted above, numerous structural alterations and additions have been made to the historic fabric of the Coliseum over the years. The Coliseum has been the site for many events including two Olympic Games, held in 1932 and 1984, Major League Baseball including the 1959 World Series, numerous track meets, collegiate and professional football, including two Super Bowls, and political rallies, rock concerts and political gatherings. The Coliseum is located within Exposition Park.

All three of the above designations were undertaken in 1984 for the fiftieth anniversary of the Historic American Building Survey (HABS) and for the Olympic Games to be held in 1984, for the second time at the Coliseum.

In addition, Exposition Park was determined eligible for listing on the National Register in 1993 as an Historic District. To date it has not been a formally listed on the National Register. The Exposition Park Historic District includes all of Exposition Park and a number of buildings located within it are listed as contributing structures to the District. The Exposition Building, the Natural History Museum, the California State Armory, the Rose Garden, the Memorial Coliseum, the Los Angeles Swimming

28

Stadium and the Park Clubhouse were all determined to be contributing elements to the District. The California Science Center, the Los Angeles Memorial Sports Arena, the California Aerospace Museum and the California Afro-American Museum were identified as non-contributing elements of the District. The historic Exposition Building was effectively demolished in 1995 for the Science Center and the Swimming Stadium substantially altered.

## National Historic Landmark (NHL)

The United States Congress charged the Department of the Interior with the responsibility for designating nationally significant historic sites, buildings, and objects and promoting their preservation in 1935. The National Historic Landmarks program was established to identify and protect places possessing exceptional value in illustrating the nation's heritage. Only 3% of properties listed in the National Register of Historic Places are designated as National Historic Landmarks. An NHL is the highest level of significance designated by the Secretary of the Interior for historic properties. Today, fewer than 2,500 historic places bear this national distinction. Below are a few facts associated with the NHL designation:

- National Historic Landmark designation recognizes properties that are important to the entire nation.
- NHLs are listed in the National Register of Historic Places.
- Owners of National Historic Landmarks are free to manage their property as they choose, provided no federal license, permit, or funding is involved.
- Federal agencies whose projects affect a NHL must give the Advisory Council on Historic Preservation (ACHP) an opportunity to comment on the project and its effects on the property.
- Owners of National Historic Landmarks may be able to obtain federal historic preservation funding, when funds are available. Federal investment tax credits for rehabilitation and other provisions may apply.
- A bronze plaque bearing the name of the NHL and attesting to its national significance is presented to the owner upon request.

# Los Angeles Memorial Coliseum National Historic Landmark Information

Los Angeles, California

County of Los Angeles.

3911 S. Figueroa Street

National Register Number: 84003866 Resource type: Structure.

Property type: Recreation & Culture - sports facility.

Congressional District: CA-32 Certified Local Government: NO

This NHL offers public access.

Current use/information: Sports facility.

Statement of Significance (as of designation - July 27, 1984):

One of the premier outdoor sports facilities in the world, this giant elliptical, reinforced concrete, cast-in-place structure was constructed in 1921-23 and later enlarged. It has served as the focal site for the 1932 and 1984 Olympic Games. The Xth Olympiad witnessed a number of innovations, including the Olympic Village, which was introduced at Los Angeles, and use of the victory podium.

The federal National Historic Landmark designation notes that the Coliseum is significant as a site of historical athletic and sports events and for its association with important personages. Architectural and engineering elements were mentioned for informational purposes only.

The Proposed Project continues the historic use of the Coliseum as a sports venue for future generations and enhances or maintains most of the historic elements that contribute to its architectural character.

# National Register of Historic Places

The National Register is the nation's master inventory of known historic resources. The National Register is administered by the National Park Service (NPS) and includes listings of buildings, structures, sites, objects, and districts that possess historic, architectural, engineering, archaeological, or cultural significance at the national, state or local level. The National Register criteria and associated definitions are outlined in National Register Bulletin Number 15: How to Apply the National Register Criteria for Evaluation. The following is a summary of Bulletin 15:

Resources (structures, sites, buildings, districts, and objects) over 50 years of age can be listed on the National Register. However, properties under 50 years of age that are of exceptional importance or are contributors to a district can also be included on the National Register. The following list of definitions is relevant to any discussion of the National Register:

- A structure is a work made up of interdependent and interrelated parts in a definite pattern of organization. Generally constructed by humans, it is often an engineering object large in scale.
- A site is defined as the location of a significant event, a prehistoric or historic occupation or activity, or a building or structure, whether standing, ruined, or vanished, where the location itself maintains historical or archaeological value regardless of the value of any existing structure.

See .

- Buildings are defined as structures created to shelter human activity.
- A district is a geographically definable area -- urban or rural, small or large -- possessing a significant concentration, linkage, or continuity of sites, buildings, structures, and/or objects united by past events or aesthetically by plan or physical development. A district may also comprise individual elements separated geographically but linked by association or history.
- An object is a material thing of functional, aesthetic, cultural, historical, or scientific value that
  may be, by nature or design, moveable yet related to a specific setting or environment such as
  an historic vessel.

There are basically four criteria under which a structure, site, building, district, or object can be considered significant for listing on the National Register. These include resources that:

- A) are associated with events that have made a significant contribution to the broad patterns of history (such as a Civil War battlefield or a Naval Ship building Center);
- B) are associated with the lives of persons significant in our past (such as Thomas Jefferson's Monticello or the Susan B. Anthony birthplace);
- C) embody the distinctive characteristics of a type, period, or method of construction, or that represent the work of a master, or that possess high artistic values, or that represent a significant and distinguishable entity whose components may lack individual distinction (such as Frank Lloyd Wright's Taliesin or the Midwestern Native American Indian Mounds) or;
- D) have yielded or may likely yield information important in prehistory or history (such as prehistoric ruins in Arizona or the archaeological sites of the first European settlements in St. Augustine, Florida or at the Presidio of San Francisco).

A resource can be considered significant in American history, architecture, archaeology, engineering, and culture. When nominating a resource to the National Register, one must evaluate and clearly state the significance of that resource. A resource can be individually eligible for listing on the National Register for any of the above four reasons. A resource can also be listed as contributing to a group of resources that are listed on the National Register. In other words, the resource is part of a historic district as defined above.

Districts are comprised of resources that are identified as contributing and non-contributing. Some resources within the boundaries of the district may not meet the criteria for contributing to the historic character of the district; however, the resource is within the district boundaries.

Contributing resources add to the historic association, historic architectural qualities, or archaeological values for which the district is significant because the resource was present during the period of significance, relates to the documented significant contexts, and possesses integrity.

Non-contributing resources do not add to the historic associations, historic architectural qualities, or archaeological values for which the district is significant because the resource was not present during the period of significance, does not relate to the documented significant contexts, or does not possess integrity.

Resources that meet the above criteria and have been determined eligible for the National Register are protected under Section 106 of the National Historic Preservation Act when an undertaking utilizing federal involvement is proposed. The National Register affords no protection to resources where private funding is used to alter or change those resources.

# California Register of Historical Resources

The California Register of Historical Resources (California Register) is a listing of State of California resources that are significant within the context of California's history. The California Register criteria are modeled after National Register criteria. However, the California Register focuses more closely on resources that have contributed to the development of California.

All resources listed in or formally determined eligible for the National Register are eligible for the California Register. In addition, properties designated under municipal or county ordinances are also eligible for listing in the California Register. The primary difference between the National Register and the California Register is that the latter allows a lower level of integrity. The property must be significant at the local, state, or national level under one or more of the following criteria:

- 1. It is associated with events or patterns of events that have made a significant contribution to the broad patterns of local or regional history and cultural heritage of California or the United States.
- 2. It is associated with the lives of persons important to the nation or to California's past.
- 3. It embodies the distinctive characteristics of a type, period, region, or method of construction, or represents the work of a master, or possesses high artistic values.
- 4. It has yielded, or has the potential to yield, information important to the prehistory or history of the state or the nation.

The California Register criteria are linked to CEQA. Under CEQA resources are considered historically significant "if the resource meets the criteria for listing on the California Register" (Title 14 California Code of Regulations 15064.5 (3)).

35

Vessel

# **Resource Integrity**

To be eligible for either the National or California Register, a resource must not only be historically or architecturally significant, it must also retain integrity or the ability to convey its significance. Integrity is grounded in an understanding of a property's physical features and how they relate to its significance within one or more contexts. Integrity involves seven aspects: location, design, setting, materials, workmanship, feeling and association. These aspects closely relate to the resource's significance. For example, if the property is significant for architecture, the setting and association may not be as important as workmanship and materials. In this case, the Coliseum has been listed for its association with events and people rather than for the architecture of the Coliseum. Some level of architectural integrity must remain for the facility to convey its ties to the events and people for which it is listed, but architecture is not the prime reason the facility is historically important.

Integrity, particularly in the aspects important to the area of significance, must be primarily intact for National or California Register eligibility. Resources that have lost a great deal of their integrity are generally not eligible for the National Register. However, the California Register regulations have specific language regarding integrity, which note the following:

It is possible that historical resources may not retain sufficient integrity to meet the criteria for listing in the National Register, but they may still be eligible for listing in the California Register. A resource that has lost its historic character or appearance may still have sufficient integrity for the California Register (California Code of Regulations Title 15, 11.5 (c)).

It is possible to have a resource "delisted" as an NHL or National Register property, but this is very rarely done and generally requires a complete loss of integrity, such as removing all of the character-defining features or demolition due to fire or other event.

# Local Criteria

Because the Coliseum itself is located on state land, it is not eligible for review at the local level, the City of Los Angeles Cultural Heritage Commission. The County of Los Angeles does not have an independent designation program but relies on the National Register and State Landmark programs for designation.

Exposition Park, which includes the Coliseum and numerous surrounding structures, has been designated as a Cultural and Historical Site by the County of Los Angeles. The Commission cannot designate buildings owned by the State independently. However, they may be recognized as "significant" to the County.

The Armory, at the northwest corner of the Park, is being converted to a Los Angeles Unified School District (LAUSD) school. The Science Center recently underwent a \$90 million renovation with

historic preservation of the facade. The Los Angeles Swim Stadium underwent a \$32 million renovation and addition, now the Exposition Park Intergenerational Community Center - EPICC. The historic facade was retained and restored and the modern addition is a visible and obvious improvement.

An historical or cultural monument is any site (including significant trees or other plant life located thereon), building or structure of particular historic or cultural significance to the City of Los Angeles, such as historic structures or sites in which the broad cultural, economic or social history of the nation, State or community is reflected or exemplified, or which are identified with historic personages or with important events in the main currents of national, State or local history or which embody the distinguishing characteristics of an architectural type specimen, inherently valuable for a study of a period style or method of construction, or a notable work of a master builder, designer, or architect whose individual genius influenced his or her age.

# Effects of Local Designation

Section 5024.f requires that alterations to a State Historical Landmark owned by the State, be reviewed by the State Historic Preservation Officer (SHPO). Section 5024.5 (a) and (b) require the state agency having jurisdiction over the Landmark give a summary of any proposed changes to the SHPO for review and comment. Because the state only owns the land that the Coliseum sits on and not the Coliseum, section 5024.5 should not apply.

Properties designated at the local level are subject to review by the Cultural Heritage Commission. This review includes evaluation of alterations to designated structures to ensure the alterations are appropriate to the historic character of the building. This type of review occurs only for individually designated properties based on the following factors:

- Eligibility to enter into the City of Los Angeles Property Contract Program (the Mills Act See Appendix Seven);
- Local Building Official must grant code alternatives under the State Historical Building Code;
- Limited Protection: Environmental review may be required under CEQA if the property faces potential impacts as defined in the CEQA Guidelines.
- Locally designated resources or qualifying surveys can be listed in the California Register of Historical Resources.
- Designated resources proposed for demolition will be reviewed by the Commission. The Commission can object for 180 days with the option for extending another 180 days with Commission and Council approval, to allow alternative preservation solutions to be developed.

# **ENVIRONMENTAL IMPACTS**

# Thresholds of Significance

Pursuant to Section 15064.5 of the CEQA Guidelines, an historical resource is presumed significant if it is listed on the CRHR or has been determined to be eligible for listing by the SHRC. An historical resource may also be considered significant if the lead agency determines, based on substantial evidence, that the resource meets the criteria for inclusion in the CRHR. CEQA also contains the following additional guidelines for defining an historical resource:

- California properties formally determined eligible for, or listed in the NRHP (Section 5024.1.d.1);
- those resources included in a local register of historical resources, as defined in Section 5020.1(k) of the Public Resources Code, or identified as significant in an historical resources survey meeting the requirements of Section 5024.1(g) of the Public Resources Code;
- those resources that a lead agency determines to be historically significant (generally, if it meets criteria for listing on the CRHC), provided the determination is supported by substantial evidence; or
- those resources a local agency believes are historical for more broadly defined reasons than identified in the preceding criteria.

Section 15065 of the CEQA Guidelines mandates a finding of significance if a project would eliminate important examples of major periods of California history or prehistory. In addition, pursuant to Section 15064.5 of the CEQA Guidelines, a project could have a significant effect on the environment if it "may cause a substantial adverse change in the significance of an historical resource." A "substantial adverse change" means "physical demolition, destruction, relocation, or alteration of the resource or its immediate surroundings such that the significance of an historical resource is impaired." Material impairment means altering "in an adverse manner those characteristics of an historical resource that convey its historical significance and its eligibility for inclusion in the California Register of Historical Resources."

Impacts to historical resources not determined to be significant according to any of the significance criteria described above are not considered significant for the purposes of CEQA. Generally, under CEQA, a project that follows The Secretary of the Interior's Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring, and Reconstructing Historic Buildings or The Secretary of Interior's Standards for Rehabilitation and Guidelines for Rehabilitating

Historic Structures (The Standards) is considered to have mitigated impacts to an historical resource to a less-than-significant level (CEQA Guidelines 15064.5). Section 15126.4 (b)(2) of the CEQA Guidelines notes that in some circumstances, documentation of an historical resource may not mitigate the effects to a less than significant level.

# **Project Impacts**

The Proposed Project is only the latest in an ongoing series of alterations and expansions. Completed in 1923, the Coliseum had wood seats on three tiers of risers, the first being within the excavated bowl and the other two above grade on wood structural supports. Almost immediately after completion, an additional level of wood seats was added. In 1931 the Coliseum was greatly altered by adding another tier of seats with all the seating above the bowl now supported by concrete construction. There were now 25 rows of additional seating totaling 79 rows. The last four rows were cantilevered above the support structure and a series of concrete bracket pilasters and panels supported them, giving the Coliseum its unique form that is familiar today.

The Proposed Project reduces the number of seats in the Coliseum from 92,500 to 78,000 while upgrading the remaining seats to current comfort requirements.

Frequent alterations to the Coliseum have continued to the present day with major changes occurring for the 1932 and 1984 Olympics as well as numerous modifications before and after these events.

The Proposed Project is one more alteration and expansion that will allow the Coliseum to continue to be economically viable and continue on into the future.

In addition, most of the proposed alterations preserve the historic character-defining features of the Coliseum. Wherever possible, new construction has been added to cover over historic features, such as the seating, rather than remove it. Much of the new construction could also be removed at some time in the future, leaving these features again exposed and intact.

Great effort has been made to respect and enhance the historic features of the Coliseum while still meeting functional requirements for the 21st century. Photographs depicting the structural changes to the Coliseum since its original construction are shown in Figures V.C-2 through V.C-5.

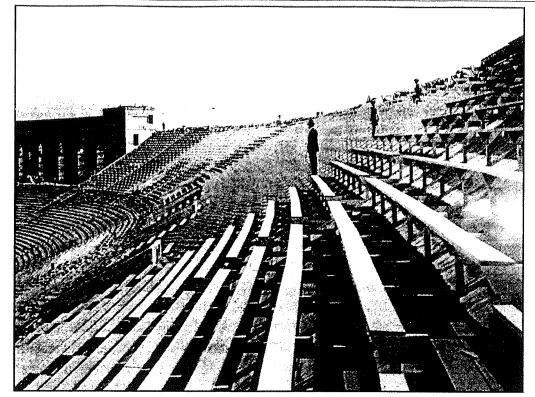
<sup>&</sup>quot;Rehabilitation" is defined in the Standards as "the process of returning a property to a state of utility, through the repair or alteration, which makes possible an efficient contemporary use while preserving those portions or features of the property which are significant to its historic, architectural or cultural values."

## **Proposed Project**

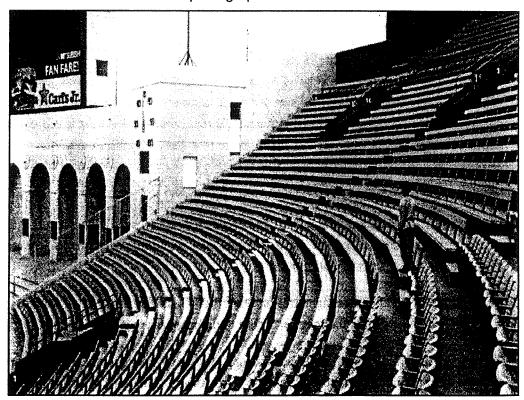
The Proposed Project retains and enhances the character-defining features of the Coliseum. A few elements, described below, will be covered over by new construction; and an even smaller number of features, primarily concrete seating at the upper levels, will be removed.

# Treatment of Historic Features

The Peristyle – Retained and enhanced as the major focus of the stadium. Adjacent nearby seating will also be preserved. The large existing, non-historic electronic scoreboards and video boards that sit on top of the Peristyle will be removed, allowing the Peristyle to be seen in its historic form for the first time in many years. The offices and ticket areas adjacent to the Peristyle will also be retained.


Exterior Coliseum Form and Walls – The exterior walls and cantilevered seating at the rim of the Coliseum will be retained, restored, and highlighted. New seating that extends above the historic form will curve in at the east and west ends, away from the exterior Coliseum wall, to enhance and differentiate the new seating from the historic form below. Existing stairs and tunnels on the exterior walls will be retained and used wherever possible. It should be noted that the existing stairs do not meet code requirements. They will be retained to keep the historic fabric, but it is possible they will no longer be used.

**Bowl Configuration** – The top rows of the bowl will be retained in a continuous band that is connected to the exterior wall. At the west end, a large section of the existing bowl, extending down to the main concourse, will be retained and remain visible. At the east end, portions of the existing bowl connected with the Peristyle will be retained and will remain visible.


Field Level – The field level was lowered 11 feet in 1994 from its historic level. The existing field level will be maintained. Also, due to the current configuration of the field, track and field events are now not possible. The Proposed Project will provide the Coliseum the opportunity to host track and field events in the future, though it will require some modifications to the seating configuration.

Stairs - Many of the existing exterior stairs will be retained. The two existing exterior escalators will be removed and the area where the escalators are will be restored.

Tunnels – All except two of the historic vomitories that connect the interior of the Coliseum with the surrounding circulation areas will be retained and reused. Two of the tunnels will be widened for emergency exiting.



View 4: View looking toward the Peristyle in 1923. The original wooden bleachers are seen in this photograph.



View 5: View looking toward the Peristyle today. The wooden bleachers have been replaced with "stadium" seating.

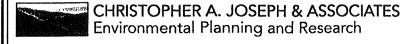
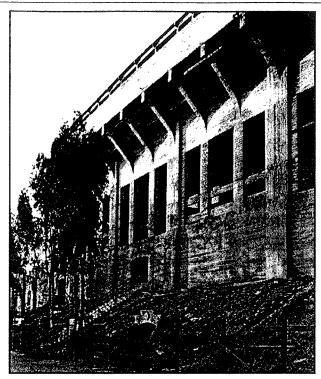
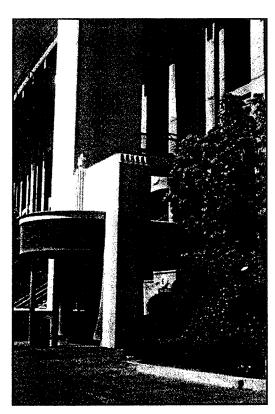





Figure V.C-2 Historic and Present Day Views of the Project Site, Views 4 and 5



View 6: View looking toward Gate Six in 1923.



View 7: View looking toward Gate Six today. The Press Box elevator and tower were constructed in 1947. Heavy Landscaping has also been done since 1923.

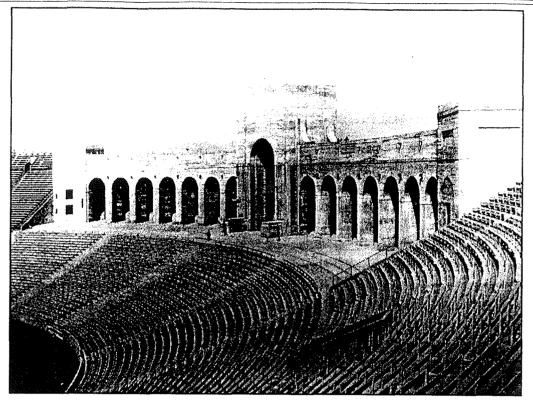
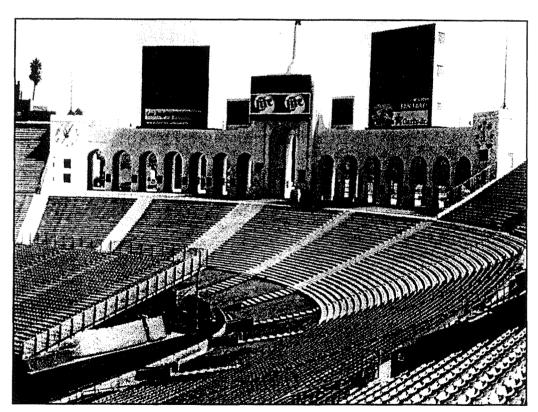
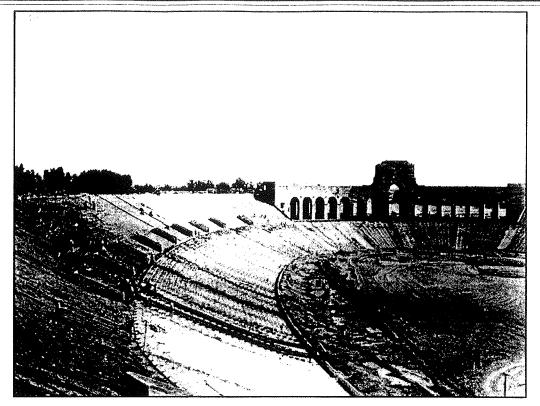





Figure V.C-3 Historic and Present Day Views of the Project Site, Views 6 and 7




View 8: View looking toward the Peristyle Arches in 1923.



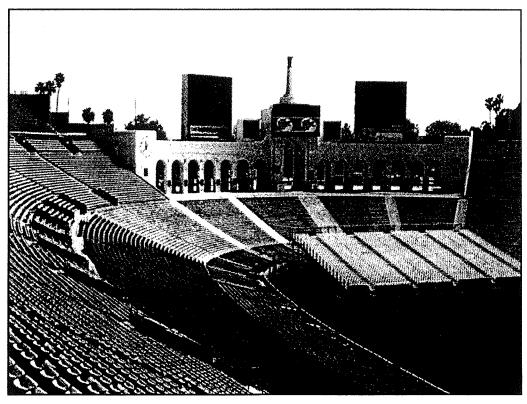

View 9: View looking toward the Peristyle Arches today.



Figure V.C-4
Historic and Present Day
Views of the Project Site, Views 8 and 9



View 10: View looking toward the Peristyle from the north side of the Coliseum in 1923.



View 11: View looking toward the Peristyle from the north side of the Coliseum today.



CHRISTOPHER A. JOSEPH & ASSOCIATES Environmental Planning and Research

Figure V.C-5
Historic and Present Day
Views of the Project Site, Views 10 and 11

Lower Seating – A new Lower Bowl will be placed over the existing concrete risers, preserving the stepped seating form in place while meeting current codes and providing improved comfort and sight lines. The design of the new seating will integrate the form geometry of the bowl and sideline seating so that the old and new will be integral.

*Upper Seating* – Between the Main Concourse, or Plaza Level, and the Club Level the historic concrete levels will be removed to accommodate the new Concourse and Suites. The top rows of treads and risers will be retained in a continuous band attached to the existing exterior wall. The rim of seating stops at the Peristyle.

Concourse Level and Floor Elevations – The existing Concourse Level will be retained and expanded as the new Club Level. The primary historic columns and beams that are part of the 1931 addition will directly relate to new structural elements that are part of the Proposed Project.

Lighting – The four existing 1932 standing lamps flanking the arched entrances and the 1932 double light brackets along the upper rim of the Coliseum would be rehabilitated and reused. Existing modern floodlight towers at the north and south rims of the Coliseum will be removed.

Landscaping - Historic plantings surrounding the Coliseum will be retained and enhanced.

# Effect of Change in Use

The historic use of the Coliseum will continue and will be enhanced with the Proposed Project. A few specific uses such as holding track events at the Coliseum will not be possible without additional temporary construction, which has already been planned. The ability to hold NFL games at the Coliseum will open the facility up to much greater use and will provide the economic means to allow the facility to be self-sufficient long into the future. Thus, there will be no adverse impact due to a change in use.

#### **Effect on Historic Designations**

Because the Coliseum has been designated as an NHL, is listed on National Register of Historic Places, and is a California Historic Landmark based on the events and people associated with the facility, physical alteration to the Coliseum would need to be so severe that the original intent and association with the events and people were completely eradicated. Total demolition or severe changes to the form of the Coliseum would be required to remove these historic designations. The Proposed Project will update the Coliseum and make it economically viable while keeping its use as a sports facility consistent, thus there will be no impact on its historic designations.

#### Effect on Historic Fabric

As noted above, under CEQA, the level of compliance with the Standards is used to determine the level of environmental impact on historic resources. The following paragraphs first describe each of the ten standards and then describe the level of compliance of the Proposed Project using that standard.

**STANDARD 1** "Every reasonable effort shall be made to provide a compatible use for a property which requires minimal alteration of the building, structure, or site and its environment, or to use a property for its originally intended purpose."

The Proposed Project retains its historic use as a sports facility, and as noted below, alterations to accommodate this use have been reduced as much as possible and in many cases are reversible.

Changes made to maintain its use as an economically viable facility include adding suites, club seats, rest rooms, concessions, a shade canopy, elevators and escalators, locker rooms, maintenance and operation areas, and making the stadium more intimate by placing the seats closer to the playing field.

Thus, Standard 1 will be met while bringing the facility up to current functional requirements for maintaining its continued historic use.

**STANDARD 2** "The distinguishing original qualities or character of a building, structure, or site and its environment shall not be destroyed. The removal or alteration of any historic material or distinctive architectural features should be avoided when possible."

It is important to note that "Rehabilitation," as defined in the Standards, is "the process of returning a property to a state of utility, through the repair or alteration, which makes possible an efficient contemporary use while preserving those portions or features of the property which are significant to its historic, architectural or cultural values." In this context the alterations and new construction fit in with that definition because they will remove very few of the important character-defining features except in a few local instances. Generally, those aspects of the Coliseum will remain in place and in a few localized areas they will be covered over or removed as noted below.

The Coliseum has three primary character-defining features and many details that contribute to its significance. These include: the overall bowl shape that is perceived from inside the Coliseum; the exterior form of the Bowl with the concrete pilasters, panels and stepped seats at the rim; and the Peristyle which is the major architectural feature of the Coliseum.

The overall bowl form of the Coliseum as seen from the inside of the Coliseum will be retained and clearly evident. The original concrete bleachers will be covered over but the new seating will enhance and reinforce the bowl form. The upper seating areas will be removed and covered over but the new proposed seating will maintain the form and sense of a bowl when inside the facility.

The exterior form of the Coliseum with the walls, structural elements, stairways and entry tunnels, pilasters and cantilevered seating are all retained and enhanced. New seating will be set above and structurally free standing from the historic rim of the Coliseum. Exterior escalators, out buildings and the press box will be removed. New landscaping will be added to enhance and set-off the building.

The Peristyle is architecturally the most significant element of the Coliseum and will be restored and enhanced by the removal of the large electronic scoreboard and video board boxes now currently mounted on it. The concrete and other elements of the Peristyle will be restored.

The entire eastern end of the Plaza level will be enhanced and the Peristyle seen as the focus again when entering the facility. The proposed circulation system will provide new access to the many monuments and markers on the Peristyle and Pylons.

This Standard is met regarding the Exterior form of the building and treatment of the Peristyle. The exterior form of the Coliseum will be restored and be completely visible upon completion of the Proposed Project and the Peristyle will be restored and enhanced with inappropriate elements removed from it. Thus, of the three character-defining features, only the bowl shape and the seating will be altered to some extent. The bowl has already been altered over the years and the field level lowered. The one area where there is removal of character-defining features is the removal of historic concrete and wood seating at the Club level.

STANDARD 3 "All buildings, structures, and sites shall be recognized as products of their own time. Alterations that have no historical basis and which seek to create an earlier appearance shall be discouraged."

Standard 3 does not apply to the Proposed Project as no effort is being made to replicate an earlier appearance. All restoration work is being done using original historic drawings, photographs, and physical evidence found at the Coliseum.

None of the proposed changes will give a false sense of history or seem to create an earlier appearance. New construction is clearly not historic in appearance and has carefully been designed to blend with the historic character-defining features of the Coliseum.

STANDARD 4 "Changes which may have taken place in the course of time are evidence of the history and development of a building, structure, or site and its environment. These changes may have acquired significance in their own right, and this significance shall be recognized and respected."

The Coliseum has continually been altered since its initial construction. Important design elements were added in the 1930s, '40s and '90s that are being retained and enhanced. These include the Art Moderne additions such as the ticket booths and the Coliseum Commission office and other details that will be retained. In 1993 the locker rooms were renovated. Substantial seismic retrofit alterations

NOM ABBA occurred in 1994 after the Northridge Earthquake. The changes included new pilasters added to the interior of the exterior walls and extensive beams and connections from the exterior to the concrete seating areas. The interior concrete was excavated, crushed on site and reused to recast new seismically retrofitted seating sections. The seismic retrofit included over \$100 million in improvements.

The changes to the Coliseum that have gained importance over time are being respected and enhanced. As noted above, only some seating at the Club level will be removed as part of the proposed alterations. Therefore, this standard will be met.

**STANDARD 5** "Distinctive stylistic features or examples of skilled craftsmanship which characterize a building, structure, or site shall be treated with sensitivity."

Restoration of the Peristyle, the seating at the rim of the bowl and the exterior wall elements all contribute to compliance with this standard. Removal of upper level seating detracts from meeting Standard 5. The Proposed Project will therefore be substantially consistent with this Standard.

STANDARD 6 "Deteriorated architectural features shall be repaired rather than replaced, wherever possible. In the event replacement is necessary, the new material should match the material being replaced in composition, design, color, texture, and other visual qualities. Repair or replacement of missing architectural features should be based on accurate duplication of features, substantiated by historic, physical, or pictorial evidence rather than on conjectural designs or the availability of different architectural elements from other buildings or structures."

The Proposed Project will retain architectural features and wherever possible restore or maintain them. In some instances recreations of elements may be necessary due to deterioration or damage. This may include some elements of the rim seating and the exterior wall elements.

This Standard is being met as deteriorated features of the Coliseum will be repaired when possible and only replaced if repair is not possible. This includes restoration of the Peristyle, the concrete elements of the exterior, the pilasters and the rim and concrete beams and columns.

STANDARD 7 "The surface cleaning of structures shall be undertaken with the gentlest means possible. Sandblasting and other cleaning materials that will damage the historic building materials shall not be undertaken."

Methods and the extent of cleaning have not been determined at this time. All cleaning and repairs will undertaken to meet Standard 7.

**STANDARD 8** "Every reasonable effort shall be made to protect and preserve archeological resources affected by, or adjacent to any project."

No archaeological resources have been identified on the site therefore Standard 8 does not apply to the Proposed Project.

STANDARD 9 "Contemporary design for alterations and additions to existing properties shall not be discouraged when such alterations and additions do not destroy significant historical, architectural or cultural material, and such design is compatible with the size, scale, color, material, and character of the property, neighborhood or environment."

The new roof canopies, new seating areas and structural supports, suites and other new elements that are part of the Proposed Project will be clearly different, yet compatible with, the historic character-defining features.

Great care has been used so that elements added to the Coliseum will be compatible with the existing historic features while they are clearly modern. The new stadium seating added above the rim of the Coliseum is supported with new angled columns that are clearly modern.

In addition, the proposed canopies are not supported by numerous columns that interfere with sight lines and would affect historic elements but are cantilevered and supported by a few braces that are separate from the historic stadium. Modern stadiums have many freestanding columns or large superstructures to provide for both lighting and speakers. As a result they frequently overwhelm the stadium below them. This has been avoided with the Proposed Project.

The new Club and Suites Levels will also be designed to be differentiated from the historic elements below them. Therefore, the Proposed Project would be substantially consistent with this Standard.

STANDARD 10 "Whenever possible, new additions or alterations to structures shall be done in such a manner that if such additions or alterations were to be removed in the future, the essential form and integrity of the structure would be unimpaired."

Many new elements of the Proposed Project could be removed at some time in the future if that were desired. These include the roof canopy, the new lower seating areas and the upper seating sections above the new Upper Concourse.

If removed, the historic form of the bowl would continue to be seen from inside the Coliseum, the exterior form of the bowl would also be intact with the cantilevered rim seating in place. Finally, the Peristyle would remain in place in its restored setting. Therefore, the Proposed Project would be substantially consistent with this Standard.

## **CUMULATIVE IMPACTS**

To analyze potential cumulative historical impacts, the list of related projects within the area, presented in Section IV.C, Cumulative Related Projects, were reviewed against a list of designated State Historic

Monuments, Los Angeles Historic-Cultural Monuments, and National Register of Historic Places properties. As stated previously, Exposition Park was determined eligible for listing on the National Register in 1993 as a Historic District. To date it has not been a formally listed on the National Register. The Exposition Park Historic District includes all of Exposition Park and a number of buildings located within it are listed as contributing structures to the District. The Exposition Building, the Natural History Museum, the California State Armory, the Rose Garden, the Memorial Coliseum, the Los Angeles Swimming Stadium and the Park Clubhouse were all determined to be contributing elements to the District. The California Science Center, the Los Angeles Memorial Sports Arena, the California Aerospace Museum and the California African American Museum were identified as non-contributing elements of the District. The historic Exposition Building was effectively demolished in 1995 for the Science Center and the Swimming Stadium has been substantially altered. Whether or not these changes would jeopardize the designation status of the Exposition Park Historic District in the judgment of SHPO cannot be determined prior to their evaluation.

#### MITIGATION MEASURES

The following mitigation measures are recommended to reduce the Proposed Project's impact upon historic resources. Mitigation measures shall be included in all contracts between the applicant and Project contractors to assure compliance with the following:

- 1. Recordation. Demolition of any historic fabric shall be documented in a report consistent with Historic American Buildings Survey (HABS) standards. The report shall document the significance and physical condition of the historic resources proposed for demolition, both historic and current, photographs, written data, and text. The documentation shall include:
  - a. A brief written historic and descriptive report shall be completed in narrative format, including an architectural data form.
  - b. A site plan on 8" x 11" paper showing the location of the buildings should be included. This site plan shall include a photo-key.
  - c. A sketch floor plan on 8" x 11" paper shall accompany each architectural data form.
  - d. Large format (4" x 5" or larger negative size) photographs in accordance with HABS guidelines. Views shall include several contextual views, all exterior elevations, detailed views of significant exterior architectural features, and interior views of significant historical architectural features or spaces.
  - e. Field photographs (35mm) based on HABS guidelines. Views as detailed in large format photographs.

- f. The report shall include copies or prints of any available original plans and historic photographs.
- g. Archivally stable reproductions of any available significant historic construction drawings and photographs.
- h. Archival copies of the documentation shall be submitted to the Los Angeles Memorial Coliseum Commission.
- 2. In accordance with Standard 7 of the Secretary of the Interior's Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring and Reconstructing Historic Buildings, the surface cleaning of structures shall be undertaken with the gentlest means possible. Sandblasting and other cleaning materials that will damage the historic building materials shall not be undertaken.
- 3. The Proposed Project shall be constructed in substantial compliance with the Conceptual Historic Fabric Retention Plan, as depicted in Figure III-3 of this EIR.

#### LEVEL OF IMPACT AFTER MITIGATION

A concerted effort has been made to respect the history and importance of the Coliseum and recognize the many changes that have occurred to the facility during the course of its 80-year history. The conceptual design of the Proposed Project has gone through a number of revisions in response to many comments received during the design process and reflects this in the current form. It has not been possible to retain all elements of the Coliseum in the process of bringing the stadium up to today's requirements for maintaining its historic use as a venue for sporting events, but the few that have been sacrificed have been done so reluctantly.

The Proposed Project meets all of the Standards except for the removal of the seating at some locations. The removal of some of the existing seating, considered to be part of the historic fabric of the Coliseum, is a significant impact on the environment and cannot be feasibly mitigated. Much of the seating, as well as the form of the bowl, will remain and be clearly visible around the entire Coliseum for the interior. The exterior of the Coliseum will be returned to its former appearance and the Peristyle will be restored and enhanced with the removal of the large electronic scoreboards.

It should also be noted that the Coliseum is listed as a National Historic Landmark because of the events that have occurred there and that the stadium itself has been a backdrop to these events. Its historic use is largely why it has been designated a National and State landmark, and this rehabilitation will guarantee that historic use can continue into the future by making the Coliseum an economically viable facility for sporting events.

As a result of the Proposed Project, there is no specific mitigation for the loss of historic materials, primarily the removal of portions of the seating. Other alterations to the Coliseum either improve the character-defining features or could be reversed in the future. Therefore, an unavoidable significant adverse impact would result.

# V. ENVIRONMENTAL IMPACT ANALYSIS D. GEOLOGY/SEISMIC HAZARDS

This section provides an analysis of impacts related to seismicity hazards such as fault rupture, ground shaking, landsliding, and liquefaction. The analysis, in part, is based on readily available geotechnical and seismic information and the findings and recommendations presented in prior geotechnical investigations including a report prepared for the renovation of the Los Angeles Memorial Coliseum by Law/Crandall, Inc., (December, 1991). Smith Emery Company prepared a report of Compacted Fill for the Coliseum, dated July 2, 1993, documenting earthwork activities during the preparation of the site for future renovation. Following this report, the Coliseum suffered extensive damage during the 1994 Northridge earthquake. Law/Crandall subsequently prepared additional geotechnical and structural analysis as contained in the Report of Foundation Investigation for the Los Angeles Memorial Coliseum Repair, dated April 1, 1994 and the Draft Report of Pile Load Testing for the Los Angeles Memorial Coliseum, dated August 18, 1994. These technical reports are incorporated into the EIR by reference and are available on file at the Los Angeles Memorial Coliseum Commission offices at 3939 S. Figueroa Street, Los Angeles California.

#### ENVIRONMENTAL SETTING

## **Grading and Excavation**

The Project Site is located in the north central portion of the Central Block of the Los Angeles Basin, and is currently developed with the Los Angeles Memorial Coliseum and its associated structures. The Los Angeles Basin is an extensive northwest-trending structural downwarped trough filled to capacity with Cretaceous through Pleistocene age marine and non-marine sedimentary bedrock formations and capped with late Pleistocene and Holocene age alluvial deposits. Regional subsidence in the basin reaches over 30,000 feet of depth and, in the immediate site area, the sediments are approximately 10,000 feet thick. Basement rock beneath the basin floor consists of Mesozoic age intrusive granitic rock types. Structural subsidence of the basin has been continuous throughout most of the Tertiary period, though relatively short periods of uplift are evident. Regional uplift continues to occur to the present time, with the most recent inland seas regressing oceanward approximately 120,000 years ago.

The floor of the Los Angeles Basin is generally flat and represents a vast alluvial outwash plain. Prominent mountain ranges and a series of hills bound the basin to the north, south and east, with the coastline of the Pacific Ocean forming the western boundary. As the basin subsided, the adjacent uplands were elevated by both faulting and folding processes that, in some cases, continue today. As the uplands were elevated, erosion slowly degraded them and streams transported the debris to the basin floor where they have remained as alluvial deposits.

The rugged, east-west trending Santa Monica Mountains lie roughly 10 miles northwest of the Project Site. The Elysian Park and Repetto Hills, which are of relatively low relief, lie approximately 2.5 miles northeast

of the site. Located approximately 3.0 miles to the west are a series of discontinuous northwest-trending low hills associated with the Newport-Inglewood Structural Zone. The Baldwin Hills are located approximately 3.5 miles west of the Project Site. The coastline is located 9.9 miles to the southwest of the site at its closest approach.

Though the area around the Coliseum has been completely urbanized, the main drainage systems remain near their natural prehistoric course locations. The Los Angeles River is the closest main drainage to the site and is located approximately 3.5 miles to the east. The river flows southward to the Pacific Ocean in the vicinity of the Los Angeles Harbor and drains all of the San Fernando Valley and a major portion of the Los Angeles Basin inclusive of the area immediately surrounding the Project Site. Surface drainage in the vicinity of the site is controlled by street drainage and storm drains that flow to the improved Los Angeles River channel. The Coliseum was constructed on an alluvial surface that lies in the middle reaches of the Los Angeles River fan. Prior to urbanization, a very broad alluvial fan was slowly being deposited across the Los Angeles Basin floor by the meandering Los Angeles River. The fan building process has all but stopped due to the construction of paved surfaces and structures and the improvements to the drainages themselves. Local surfaces are not prone to erosion or deposition in the site area due to the intervening presence of these alterations.

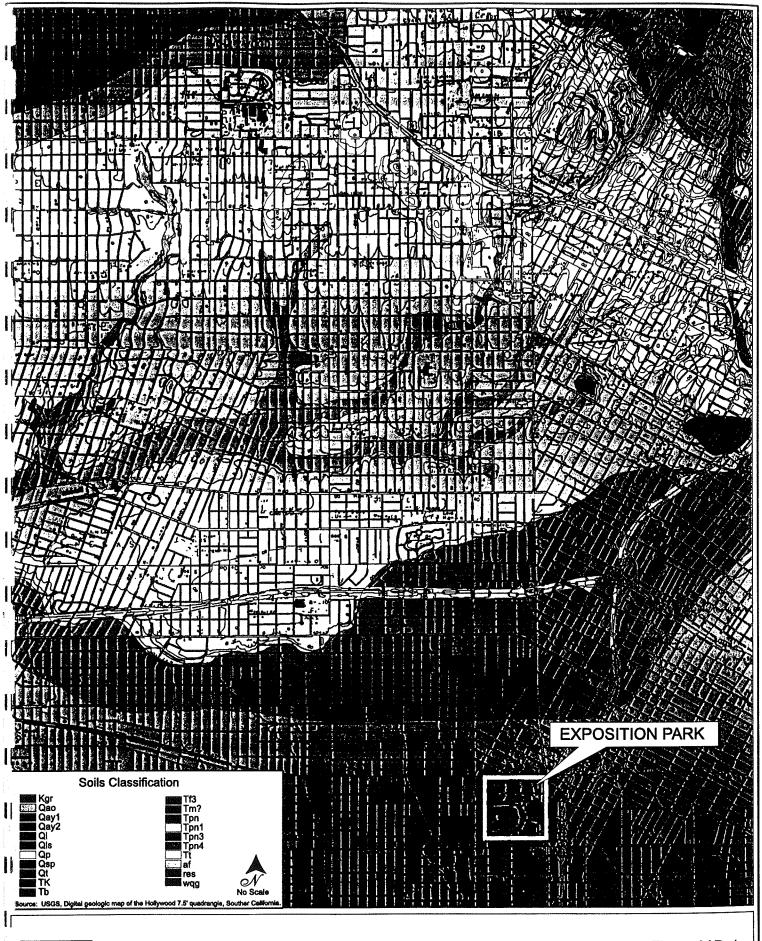
The Coliseum was constructed on a relatively flat surface at an elevation of approximately 175 feet above sea level. The natural surface gradient slopes down to the southwest at roughly 25 feet per mile. The interior floor of the Coliseum (the field level) was excavated approximately 30 feet below the natural ground surface. In 1994 the field level was lowered an additional 11 feet to allow for additional seating areas within the bowl. The field level is presently at an average elevation of 135 feet above sea level. The alluvium on which the Coliseum was constructed is of Pleistocene and Holocene age and has been accumulating for at least one million years. These deposits extend downward to a depth of approximately 3,000 feet below the surface. Based on data from water wells, the alluvium consists of unconsolidated beds of silt, sand, gravel, and minor clay that are mixed and discontinuous. This alluvial sequence forms the groundwater aquifers in the Los Angeles Basin.

Underlying the alluvium is a thick section of Tertiary age bedrock that was deposited in a mostly marine environment. This sequence consists of consolidated strata inclusive of sandstone, siltstone, and shale. These bedrock units have been assigned to the Pico, Repetto, Puente, and Topanga Formations. None of these formations are exposed near the site, although they do crop out in the upland areas surrounding the basin. Petroleum products are often found in these formations but are generally associated with structural folds and faults. Numerous oil fields exist in the Los Angeles Basin, but none lie in proximity to the project location. The closest oil field to the site is the Las Cienegas Oil Field, located approximately ½ mile north of the Project Site, north of Jefferson Boulevard.<sup>1</sup>

بنقع

1.3

<sup>&</sup>lt;u>City of Los Angels Environmental and Public Facilities Maps - Oil Field & Oil Drilling Areas in the City of Los Angeles</u>, Los Angeles City Planning Department, September 1996.


The Tertiary age bedrock sequence has an approximate thickness of 17,000 feet in the site area based on deep oil well data. Collectively, the alluvium and bedrock deposits are approximately 20,000 feet thick beneath the site and are underlain by a granitic basement of Mesozoic age. Figure V.D-1 shows the distribution of alluvial, bedrock, and basement deposits in the greater Los Angeles Basin area relative to the site.

Since bedrock is not exposed near the site, little detailed information is available about the structure of the bedrock or basement materials. However, indirect information from oil and water well drilling and geophysical studies do provide a reasonable indication of the composition of the structure. The general and regional structure of the Los Angeles Basin consists of a northwest- to southeast-trending syncline or trough with the site lying on the northeast side of the syncline axis. The bedrock to either side of the syncline dips toward the center or axis of the structure. Bedrock beneath the site is therefore dipping toward the southwest at presumably shallow to moderately steep angles. The alluvium is also bedded but much younger and is known to dip toward the southwest at very shallow angles, corresponding to the ground surface gradient.

#### Groundwater

The Los Angeles Basin contains a well-utilized groundwater aquifer system. Many hundreds of water wells have been drilled in the basin to supply groundwater. The quality of this groundwater is tested by numerous agencies. Generally, groundwater is found in the alluvial sequence and can be unconfined, confined or perched. In the site area, the groundwater is considered unconfined, meaning that there are no natural deposits that prevent the vertical flow of groundwater. The water table beneath the Coliseum lies at an approximate depth of 225 feet. This water surface fluctuates seasonally responding to the infiltration of water and pumpage. Extended upward and downward trends also occur during droughts or peak storm periods. The highest stand of the groundwater table was recorded in 1932 with a depth of 55 feet below the ground surface in the Coliseum area.

Perched groundwater is also known to exist in the area, and is a common occurrence throughout the basin and is not considered an important aquifer source. The groundwater in the near-surface Lakewood Formation is generally of poor quality. Groundwater in the underlying San Pedro Formation is extensively utilized for good quality water supply throughout most of the basin. Although water wells are located in the vicinity of the Coliseum, imported water supplies, rather than groundwater, are used for domestic use and irrigation. None of the existing structures on the Project Site are currently in contact with the water table. Sanitary effluent from the Project Site is currently disposed of off-site through the City sewer system for treatment and disposal into the ocean (for more detail, see Section V.H.3 of this EIR, Sanitary Sewers).



CHRISTOPHER A. JOSEPH & ASSOCIATES Environmental Planning and Research

Figure V.D-1 Geologic Soils Map

#### Subsidence

Several areas in the greater Los Angeles Basin have experienced subsidence in recent history, due largely to the withdrawal of oil resources and, to a much lesser degree, the withdrawal of groundwater. Known areas where subsidence has occurred lie near existing oil fields and/or water well fields, all at a considerable distance from the Project Site. The nearest such area to the site is the Wilmington Oil Field, located approximately 13 miles directly south of the Project Site, where up to 28 feet of subsidence occurred during the 1960's.

## **Flooding**

Flooding in the Los Angeles Basin is rare, but does occur during periods of major storm runoff. The Los Angeles County Flood Control District has developed an extensive storm sewer system, which has been purged several times during the past 100 years and which has generally functioned as designed. The Coliseum site is located in FEMA Community Panels No. 060137-0080D, effective February 4, 1987, and No. 060137-0081C dated December 2, 1980. These areas are designated as Zone C, areas of minimal flood hazard, where flood insurance is not mandatory. Although the Coliseum field itself is a depressed area, it has been provided with sufficient means to drain accumulated surface water. Furthermore, based on a review of the City's Environmental and Public Facilities Maps, the Coliseum is not located in a 100-year or 500-year flood plain area.<sup>2</sup>

# **Geotechnical and Foundation Investigations**

In December 1991, Law/Crandall Inc. prepared a geotechnical investigation for the renovation plans at the Coliseum. The 1991 investigation was prepared for a specific design plan as proposed in 1991. That design was never fully implemented. The present design plan for the Coliseum is based substantially on the same design concept as previously envisioned, though the plans are being refined and modified by the project Architect. It should be noted that as the architectural design plans are modified, a review and update of the prior geotechnical investigations should be evaluated for conformity and feasibility.

Smith Emery Company prepared a report of Compacted Fill for the Coliseum, dated July 2, 1993, documenting earthwork activities during the preparation of the site for future renovation. Following this report, the Coliseum suffered extensive damage during the 1994 Northridge earthquake. Law/Crandall subsequently prepared additional geotechnical and structural analysis as contained in the Report of Foundation Investigation for the Los Angels Memorial Coliseum Repair, dated April 1, 1994 and the Draft Report of Pile Load Testing for the Los Angeles Memorial Coliseum, dated August 18, 1994. These technical reports are incorporated into the EIR by reference and are available on file at the Los Angeles Memorial Coliseum Commission offices at 3939 S. Figueroa Street, Los Angeles California.

City of Los Angels Environmental and Public Facilities Maps – 100 and 500-Year Floodplains In the City of Los Angeles, Los Angeles City Planning Department, March, 1994.

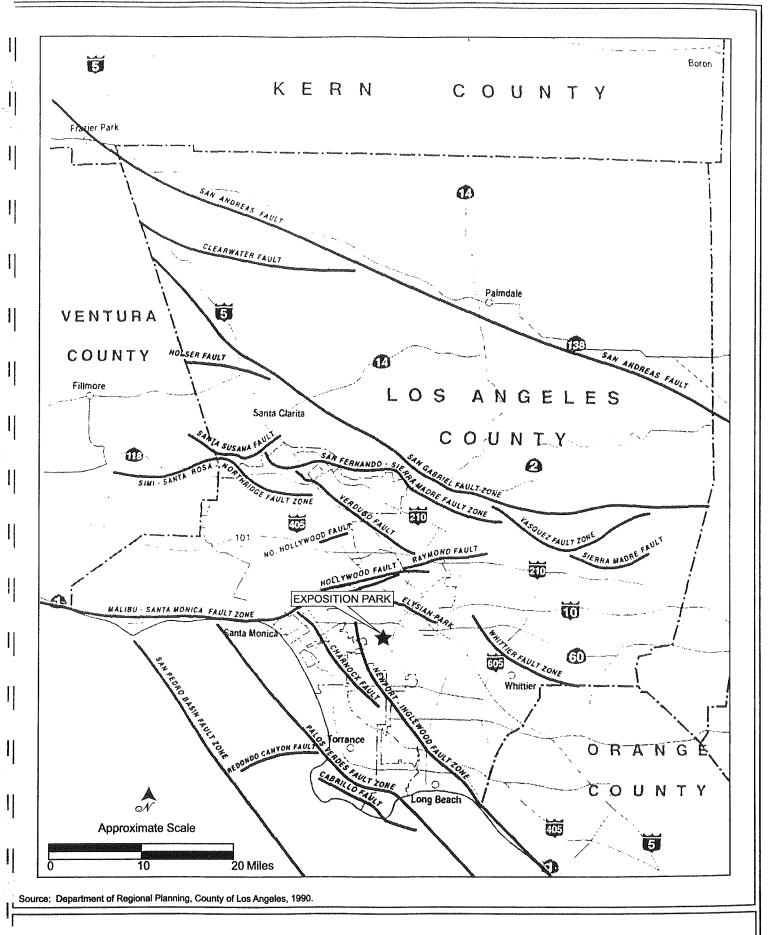
Š.

il.

## Seismic Hazards

## Fault Rupture Potential

Active and potentially active faults have been mapped adjacent to, within, and beneath areas in the City of Los Angeles. A potentially active fault is a fault that has demonstrated surface displacement of Quaternary age deposits (within the last 1.6 million years). An active fault is one that has had surface displacement within Holocene times (the last 11,000 years) or is included in an Alquist-Priolo Earthquake Fault Zone as established by the California Division of Mines and Geology. Faults that have not experienced movement within the past 1.6 million years are generally considered inactive.


The Project Site is located in the north central portion of the Central Block of the Los Angeles Structural Basin. As discussed previously, the Central Block is a fault-bound basin characterized by an alluvial lowland plain, bounded on the west by the Santa Monica Mountains and associated Santa Monica Fault; on the north by the Elysian and Repetto Hills and Elysian Park Fault; on the northeast by the Puente Hills and Whittier Fault; on the east by the Santa Ana Mountains; on the southeast by the San Joaquin Hills; and on the southwest by the Newport-Inglewood Fault zone.

The active and potentially active faults which are deemed capable of producing fault rupture in the City of Los Angeles are shown in relation to the Project Site in Figure V.D-2. The maximum credible and probable earthquake from each of these faults is shown in Table V.D-1. According to the Draft EIR for the Los Angeles Citywide General Plan Framework, fault ruptures are not known to be present in the Central City planning area in which the site is located.

#### Alquist-Priolo Earthquake Fault Zoning Act

The Alquist-Priolo Earthquake Fault Zoning Act of 1973 (Public Resources Code Section 2621 et seq.) represents the current State mandated approach to controlling development in active fault zones. There are two general requirements of this act: 1) the location of most structures for "human occupancy" may not be across the trace of active faults and 2) proposed developments within 1,000 feet of the established special study zones must have geologic/seismic reports done. The Project Site is not located in a state-defined Alquist-Priolo Earthquake Fault Zone or Special Study Area, and no active or potentially active faults are known to exist beneath the Project Site.<sup>3</sup>

California Department of Conservation, Division of Mines and Geology, Digital Images of Official Maps of Alquist-Priolo Earthquake Fault Zones of California, Southern Region, 2000.





CHRISTOPHER A. JOSEPH & ASSOCIATES Environmental Planning and Research

Figure V.D-2 Major Regional Faults

Table V.D-1
Characteristics of Major Faults in the Project Vicinity

| Fault Name                     | Туре            | Closest<br>Distance to Site<br>(km) | Estimated Slip<br>Rate<br>(mm/yr) | Estimated<br>Maximum<br>Earthquake<br>Magnitude <sup>a</sup> | Estimated<br>Earthquake<br>Intensity at<br>Site <sup>b</sup> |
|--------------------------------|-----------------|-------------------------------------|-----------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|
| Very Highly Acti               | ve              |                                     |                                   |                                                              |                                                              |
| San Andreas-<br>1,857 Ruptures | strike-slip     | 37.8                                | 34 <u>+</u> 5.0                   | 7.8                                                          | VIII                                                         |
| Highly Active                  |                 |                                     |                                   |                                                              |                                                              |
| Santa Susana                   | reverse         | 25.8                                | 5.0 <u>+</u> 2.0                  | 6.6                                                          | VII                                                          |
| Cucamonga                      | reverse         | 32.3                                | 5.0 <u>+</u> 2.0                  | 7.0                                                          | VII                                                          |
| Oak Ride                       | reverse         | 35.2                                | 4.0 <u>+</u> 2.0                  | 6.9                                                          | VII                                                          |
| Sierra Madre                   | reverse         | 16.7                                | $3.0 \pm 1.0$                     | 7.0                                                          | VIII                                                         |
| Palos Verdes                   | strike-slip     | 13.0                                | 3.0 ± 1.0                         | 7.1                                                          | IX                                                           |
| Anacapa-Dume                   | reverse oblique | 24.3                                | $3.0 \pm 2.0$                     | 7.3                                                          | VIII                                                         |
| Whittier                       | strike-slip     | 15.4                                | 2.5 <u>+</u> 1.0                  | 6.8                                                          | VIII                                                         |
| Newport-<br>Inglewood          | strike-slip     | 4.0                                 | 1.5 <u>+</u> 0.5                  | 6.9                                                          | X                                                            |
| Compton                        | blind thrust    | 6.8                                 | 1.5 <u>+</u> 1.0                  | 6.8                                                          | X                                                            |
| Elysian Park                   | blind thrust    | 7.0                                 | 1.5 <u>+</u> 1.0                  | 6.7                                                          | X                                                            |
| Northridge                     | blind thrust    | 18.3                                | 1.5 <u>+</u> 1.0                  | 6.9                                                          | IX                                                           |
| Moderately High                | ly Active       |                                     |                                   |                                                              |                                                              |
| Hollywood                      | reverse oblique | 7.7                                 | 1.0 <u>+</u> 0.5                  | 6.4                                                          | IX                                                           |
| Santa Monica                   | reverse oblique | 9.1                                 | 1.0 <u>+</u> 0.5                  | 6.6                                                          | IX                                                           |
| San Gabriel                    | strike-slip     | 21.0                                | $1.0 \pm 0.5$                     | 7.0                                                          | VIII                                                         |
| Chino                          | reverse oblique | 28.8                                | $1.0 \pm 1.0$                     | 6.7                                                          | VII                                                          |
| Raymond                        | reverse oblique | 8.8                                 | 0.5 ± 0.3                         | 6.5                                                          | IX                                                           |
| Verdugo Hills                  | reverse         | 12.2                                | 0.5 ± 0.5                         | 6.7                                                          | IX                                                           |
| Clamshell-<br>Sawpit           | reverse         | 19.9                                | 0.5 ± 0.5                         | 6.5                                                          | VII                                                          |
| San Jose                       | reverse oblique | 23.1                                | $0.5 \pm 0.5$                     | 6.5                                                          | VII                                                          |

The maximum earthquake that may credible occur given the current understanding of regional tectonism

Sources: GTC, 2000; CDMG, 1996 and California Science Center/California African American Museum Parking Structure FEIR, May 2001.

Modified Mercalli scale. VI-VII: "Minor damage including cracks in chimneys and walks. Furniture moved and items knocked off shelves." VII-IX: "Moderate damage including toppled chimneys, cracked stucco, frames shifted on foundations. Damage more severe to weak walls and masonry." IX-X: "Major damage, including partial to complete collapse of weak masonry and frame buildings and moderate damage to stronger structures."

## **Ground Shaking**

The most widespread, damaging effects of earthquakes are caused by strong ground shaking. The intensity of ground shaking at a given location depends on several factors, but primarily on the earthquake magnitude, the distance of the site from the earthquake's epicenter, and the response characteristics of the soil or bedrock units underlying the area. Strong ground shaking can catastrophically damage structures.

The two most consistent databases for assessing ground shaking hazard potential in the City of Los Angeles are the California Division of Mines and Geology (CDMG) (1988) planning scenario study for a major earthquake (magnitude greater than 7.0) on the Newport-Inglewood Fault Zone (NIFZ) and the Caltrans (1992) estimates of peak horizontal acceleration from maximum credible earthquakes for rock and stiff-soil sites.<sup>4</sup> The CDMG scenario utilizes the Modified Mercelli Intensity (MMI) scale standard, a modeled seismic intensity distribution. The MMI intensity values are presented as VII, VIII, and IX. where IX is considered a high hazard, VIII is moderate, and VII is low. However, an episode of VII intensity could severely damage an unreinforced structure, cause parapets and building fronts to fall on to sidewalks, and tumble chimneys through roofs. According to the January 1995 Draft Environmental Impact Report for the Los Angeles Citywide General Plan Framework, the Central City Subregion should reach an intensity of VIII (moderate) from the Newport-Inglewood Fault Zone scenario earthquake. Furthermore, according to the Caltrans scenario, the Central City Subregion could experience peak ground acceleration (PGA) of greater than 0.5 to 0.6g<sup>5</sup> from a large earthquake on any of the nearby faults. This is considered a high hazard, since it is greater than minimum levels upon which building code standards are based, although the Project Site would not be exposed to any greater risk from groundshaking than any other site in the Central City subregion.

#### ENVIRONMENTAL IMPACTS

## Thresholds of Significance

A significant geologic or seismic impact would occur if the project has the potential to pose an increased threat to public safety or destruction of property by exposing people, property, or infrastructure to seismically-induced hazards that can not reasonably be reduced to acceptable levels of safety with modern geotechnical engineering practices.

## **Project Impacts**

Implementation of the Proposed Project would include the construction of new seating decks, bringing the majority of the seats closer to the field. The existing exterior concrete wall of the Coliseum would be

<sup>&</sup>lt;sup>4</sup> Los Angeles Citywide General Plan Framework Draft EIR, January 1995.

<sup>&</sup>quot;g" is the force associated with PGA.

preserved, with new construction on the interior being attached to the exterior wall. The existing 35-foot earth berm supporting the elevated concourse level would be removed to grade inside the exterior wall, with a new concrete structure built in the same location. Project uses, building sizes and locations, designs, and building heights for the Proposed Project are discussed in detail in Section II.C of this report, Project Characteristics.

Implementation of the Proposed Project would result in the excavation and removal from the site of approximately 250,000 cubic yards of soil and demolition debris material.

Several types of foundation systems may be considered for support of the proposed structures to be developed as part of the Proposed Project. Examples of these foundation systems may include the use of spread footings, mat-type foundations, and cast-in-place piles. For preliminary design, shallow spread footings may be designed using an allowable bearing value of 1,500 pounds per square foot for a footing of 12 inches in width and depth of embedment. This allowable bearing value may be increased by 300 pounds per square foot (or by 20 percent) for each additional foot of depth and width to a maximum bearing value of 4,500 pounds per square foot. Higher maximum bearing values may be permissible after an additional soil and foundation investigation is performed and the specific location and loading of structures become known. Total settlement and differential settlement should be within tolerable design limits, generally less than 0.5 inch and 0.25 inch, respectively. Other construction details, including design curves and other information pertinent to the deep foundation consisting of cast-in-place friction piles would be expected to be fully developed during the geotechnical investigation phase of the actual construction period. However, based upon preliminary investigations, it is expected that some difficulty may be encountered during the drilling operation due to the presence of some gravel, cohesionless sand, and scattered cobbles in the soils underlying the site. However, this difficulty should be overcome through the utilization of casing. The proposed design includes the excavation of the lower concourse underneath the northern and southern portions of the stadium at an elevation of approximately 12 feet below the street level. In addition, the design includes the excavation in the southwest portion of the site to a depth of approximately 22 feet below street level. In these areas, it would be desirable to utilize spread footings where necessary.

## Geology

Impacts associated with implementation of the Proposed Project on the site's geologic formations, inclusive of the near surface alluvial deposits, are expected to be minimal. The surface soils would be disturbed during grading but only to limited depths. Natural surface drainages have previously been modified when the Coliseum was originally constructed, and all new proposed drainages would be compatible with the existing system. Due to the relatively flat topography of the site, proposed grading would have little topographic impact. No well-defined natural or man-made drainages exist on the site, thus the potential for flooding would remain minimal.

The relatively flat topography of the site and surrounding area preclude the possibility of landslides resulting from project development. Cut and fill slopes are expected to remain essentially unchanged for the proposed new development. No evidence of subsidence in the vicinity of the site was noted during the literature review and the generally dense nature of the site's soils would minimize the likelihood of local

subsidence. All soil surfaces, whether natural or artificial, would be concealed and protected by asphalt or concrete covers or would be landscaped to limit erosion by wind and water. Laboratory testing indicated that the surface soils within the foundation area of the proposed development are not expansive, collapsible, or compressible. Therefore, implementation of the Proposed Project is not expected to produce any adverse impacts relative to non-seismic geotechnical issues.

# **Grading and Excavation**

During grading activities, noise and dust impacts would result from the use of heavy equipment to excavate, load, and transport earth materials off-site. The hauling of excavated materials to either fill-dirt receptor sites or regional landfills would require an estimated total of 20,000 truck trips over a six-month period. Dust raised during grading would have an incremental short-term adverse impact on local and regional air quality (for more detail, see Section V.B of this report, Air Quality). In addition, the excavation and hauling of earth materials would temporarily increase noise levels in the immediate area for the expected 18 to 20 month duration of project construction activities (for more detail, see Section V.F of this report, Noise). At this time, no export haul route has been identified since the ultimate destination of the materials to be removed from the site is not yet known. However, any regional transport of removed materials from the site would utilize the nearby Harbor Freeway (Interstate 110) via Martin Luther King Jr. Boulevard, and would avoid local residential streets. Development of the Proposed Project would not result in the loss of any material resources. All uncontaminated graded materials would be transported off-site to either one of several local Class III landfills or an as-of-yet-unidentified receptor site needing imported fill material. If landfills are utilized as receptor site(s) for this material, project implementation would incrementally contribute to the ultimate exhaustion of local landfills. Landfills would only be considered as a last resort disposal option for materials from the site (for more detail, see Section V.H.4 of this report, Solid Waste and Discarded building and/or earth materials containing any hazardous materials, primarily asbestos, would be disposed of in accordance with all applicable local, state, and federal regulations. Without mitigation, impacts to landfill capacities by the disposal of graded materials could result in a significant impact.

## Groundwater

The shallow aquifer below the Project Site is of generally low quality and the pumping of groundwater locally for use at the Coliseum is not being proposed as part of the Proposed Project. As stated previously, though water wells do lie in the vicinity of the Coliseum, imported water supplies, rather than wells, are used for domestic use and irrigation. All grading and construction activities expected to be associated with the Proposed Project would take place above the present continuous groundwater table and above the historic high groundwater table, and none of the existing or proposed structures associated with the Coliseum facility would be in contact with the water table. Groundwater is not expected to be encountered during grading or construction; however, perched groundwater or saturated soil conditions may exist in scattered areas underneath the site. Implementation of the Proposed Project is not expected to produce any adverse impacts relative to groundwater.

## Liquefaction

In addition to ground shaking at the Coliseum site, the potential for other secondary effects caused by earthquakes was evaluated, including seismically-induced liquefaction, subsidence, landsliding, and flooding. Due to the depth of the groundwater table (approximately 225 feet below the surface of the Project Site) and the relatively high density of the soils underlying the site area, the potential for soil liquefaction is considered very remote. A major regional earthquake may cause a very small amount of subsidence across the basin, although the amount of subsidence expected would likely be non-differential and extremely small. The Project Site is located far enough from the closest uplands to preclude a hazard of induced landsliding. Similarly, the site is high and/or far enough from the coastline or any large inland body of water to preclude any dangers from tsunami or seiche waves or inundation from the breaching of an upgradient reservoir. Therefore, the Proposed Project would not be subject to significant impacts caused by seismically-induced liquefaction.

## Seismicity

Since no known or mapped active, potentially active, or inactive faults, if projected, would trend toward or directly through the Project Site area, and the Coliseum does not lie in an Alquist-Priolo Special Study Zone, the potential for direct surface fault rupture on the site is considered very unlikely. Thus, impacts associated with implementation of the Proposed Project relative to the seismic displacement of structures on the site would be less than significant. In the event that any of the active faults within the greater Los Angeles area were to rupture, an earthquake would be generated which would, in all likelihood, result in potentially significant ground shaking on the Project Site. However, development of the Proposed Project would not increase the likelihood of the occurrence of a seismic event affecting the site. The Proposed Project would not be anticipated to adversely impact any portion of the City's Seismic Safety Plan, as it would be consistent with the relevant policies of the Plan, which include the upgrading of public facilities to meet the risk requirements for seismic safety and the preservation of the architectural character of buildings and structures important to the cultural heritage of the City, consistent with life safety considerations. Therefore, the Proposed Project would not result in any significant seismic impacts.

## **Ground Shaking**

The degree of ground shaking experienced on the site would depend on the location of the earthquake's epicenter relative to the site, and the earthquake's magnitude. When a fault moves, it may or may not cause surface displacement, but it most likely will cause ground shaking, the amount of which depends on many geologic and tectonic parameters. Eleven faults, shown in Table V.D-1, were identified that could influence the site relative to earthquake ground shaking. Additional faults outside the local area, such as the San Andreas would also have the potential to create moderately strong ground motion effects in the project area. As mentioned previously, the maximum magnitude event capable of occurring along a given fault under the current scientific framework of tectonics is the maximum credible earthquake. In determining the maximum credible earthquake, little regard is given to probability of occurrence. It should be noted that present building codes and construction practices are intended to minimize structural damage to buildings and loss of life as a result of a moderate or major earthquake. While it is impossible to totally prevent

structural damage to buildings and loss of life as a result of seismic events, adherence to all applicable building codes and regulations and site specific engineering specifications can reduce such impacts to less than significant levels. A significant impact posing an increased threat to public safety or destruction of property by ground shaking is not expected to occur with the development of the Proposed Project.

#### **CUMULATIVE IMPACTS**

As with the Proposed Project, development of the identified related projects could require the extensive export of graded earth materials off-site. Although the degree of impact associated with any single related project would have to be analyzed on a project-by-project basis as each project is reviewed by the appropriate City and/or State agencies, the cumulative generation of this graded material could contribute to the ultimate exhaustion of local landfills, if landfills are chosen as material receptors. If landfills are utilized as receptor site(s) for project-generated materials, then the project, together with the related projects, would be considered to have a cumulatively adverse impact on landfill capacities in Los Angeles County. No cumulatively adverse soil impacts would be anticipated relative to any local property proposed for development with a related project in conjunction with the Proposed Project due to the potentially concurrent construction and operation of the project and related projects, provided all are implemented with design mitigations appropriate for each property. Each related project would need to be evaluated by the appropriate agencies on a case-by-case basis in order to determine the mitigations appropriate for each project.

No adverse geotechnical impacts are anticipated relative to proposed development on any local property due to the potentially concurrent construction and operation of the Proposed Project and related projects, provided that all are implemented with appropriate design mitigation. The Proposed Project and related projects would continue to be subject to ground shaking in the event of an earthquake, as would most other areas of Los Angeles. Assuming adherence to the applicable building codes and regulations, potential significant adverse impacts from a major earthquake would be reduced, but not eliminated.

## MITIGATION MEASURES

The following mitigation measures are required in order to effect a reduction in the severity of potential onsite impacts resulting from seismic events occurring on Southern California faults:

- 1. All structures to be constructed or renovated as part of the Proposed Project shall be designed as required by either the Uniform Building Code for structures within Seismic Zone 4, or other pertinent State and/or City building codes (such as Division 23, Section 91.2305 of the City of Los Angeles Building Code), to withstand the expected ground motions.
- 2. A comprehensive geotechnical investigation shall be prepared to the satisfaction of the responsible State and/or City reviewing agencies. The investigation shall verify the soil conditions under the proposed structures and derive the pile capacities.

- 3. All grading activities shall be in compliance with specific recommendations and requirements provided in the geotechnical report prepared for the Proposed Project, subject to review and approval by the appropriate State and/or City responsible agencies.
- 4. A copy of the foundation report and/or supplements and approval letter shall be attached to the State and/or City office and field sets of plans, with one copy of the foundation report and/or supplements submitted to the State and/or City plan checker prior to the issuance of the permit.
- 5. During construction, all grading shall be carefully observed, mapped, and tested by the project engineer. All grading shall be performed under the supervision of a certified engineering geologist and/or soils engineer in accordance with the applicable provisions of the State and/or City Building Codes to the satisfaction of the State and/or City building and safety authorities. The responsible engineer shall review and approve the foundation plan and/or the excavation/shoring plan prior to the issuance of any permits.
- Artificial fills in the existing 35-foot earth berm shall not be considered suitable for the support of
  foundations unless excavated, recompacted, and tested to be in compliance with the applicable State
  and/or City Grading Codes.
- 7. The geologist or the soils engineer shall inspect and approve all fill and subdrain placement areas prior to placing fill.
- 8. Haul route approval for the transport of graded and excavated earth materials and removed building materials to receptor sites and/or local landfills shall be obtained from the City of Los Angeles Department of Building and Safety and/or other responsible City agencies. Haul routes for the transport of such materials shall be established, where possible, through non-residential areas so as to minimize the effects of noise, and shall maximize, where possible, the distance traveled on major arterials.
- 9. Discarded building and/or earth materials containing any hazardous materials, primarily asbestos, shall be disposed of in accordance with all applicable local, state, and federal regulations.
- 10. To the maximum extent feasible, uncontaminated graded materials shall be transported off-site to a receptor site needing imported fill material. Landfills shall only be considered as a last resort disposal option for materials from the site.
- 11. Prior to the issuance of building permits, if the soils and/or perched groundwater beneath the site are found to be contaminated, the City of Los Angeles Fire Department shall be notified and provided with a summary of all local, state, county, and federally required remediation activities and submit evidence of compliance.
- 12. Where encountered on the site, perched groundwater or saturated soils should be removed to the extent feasible or necessary.

## LEVEL OF IMPACT AFTER MITIGATION

Implementation of the Proposed Project would require the grading, excavation, and removal from the site of approximately 250,000 cubic yards of earth and building materials, which would result in short-term incremental dust and noise impacts around the Project Site and along the chosen haul route. If landfills are utilized as receptor site(s) for this material, project implementation would incrementally contribute to the ultimate exhaustion of local landfills. Implementation of the recommended mitigation measures would reduce, but not eliminate, these impacts. With implementation of the foregoing mitigation measures, project construction and operation would not be expected to have any unavoidable significant adverse impacts on subsurface soils at the Project Site. Temporary soil disruption would occur during excavation and construction activities.

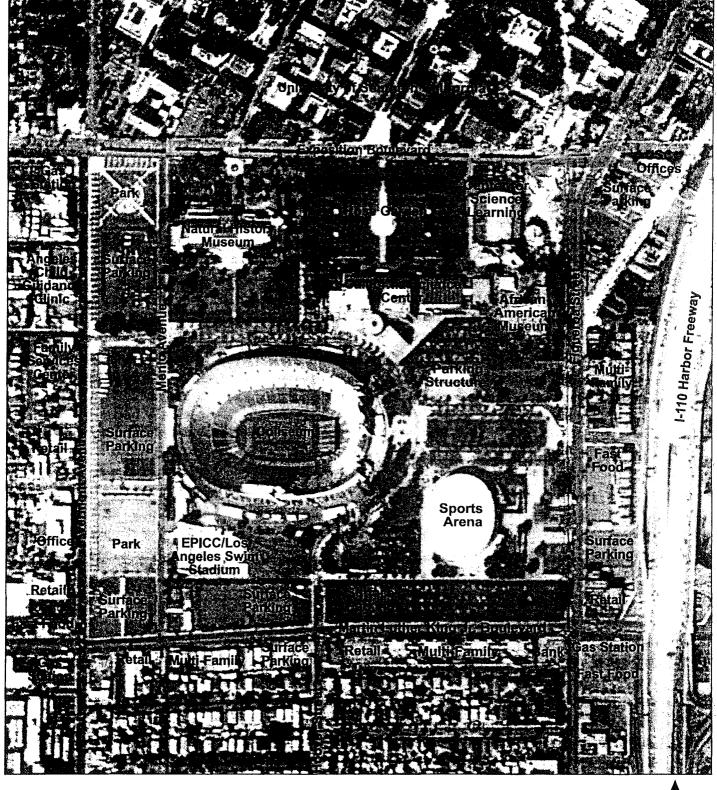
With implementation of the foregoing mitigation measures, project construction and operation would not be expected to have any unavoidable significant adverse effects on the natural terrain or local geology. As with most other areas of Southern California, the Proposed Project is subject to potential ground shaking as a result of seismic events. In event of a major earthquake, this ground shaking could result in significant impacts for the Project Site and surrounding area. However, with the implementation of recommended mitigation measures, including compliance with applicable building codes, the potential risk would be reduced to an acceptable level consistent with similar stadiums and public facilities in the Southern California area.

Any potentially significant impacts associated with geology and soils would be less than significant after implementation of the above listed mitigation measures.

# V. ENVIRONMENTAL IMPACT ANALYSIS E. LAND USE

#### ENVIRONMENTAL SETTING

## **Existing Land Uses**


The Project Site is located within the South Los Angeles Community of the City of Los Angeles and consists of an oval-shaped, approximately 27.4-acre parcel of land within Exposition Park. The Project Site includes the Los Angeles Memorial Coliseum and the areas immediately surrounding the Coliseum structure and is situated within the southwest portion of the Park. Exposition Park is an approximately 160-acre reservation of public land established that was originally established in 1908. The Los Angeles Memorial Coliseum was constructed in 1932.

Exposition Park is bounded by Exposition Boulevard on the north, Figueroa Street on the east, Martin Luther King Jr. Boulevard on the south, and Vermont Avenue on the west. Streets accessing the internal portions of Exposition Park include State Drive, North Coliseum Drive, and South Coliseum Drive. Menlo Avenue, which parallels the western edge of Exposition Park (Vermont Avenue) between Exposition and Martin Luther King Jr. Boulevards, bisects the park from north to south.

Exposition Park, while also a landscaped setting for community public recreation, is primarily a site for cultural, entertainment, and sporting facilities that draw visitors from much greater distances. Major public facilities within the park include the Los Angeles Memorial Coliseum (the Project Site), the California Science Center, the Rose Garden, the County Museum of Natural History, the Los Angeles Memorial Sports Arena, the African-American Museum, the Center for Science Learning, the IMAX Theater, and the EPICC/Los Angeles Swimming Stadium. An aerial map of the Project Site and immediately surrounding area indicating the existing arrangement of facilities, access routes and land uses within and adjacent to Exposition Park is provided in Figure V.E-1.

# **Land Uses Surrounding Exposition Park**

Land uses surrounding Exposition Park generally consist of commercial/retail uses, surface parking lots, and multi-family residential uses (see Figure V.E-1). The University of Southern California (USC), a private university, is located directly north of the park, across Exposition Boulevard. To the east of Exposition Park is surface parking, a USC school related use, multi-family residential uses, fast food restaurants, and a retail center. To the south of Exposition Park is a bank, multi-family residential uses, surface parking and a retail use. To the west of Exposition Park, on the west side of Vermont Avenue, is a fast food restaurant, retail uses, a family guidance center, a children's guidance center and a gas station.





Source: L.A. Coliseum Commission and Christopher A. Joseph & Associates, July 2003.

Approximate Scale 1" = 500'



CHRISTOPHER A. JOSEPH & ASSOCIATES Environmental Planning and Research

Figure V.E-1 Aerial Photograph of the Project Site

## Relevant Land Use Policies

The Project Site and many of the other land uses within Exposition Park are owned or operated by the State of California. The land under which the Coliseum is developed is owned by the Sixth District Agricultural Association of the State of California, also known as the "California Museum of Science and Industry" ("CMSI") or the "California Science Center." It is in the State and Consumer Services Agency and is deemed to be a tax-exempt organization as an instrumentality of this State in accordance with Section 23706 of the Revenue and Taxation Code (See Food and Agricultural Code Section 4101-4108). The Coliseum and the Sports Arena are operated by the Los Angeles Memorial Coliseum Commission. As a State entity, the Coliseum Commission is not subject to local General Plan and Zoning Code requirements for new development or redevelopment.

On a regional level, the Project Site is located within the planning area of the Southern California Association of Governments (SCAG), the Southern California region's federally-designated metropolitan planning organization that has prepared a Regional Comprehensive Plan and Guide (RCPG) to address the issue of regional growth. The Proposed Project is also located within the jurisdiction of the South Coast Air Quality Management District (SCAQMD). Each of these plans is discussed in greater detail below in relation to the project.

On a local level, the Project Site is located within the South Los Angeles Community Planning Area of the City of Los Angeles. It is also within the Hoover Redevelopment Project area, which is administered by the Community Redevelopment Agency of Los Angeles (CRA).

# CMSI/Exposition Park Master Plan

As noted above, the Project Site is owned and operated under the auspices of the State of California. The CMSI/Exposition Park Master Plan is the overriding land use planning document for State-owned property and uses within Exposition Park. In 1987, the California Legislature and the Governor approved the development of the CMSI/Exposition Park Master Plan ("Master Plan"). The Master Plan included goals and objectives oriented around developing, preserving and restoring the following areas within Exposition Park: (1) the California Museum of Science and Industry; (2) the Science Museum School; (3) the Science Educational Resource Center; (4) the California African-American Museum; (5) park landscaping and open space areas, (6) parking facilities and circulation; and (7) ancillary infrastructure improvements. Although the Master Plan did address ancillary issues such as infrastructure and landscaping improvements throughout Exposition Park, it did not address or left unchanged the following facilities: (1) the Rose Garden; (2) the Natural History Museum; (3) the Coliseum; and (4) the Sports Arena.

# Southern California Association of Governments (SCAG)

In 1994, the member agencies of SCAG adopted the Regional Comprehensive Plan and Guide (RCPG) to set broad goals for the Southern California region and identify strategies for agencies at all levels of government to use in guiding their decision-making. It includes input from each of the 13 subregions that make up the Southern California region (comprised of Los Angeles, Orange, San Bernardino, Riverside, Imperial and Ventura Counties). The Project Site is located within the City of Los Angeles subregion, which encompasses the entire City of Los Angeles. The RCPG serves as a policy document that sets broad goals for the Southern California region and identifies strategies for agencies at all levels of government to use in guiding their decision-making with respect to the significant issues and changes, including growth management, that can be anticipated by the year 2015 and beyond.

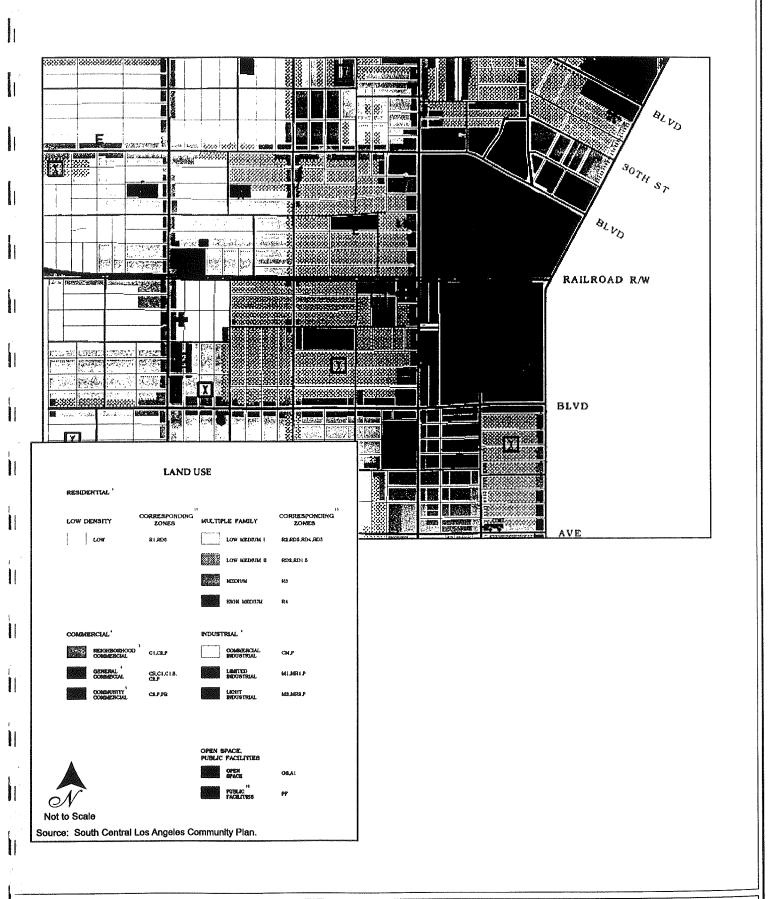
In response to the NOP for the Proposed Project, SCAG has determined that the renovation of the Coliseum is not regionally significant per SCAG Intergovernmental Review (IGR) Criteria and the California Environmental Quality Act (CEQA), Section 15206. Therefore, no further analysis with respect to the project's consistency with SCAG policies is required.

## South Coast Air Quality Management District

The Proposed Project is located within the South Coast Air Basin (SCAB) and therefore within the jurisdiction of the South Coast Air Quality Management District (SCAQMD). In conjunction with SCAG, the SCAQMD is responsible for formulating and implementing air pollution control strategies. The Air Quality Management Plan (AQMP), adopted in 1997 by SCAQMD and SCAG to assist in fulfilling these responsibilities, is intended to establish a comprehensive regional air pollution control program leading to the attainment of state and federal air quality standards in the SCAB area. Air quality impacts of the Proposed Project and consistency of the project impacts with the AQMP is analyzed in greater detail in Section V.B, Air Quality.

## **Congestion Management Program**

The Congestion Management Plan (CMP) for Los Angeles County was developed in accordance with Section 65089 of the California Government Code. The CMP is intended to address vehicular congestion relief by linking land use, transportation and air quality decisions. Further, the program seeks to develop a partnership among transportation decision-makers to devise appropriate transportation solutions that include all modes of travel and to propose transportation projects which are eligible to compete for state gas tax funds. To receive funds from Proposition 111 (i.e., state gasoline taxes designated for transportation improvements) cities, counties, and other eligible agencies must implement the requirements of the CMP. Within Los Angeles County, the Metropolitan Transportation Authority (LACMTA) is the designated congestion management agency responsible for coordinating the County's adopted CMP. The project's Traffic Impact Analysis, which is presented in greater detail in Section V.I, Traffic Access and Parking, was prepared in accordance with the County of Los Angeles CMP Guidelines.


# City of Los Angeles General Plan (Land Use Element)

The City of Los Angeles General Plan addresses community development goals and policies relative to the distribution of land use, both public and private. The General Plan integrates the citywide elements and community plans, and gives policy direction to the planning regulatory and implementation programs. The Land Use Element of the General Plan is divided into 35 Community Plans for the purpose of developing, maintaining and implementing the General Plan. These community plans collectively comprise the Land Use Element of the City of Los Angeles General Plan. Exposition Park, including the Project Site, is located within the South Los Angeles Community Plan area of the City of Los Angeles.

The South Los Angeles Community Plan (Community Plan) was adopted by the Los Angeles City Council on October 26, 1979, and was amended as recently as March 22, 2000. The Community Plan designates the entire Project Site, as well as the majority of Exposition Park, as "Open Space." The Open Space land use designation is reserved for public land and does not allow any residential or commercial development that is not associated with a public-oriented facility. The Community Plan designates the corresponding zoning associated with this designation as Open Space (OS) and Agricultural (A1). Figure V.E-2 shows the existing Community Plan designations for the Project Site and immediately surrounding areas.

As shown in Figure V.E-2, land use designations in the locale of the Project Site and Exposition Park along Vermont Avenue Martin Luther King Jr. Boulevard are predominately designated as "Community Commercial" uses with the exception of a "High-Medium Residential" land use classification on the south side of Martin Luther King Jr. Boulevard between Hoover Street and Menlo Avenue. The areas west of the commercial uses along Vermont Avenue and south of the commercial and high density residential uses along Martin Luther King Jr. Boulevard are designated as being within the "Low Density Residential" and "Low Medium II Residential" land use categories. These designations are consistent with the existing residential neighborhoods located south of Martin Luther King Jr. Boulevard and west of Vermont Avenue.

Areas to the east of Figueroa Street (the eastern boundary of Exposition Park) are located in the Southeast Los Angeles Community Plan area and are designated with respect to land use by the Southeast Los Angeles Community Plan. Properties along the east side of Figueroa Street, between Exposition and Martin Luther King Jr. Boulevards, are designated for Community Commercial uses and are developed with low-rise (one-to three-story) retail uses, multi-family residential uses, office uses and surface parking lots. The land strip containing the Harbor Freeway (Interstate 110) is located immediately to the east of these properties and is designated as Public Facility. Areas east of the Harbor Freeway are generally designated for Limited Manufacturing uses (with corresponding zoning

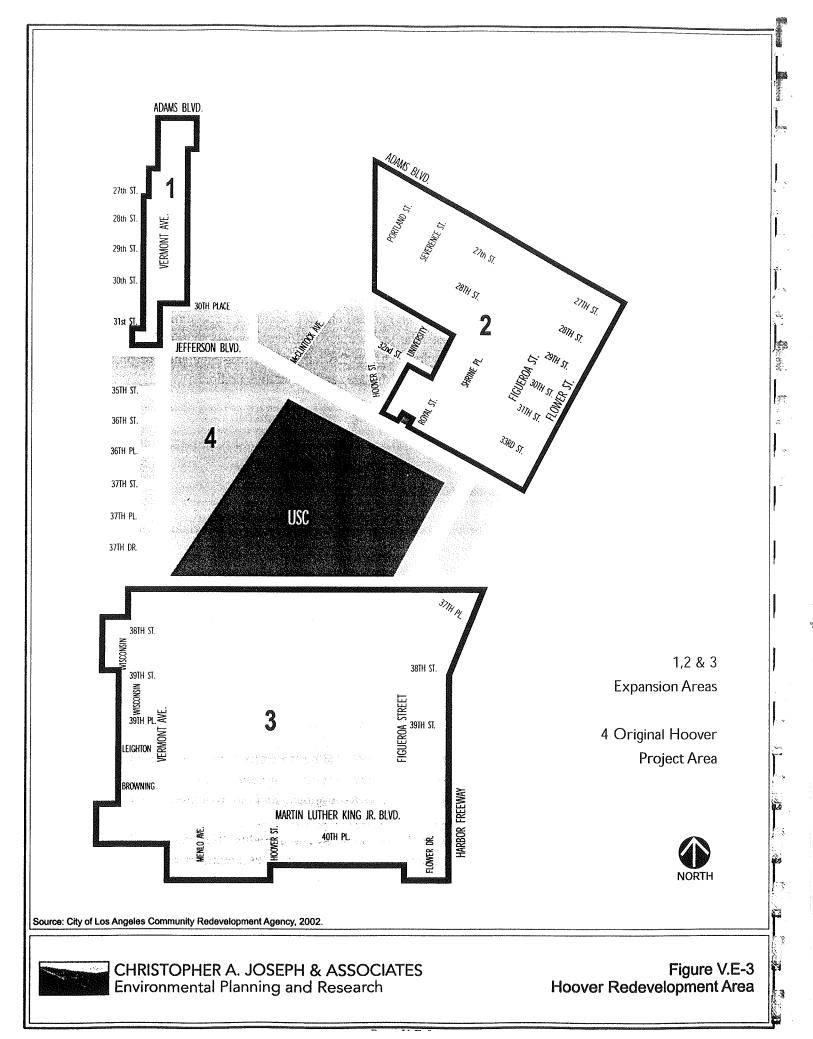


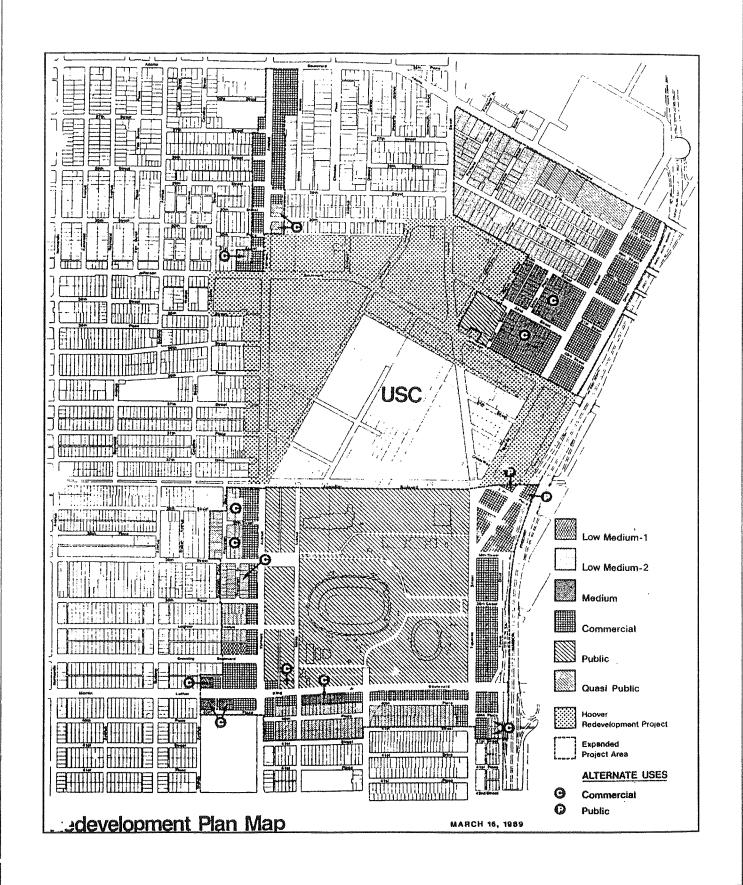


CHRISTOPHER A. JOSEPH & ASSOCIATES Environmental Planning and Research

Figure V.E-2 South Central Los Angeles Community Plan General Land Use Map of M1, MR1, and P). These areas are densely developed with uses generally conforming to their corresponding Community Plan designations.

Other prominent land use designations in the area include the University of Southern California (USC) campus, located north of Exposition Boulevard, which is designated as High Medium Residential and Manual Arts High School, located on the west side of Vermont Avenue south of Martin Luther King Jr. Boulevard, which is designated as Public Facilities. The location of the USC Campus, an educational institution adjacent to Exposition Park containing recreational and cultural facilities, has effectively created a large public and quasi-public land reservation that dominates the vicinity and is surrounded by the non-related residential and commercial land uses comprising the basic fabric of the community.


As identified by the Community Plan, Exposition Park is defined as a "major opportunity site." A major opportunity site is an area that has the potential to generate significant impacts within the surrounding neighborhoods. According to the Community Plan, the Exposition Park Master Plan shall provide the following guiding principles in the development of this area and the facilities it holds:


- The need for community empowerment regarding future development;
- The opportunity for a variety of jobs and job training for community residents;
- Development reflective of community needs;
- The need for appropriate development plans to prevent incongruent, incremental development.

## Hoover Redevelopment Plan

The Project Site is located within the City of Los Angeles Community Redevelopment Agency's (CRA) Hoover Redevelopment Project (Redevelopment Plan). The Hoover Redevelopment Project Area (HRPA) was established by the Los Angeles City Council on January 27, 1966, and was expanded on May 9, 1989. The HRPA consists of a 574-acre portion of the City generally bounded by Adams Boulevard on the north, Flower Street on the east, 41<sup>st</sup> Street on the south, and Walton Avenue and Catalina Street on the west. The boundaries of the HRPA are depicted in Figure V.E-3. As depicted in Figure V.E-3, the HRPA excludes the USC Campus. The project area includes all of Exposition Park.

The Redevelopment Plan is divided into four subareas, including the Exposition Sub Area, in which the Project Site is located (see Figure V.E-4). The Redevelopment Plan governs development within the project area and is administered by the CRA. The Redevelopment Plan was designed to promote revitalization and development within the Hoover Project area. The Redevelopment Plan designates the Project Site for Public Use. According to the Redevelopment Plan, permitted uses of Public- and Quasi-Public-designated property include the establishment, maintenance, or enlargement of public uses including, but not limited to, park and recreational facilities, libraries, educational or fraternal facilities,







parking and parking structures, housing, philanthropic and charitable or other institutions, and facilities of other similar associations or organizations.<sup>1</sup>

It should be noted that real property which is owned or controlled by either the State of California or the Los Angeles Memorial Coliseum Commission, including the Project Site, is not subject to requirements and policies of the Hoover Redevelopment Plan, nor is it subject to review and/or approval by the CRA. Even so, current uses on the Project Site are consistent with the Redevelopment Plan's Public Use designation for the property.<sup>2</sup>

# City of Los Angeles Planning and Zoning Code

Development Guidelines for properties within the City of Los Angeles are established by the City of Los Angeles Municipal Code (LAMC) Planning and Zoning Code (July 2000 Edition, Published by the City of Los Angeles).

The Project Site is in the OS-1XL (Open Space) Zoning District, as is the majority of Exposition Park. The OS-1XL designation refers to a zoning designation of Open Space with a corresponding Height District designation of No. 1, Extra Limited Height District (XL). The OS zone permits a limited amount of designated of uses under the City's Planning and Zoning Code (L.A.M.C. Section 12.04.05), including parks and recreation facilities (i.e. bicycle trails, equestrian trails, walking trails, nature trails, park land/lawn areas, children's play areas, picnic facilities, and athletic fields), natural resource preserves, marine and ecological preserves, sanitary landfill sites, and water conservation areas. Height District No. 1 limits development to a Floor Area Ratio (FAR) of 3:1. The XL allows a building height of two-stories, which shall not exceed a height of 30 feet. Like a number of other older buildings which pre-date the Planning and Zoning Code, the Coliseum is "grandfathered" into the zoning code because of its long term prior use.

Properties surrounding the Project Site are located within Exposition Park and are currently designated for High Density Housing and zoned RD1.5-1. The remainder of the parcels, located at the southern most end (fronting Martin Luther King Jr. Boulevard) are designated for Community Commercial use and zoned C2-1L and [Q]C2-1. This area is developed with park facilities, park/green space areas and surface parking facilities, utilized for Coliseum and Sports Arena events.

10 3

<sup>&</sup>quot;Redevelopment Plan for the Expanded Project Area of the Hoover Redevelopment Project as amended by the Fifth Amendment to the Redevelopment Plan for the Hoover Redevelopment Project", adopted May 17, 1989.

Exposition Park was added to the HRPA in 1983, and in 1984 the CRA prepared a Master Plan for the park. However, the Master Plan was contested and was never formally adopted. In 1985, the CRA and the State of California reached a settlement agreement that voided CRA consultation, review, or control over State of California or Los Angeles Memorial Coliseum Commission properties within Exposition Park. (EPICC EIR, Community Redevelopment Agency of the City of Los Angeles, 1999)

#### **ENVIRONMENTAL IMPACTS**

## Thresholds of Significance

In accordance with the State CEQA Guidelines a project may result in a significant impact if it is found to be in conflict with any applicable land use plan, policy or regulation of an agency with jurisdiction over the project including, but not limited to the General Plan, Specific Plan, local coastal program or zoning ordinance. A significant impact related to land use consistency would result if a project were found to be in substantial conflict with the applicable goals, policies or objectives contained within the City of Los Angeles General Plan, the South Los Angeles Community Plan, the Exposition Park Master Plan, the Hoover Redevelopment Plan, or the City of Los Angeles Planning and Zoning Code, and regional plans or other adopted City or CRA plans. The determination of compatibility is based upon a survey of land uses in the area, in combination with the analysis of the physical development, construction and operational characteristics of the project.

## **Project Impacts**

# Land Use Compatibility

Although the project would be considered compatible with the land use policies of the South Los Angeles Community Plan, the Coliseum's physical and functional compatibility as described strictly in relation to lighting, noise, and traffic/parking indicates that the Coliseum could currently be considered to be physically incompatible with its surrounding environs with respect to these areas of impact. Such impacts have the potential to adversely affect neighboring residential properties to the south and west of Exposition Park. However, the Coliseum was originally constructed in 1932 and has been a part of the community for over 80 years. The Proposed operations and intensity of use is consistent with the operations that have historically occurred on site, which includes having the NFL as a primary tenant along with the USC football team. As indicated in Section IV, Overview of Environmental Setting the Coliseum has hosted an NFL team during 45 of its 80 years, including the Los Angeles Rams from 1946 to 1979 and the Los Angeles Raiders from 1982 to 1994. As a publicly-oriented land use contained within a larger reservation of public land (i.e., Exposition Park), the Coliseum currently displays a high degree of physical compatibility with its surroundings, particularly when considering its proximity to other public recreational uses and major arterial roadways, its centralized location within the context of the Greater Los Angeles area, and its proximity to a major university (USC) which is also one of its primary tenants.

Development of the Proposed Project would modify various aspects of the Coliseum, but would continue the site's existing character of use. As a result, while the project itself is not anticipated to introduce physically incompatible features to the site in and of itself, the Project would facilitate the continuance of existing uses, which are considered to be physically incompatible with the surrounding environment with respect to traffic, access and parking, noise and demands on public services (i.e., Police and Fire). Please see the applicable sections of this report for a complete discussion of such impacts, as well as measures recommended to mitigate both the project's environmental effects and existing adverse impacts associated

with operation of the Coliseum. Implementation of the project would maintain the existing physically compatible aspects of the Coliseum resulting from its location in Exposition Park.

Land Use Compatibility With Surrounding Uses (Functional)

Functional land use compatibility is defined herein as the capacity for adjacent, yet dissimilar land uses to maintain and provide established services, amenities, and/or environmental qualities associated with such uses. Adverse functional compatibility impacts are generated when a proposed development may result in the degradation of the ambient environmental character and/or hinders relationships associated with existing patterns of use both on-site and in the immediately surrounding community. Ingress and egress locations, pedestrian access and safety, and availability and access to amenities and services are all project features that may affect functional compatibility between existing and proposed land uses and the surrounding area. Other issues that can adversely impact functional compatibility include overall site configuration, building height and design, continuity of building architectural style and integrity, and landscaping.

The Proposed Project consists of the renovation of an existing facility with the objective of maintaining current levels and types of usage. The project would not alter the current land use of the site, nor would it alter the ambient environmental character associated with the site and the surrounding vicinity, as it would retain the Coliseum's existing character of use, with only minor modifications visible to off-site viewers. No existing land use relationships between the site and the surrounding portions of Exposition Park would be altered as a result of project implementation. In effect, the Coliseum would continue to serve its current function relative to the surrounding communities, both local and regional.

As the overall site configuration would remain similar to existing conditions, the Proposed Project would not be anticipated to alter the existing land use relationship between the Coliseum and adjacent land uses. The Proposed Project would take place within the frame of the existing stadium. Most of the existing landscaping on-site would be retained with project development, including the majority of the vegetation on the exposed outer portions of the earthen berm. Additional landscaping to be provided as part of the Proposed Project would be of a similar character to existing vegetation both on-site and within adjacent portions of Exposition Park, and would therefore not be expected to detract from the aesthetic compatibility of the site with surrounding areas. All of the existing mature, original landscaping outside of the perimeter fence on the site would be retained, extending to the edge of the site. In addition, the perimeter fence would be removed, thus promoting the open space park-like atmosphere of Exposition Park. In addition to the Coliseum, adjacent portions of Exposition Park contain a variety of other publicly-oriented sports and non-sports facilities including the Sports Arena, the Los Angeles Swim Stadium, and the museums, all of which reinforce the Park's function as a public gathering place where a variety of cultural and entertainment events may be enjoyed. No other modifications to existing landscaping in the vicinity would result from project implementation.

It is anticipated that the Proposed Project would secure the continued long-term utilization of the Coliseum, and thus would preserve the present functional relationship between the Coliseum and the surrounding areas discussed above. Accordingly, the Proposed Project would facilitate the land use

objectives of the Exposition Park Master Plan, the South Los Angeles Community Plan, and the Hoover Redevelopment Plan with respect to promoting revitalization of the Park and preserving cultural monuments. Therefore, land use compatibility impacts would be less than significant.

## Consistency of Land Use Policy and Regulations

This Section analyzes the consistency of the Proposed Project with the provisions and requirements of the applicable regional and local plans that currently govern development of the Project Site and surrounding areas. In general, land use impacts associated with implementation of the Proposed Project would be limited in scope, as the project would not induce any change to the existing use of the site. Existing impacts associated with the current and future land use of the site as a sports venue primarily include traffic congestion, increased noise levels, and increased demands for security and other public services on event days in areas surrounding the site. Such effects, however, only occur on days or evenings when major events are held at the Coliseum and have been occurring on site since the construction of the Coliseum in 1932. The Proposed Project would continue the existing use at generally the same level of intensity as the current operations, but with an additional 12 scheduled professional football games each year. This represents an approximate 35% increase in the annual number of events. Therefore, since the project would not change the current use of the Coliseum, no adverse land use impacts would result from development of the Proposed Project.

## Exposition Park Master Plan

As stated previously, the CMSI/Exposition Park Master Plan (1993) did not include any specific alterations or renovation for the Coliseum. At the time the Master Plan was being prepared the Coliseum was the home field of the Los Angeles Raiders. The Coliseum was also undergoing a minor renovation project at the time which included lowering the field, expanding the locker rooms, building a press box, and upgrading and constructing new concession outbuildings surrounding the Coliseum. The Master Plan briefly discussed the current renovation activities underway at the time, but made no specific reference with respect to goals or objectives for the long-term use of the Coliseum. Nevertheless, the following general six objectives of the Master Plan are relevant to development within Exposition Park and are described and evaluated with respect to the Proposed Project as follows:

• Objective 1: Provide a vision and depict the limits for the future development of the institutional uses of the park while reinforcing its dual role as a regional and community resource.

Consistent. The Proposed Project will reinforce Exposition Park's role as a major regional community resource in the southern California region. The Coliseum is currently in a form of disrepair and has lost its ability to retain an NFL franchise as a primary tenant. Without the Proposed Project, the Coliseum will continue to deteriorate and will be unable to compete with other modern sports and entertainment venues in the southern California region as well as the nation.

• Objective 2: Enhance the park's character and landscape features by increasing the area available for passive and recreational uses, defining entrances to the park and facilities, providing a clearly delineated system of pedestrian walkways and minimizing vehicular uses.

Consistent. The Proposed Project will predominately take place within the walls of the existing Coliseum. The Proposed Project will include excavating the earth berm beneath the interior Upper Concourse level to provide locker rooms, a commissary, and a lower Concourse level within the interior of the Coliseum. The proposed design will substantially limit the amount of land area needed to provide upgraded and modern amenities and concession areas to support the future use of the Coliseum. In addition to the design of the Coliseum itself, the Proposed Project will include demolishing many of the exiting outbuildings and steel bar and chain link fence that surrounds the Coliseum. These modifications will increase the open space and pedestrian areas for passive recreational use year round. On any given day Exposition Park visitors will be able to walk up to the walls of the Peristyle and Coliseum structure. This design feature will greatly enhance the park's character and landscape features by increasing accessibility to passive recreation areas.

The Proposed Project will also include creating two new structures outside the Coliseum - an approximate 20,000 square-foot retail use and the other an approximate 20,000 square-foot sports and Coliseum athletic history museum. Both uses will be ancillary uses to the Coliseum, but will be operational on a day-to-day basis throughout the year. These uses would be complementary to the existing uses within Exposition Park and would be designed and placed in a manner that is compatible with the surrounding structures.

- Objective 3: Integrate the park with adjacent neighborhoods by providing convenient pedestrian transit linkages, minimizing traffic and parking impacts and developing employment, recreational, educational, and cultural opportunities within the park jointly with area residents.
  - Consistent. While this objective is not specifically oriented towards the Coliseum's operations, the Coliseum will coordinate with other park stakeholders and implement a traffic management plan to minimize traffic and parking impacts on days when major events and football games are scheduled. The traffic management plan will include but not be limited to the following measures: implementing ride share incentives for ticket holders, provide a shuttle system to facilitate and promote the use of satellite parking lots, provide assignable parking lots for ticket holders, and manage parking and traffic patterns and conditions on the surrounding roadways. (See Section V.I.1 for additional details on the traffic and parking management mitigation measures). With implementation of these measures, the Proposed Project will be consistent with this objective.
- Objective 4: Preserve and interpret the historical legacy of the Park allowing the memories of the Park to be relived through appreciation of the historical significance of features such as the Rose Garden, the Coliseum, and other sites.

Consistent. The Proposed Project would renovate the Coliseum in a manner that preserves the historic integrity of the structure to the maximum extent feasible. While some of the historic

fabric of the Coliseum would be compromised by the proposed design (i.e., the geometry of the seating bowl), many of the major elements of the Coliseum structure would be retained and restored to reflect the historic significance of the Coliseum (i.e., the Peristyle, the exterior wall, the stairway and tunnel entrances). While the Secretary of Interior Standard's will not be met with respect to retaining the original geometry of the bowl, significant efforts have been made to retain as much of the oval bowl shape as possible. In addition, much of the existing bowl will still be visible behind the new seating areas and within the Concourse level. As such, the historic legacy of the Coliseum would be preserved (See Section V.C, Cultural and Historical Resources for a detailed discussion of this issue).

 Objective 5: Establish a framework of consistent and compatible design standards for future facilities in the park, including criteria for siting, massing, circulation, landscape and orientation elements of the plan.

Partially Consistent. This objective is not directly applicable to the Proposed Project as the project includes renovating the Coliseum structure which is in a fixed location. The Proposed Project will include the demolition and removal of the existing non-historic outbuildings and concession stands surrounding the Coliseum, and will construct two new structures for ancillary retail and museum uses. No specific framework or design standards for these future facilities have been developed. However, due to the nature of the project and the limited land area that is available to the Coliseum Commission, the location and massing of the proposed structures would be limited to the areas located southeast of the Coliseum Peristyle and northwest or west of the Sports Arena. This area is visually shielded from the majority of uses in Exposition Park by the Coliseum structure itself. Therefore, the development of these structures would not conflict with the scale and massing of other elements of the plan.

• Objective 6: Strengthen and centralize park management to encourage cooperation among institutional users and the effective management of park resources such as circulation, parking, transit access, programming, security, maintenance and marketing.

Consistent. The Proposed Project of the Coliseum will strengthen and centralize park management and encourage cooperation among park stakeholders as the Project will provide a new life to the Coliseum. It is anticipated that while the maximum seating capacity will be reduced for any one event, the Project will increase the utilization of the Coliseum and help reestablish Exposition Park as a lively regional recreational center. Such activity will promote and encourage cooperation in management as each park stakeholder will need to coordinate major event operations.

#### Regional Comprehensive Plan and Guide

The Regional Comprehensive Plan and Guide (RCPG) includes several policies which are generally applicable to the Proposed Project. According to SCAG guidelines, the Proposed Project is determined to not be regionally significant per SCAG Intergovernmental Review (IGR) Criteria and the California Environmental Quality Act (CEQA), Section 15206. As such, no further analysis is warranted.

Ö,

1

## City of Los Angeles General Plan

As stated previously, the City of Los Angeles General Plan designation for the Project Site is OS, Open Space. This designation permits parks and community centers under the ownership and operation of a public agency. The South Los Angeles Community Plan sets forth numerous policy guidelines that are designed to govern land use decisions made within the South Los Angeles Community Plan area. Those Community Plan policies which are generally relevant to the Project Site are described and evaluated with respect to the Proposed Project as follows:

- Policy 4-1.1: Preserve the existing recreational facilities and park space.
  - Consistent. The Proposed Project of the Coliseum would continue to provide passive recreational uses for the local and regional community in the form of events held at the Coliseum. The adjacent areas within Exposition Park would continue to provide public recreation opportunities to the community and would not be adversely impacted by the Proposed Project. Therefore, the project would be considered to be consistent with this policy.
- Policy 19-1.2: Identify all designated City of Los Angeles Historic and Cultural Monuments in order to foster public appreciation of the City of Los Angeles' valuable historic resources and to promote education of the public by preserving Los Angeles' historic past and to promote that any other appropriate landmarks of unique architectural and historical significance continue to be identified for the purpose of inclusion in the list.
  - Partially Consistent. While this policy is directed at the City in identifying historic cultural monuments, the Proposed Project of the Coliseum recognizes the historical designation of the Coliseum as a National Historic Landmark. The proposed use and design is consistent with the intent of this policy as the proposed improvements would retain the exterior wall and as much of the original historic fabric of the inner bowl shape as possible. As concluded in Section V.C, Cultural and Historic Resources, while the Proposed Project would not achieve rehabilitation in conformance with the Secretary of Interior's Standards in all respects, the project would not jeopardize the Coliseum's listing on the National Register of Historic Landmarks. Therefore the project would be partially consistent with this policy.
- Policy 19-2.1: Encourage the preservation, maintenance, enhancement and adaptive reuse of existing buildings in commercial areas through the restoration of original facades and the design of new construction which complements old in a harmonious fashion, enhancing the historic pattern.
  - Consistent. The Proposed Project would renovate the Coliseum, which is a designated National Historic Landmark, State Historic Landmark, and is listed on the National Register of Historic Places. As stated above, the proposed use and design is consistent with the intent of this policy as the proposed improvements would retain the exterior wall and as much of the original historic fabric of the inner bowl shape as possible. While the Proposed Project would not achieve rehabilitation in conformance with the Secretary of Interior's Standards in all respects, the project would not jeopardize the Coliseum's listing on the National Register of Historic Landmarks.

## Hoover Redevelopment Plan

The Project Site is designated for Public Uses by the Hoover Redevelopment Plan, consistent with the current and historic use of the site. The Proposed Project would effectively perpetuate the existing use on the Project Site through the provision of a modern, state-of-the-art, multi-purpose sports and assembly facility. As a result, no adverse impacts to the Hoover Redevelopment Plan are anticipated to result from the implementation of the Proposed Coliseum renovation. The Hoover Redevelopment Plan contains several goals which are generally applicable to the Project or project vicinity. These goals are described and evaluated with respect to the Proposed Project as follows:

- Goal: To eliminate and prevent the spread of blight and deterioration through the conservation, rehabilitation, and redevelopment of the area.
  - Consistent. The Proposed Project would preserve and rehabilitate the Coliseum facility, while at the same time transform it into a modern, state-of-the-art, multi-purpose stadium able to continue to fulfill a wide variety of publicly-oriented purposes. Currently the Coliseum is in a form of disrepair and is underutilized as a major regional sports and entertainment venue. In its report to the Ad Hoc Sports Franchise Assessment Committee to the City of Los Angeles City Council, the City of Los Angeles CRA acknowledged that the public sector has the responsibility to protect and maintain the Coliseum. The development of another venue that would compete for events with the Coliseum could further diminish revenues necessary to maintain and operate the Coliseum. To the extent that the project would halt the current deterioration of the Coliseum facility, it would be consistent with this goal.
- Goal: The provision of well-planned community uses, facilities, pedestrian and vehicular circulation, and adequate parking, particularly as these relate to Exposition Park.
  - Consistent. The Proposed Project would redesign pedestrian access and circulation within the site and Coliseum itself in order to create a more well-designed and orderly pattern, and would reposition the existing entry gates to the Coliseum grounds in a specifically planned manner (see Section III.C, Project Characteristics). The Coliseum will continue to be served by existing parking facilities in and around Exposition Park, including approximately 20,000 parking spaces within Exposition Park, USC parking lots to the north and other private lots in the project vicinity. In addition, parking improvements are currently underway in Exposition Park to provide a 2,210-space subterranean parking lot adjacent to the California African-American Museum. This structure, which will likely be completed prior to the commencement of the Coliseum's renovation, will provide additional parking for Coliseum patrons. Therefore, the Proposed Project would be consistent with this goal.
- Goal: To provide a basis for the location and programming of public service facilities, parks, and recreation facilities.
  - Consistent. The Proposed Project would facilitate a continuance of the existing publicly-oriented use of the site and would therefore be consistent with the general aim of this goal.

- Goal: To encourage the cooperation and participation of residents, property owners, business persons, public agencies, and community organizations in the revitalization of the area.
  - Consistent. Implementation of the Proposed Project would be administered through private financial commitment by private businesses and individuals. The Proposed Project would not be dependent on Public Funds. Both the Coliseum Commission and the stadium's private operator, which has yet to be selected, would be expected to continue their current efforts to involve community organizations, residents, and property owners in the planning for on-going activities at the Coliseum. Coordination with the operators of the other facilities within Exposition Park would similarly be expected to continue. Therefore, the project would be considered to be consistent with this goal.
- Goal: To promote coordinated management of Exposition Park with specific attention given to facility use, development, parking, circulation, security, and maintenance.
  - Consistent. The Proposed Project would not change the existing management and operation arrangement currently in place at the Coliseum with respect to the other facilities within Exposition Park. Improvements to existing security and maintenance arrangements affecting the Project Site would be expected to result from the project, as would parking and traffic circulation measures designed to mitigate existing conditions. Therefore, the project would be considered to be generally consistent with this goal.
- Goal: To encourage the preservation of historic monuments, landmarks, and buildings, particularly those affected by new development which is subject to an owner participation or disposition and development agreement.
  - Consistent. The Proposed Project would renovate the Coliseum, which is a National Historic Landmark, State Historic Landmark, and is listed on the National Register of Historic Places. The proposed use and design is consistent with the intent of this policy as the proposed improvements would retain the exterior wall and as much of the original historic fabric of the inner bowl shape as possible. As concluded in Section V.C, Cultural and Historic Resources, while the Proposed Project would not achieve rehabilitation in conformance with the Secretary of Interior's Standards in all respects, the project would not jeopardize the Coliseum's listing on the National Register of Historic Landmarks. As a result, the Proposed Project would be consistent with this goal.

The Proposed Project would be generally consistent with the relevant goals of the Hoover Redevelopment Plan with the exception of the recommended provision of additional parking for patrons attending Coliseum events and/or other functions in Exposition Park, which is not contemplated by the Proposed Project (for more detail, see Section V.I, Traffic, Access, and Parking). However, the Proposed Project will benefit from the new parking structure that is currently under construction. Upon its completion, and prior to the estimated completion date of the Proposed Project, approximately 2,210 new parking spaces will become available in Exposition Park (see Related Project No. 32 in Section IV, Cumulative Related Projects). The availability of 2,210 new parking spaces in Exposition Park, and the reduction in the

maximum seating capacity from 92,500 seats to 78,000 seats would improve parking conditions for future Coliseum events.

## City of Los Angeles Planning and Zoning Code

The Project Site is zoned OS-1XL (Open Space), as is the majority of Exposition Park. The OS zone permits a limited amount of designated uses under the City of Los Angeles Planning and Zoning Code (Section 12.04.05), including parks and recreation facilities (i.e. bicycle trails, equestrian trails, walking trails, nature trails, park land/lawn areas, children's play areas, picnic facilities, and athletic fields), natural resource preserves, marine and ecological preserves, sanitary landfill sites, and water conservation areas. Outdoor stadium facilities seating over 200 persons are not permitted in any open space zones without a Conditional Use Permit. The existing inconsistency between the development on the Project Site and the site's zoning is explained by the fact that the City of Los Angeles did not incorporate a comprehensive zoning code and map system into its land use regulation process until after the Coliseum was built in 1923. In addition, the Proposed Project would not change the existing management and operation arrangement currently in place at the Coliseum with respect to the other facilities within Exposition Park. Therefore, the Proposed Project would be consistent with the Planning and Zoning Code.

#### **CUMULATIVE IMPACTS**

Identified related projects within the study area are located within either the South Los Angeles or Southeast Los Angeles Community Plan areas. Although the development of these related projects outside of Exposition Park could potentially require General Plan Amendments and/or Zone Changes in order to be effectuated, the cumulative implications of this growth, conformity with land use regulations, and compatibility with surrounding uses will be evaluated on a case-by-case basis by the City of Los Angeles. Given that the proposed Exposition Park Master Plan would govern land within the Park exclusively, future related projects located within Exposition Park would be subject to its requirements.

## MITIGATION MEASURES

Implementation of the Proposed Project would not be expected to adversely impact the goals and policies of the South Los Angeles Community Plan, Exposition Park Master Plan and the Hoover Redevelopment Plan. As a result, no mitigation measures are recommended or required. Additional mitigation measures recommended and/or required (as appropriate) in relation to physical impacts such as noise, air quality, and traffic/parking are described in the respective sections of this report (Section V.B, Air Quality; Section V.C, Cultural and Historic Resources, Section V.F, Noise; and Section V.I, Traffic, Access, and Parking).

# V. ENVIRONMENTAL IMPACT ANALYSIS F. NOISE

#### ENVIRONMENTAL SETTING

# **Noise Descriptors and Definitions**

Noise is defined as an unwanted sound and is an important factor in the quality of urban life. There are two main types of sound: ambient and intrusive. Ambient sound is the background sound that aggregates all sound emissions, far and near, as received within a particular locale. Intrusive sound is greater than the ambient sound level and is generally perceived as "noise." The word "noise" conveys the psychological response of humans to the physical phenomenon of sound. Noise can also be defined as sound that causes adverse effects on people such as hearing loss or annoyance. In every case, noise involves the judgment of someone and puts noise in the realm of psychology, not physics.

Because sound (or noise) can vary in intensity by over one million times within the range of human hearing, a logarithmic loudness scale similar to the Richter Scale is used to keep sound intensity numbers at a manageable level. Since the human ear is not equally sensitive to all sound frequencies within the entire spectrum, noise levels at maximum human sensitivity (middle A and its higher harmonics) are factored more heavily into sound descriptions in a process called "A-weighting," written as dB(A). Under controlled conditions in an acoustical laboratory, the trained healthy human ear is able to discern changes in sound levels of 1 dBA, when exposed to steady, single frequency ("pure tone") signals in the mid-frequency range. It is widely accepted that the average healthy ear, however, can barely perceive noise level changes of 3 dBA outside of the laboratory. To assist the reader in understanding the various noise descriptors, commonly used terms relating to noise are defined in Table V.F-1. Figure V.F-1 illustrates typical noise levels for common noise sources.

Time variations in noise exposure are typically expressed in terms of a steady-state energy level equal to the energy content of the time varying period (called  $L_{eq}$ ), or, alternately, as statistical descriptions of the sound level that exceed over some fraction of a given observation period. Because community receptors are more sensitive to unwanted noise intrusion during the evening and at night, state law requires that, for planning purposes, an artificial dB increment be added to quiet time noise levels in a 24-hour noise descriptor called the Community Noise Equivalent Level (CNEL). An interior CNEL of 45 dB(A) is mandated for multiple family dwellings in Title 24 of the California Code of Regulations, and is considered a desirable noise exposure for single family dwelling units as well. Since typical sound attenuation within noise-sensitive structures such as homes, schools, medical facilities, etc. is about 15-20 dB, an exterior noise exposure of 60-65 dB CNEL is generally the noise/land use compatibility guideline for new residential dwellings in California.

<sup>&</sup>lt;sup>1</sup> California Department of Transportation (Caltrans), <u>Technical Noise Supplement</u>, October 1998.

Table V.F-1
Commonly-Used Terms Relating To Noise

| Terms                                  | Definitions                                                                                                                                                                                                                                                                                                              |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Decibel (dB)                           | The unit for measuring the volume of sound equal to 10 times the logarithm (base 10) of the ratio of the pressure of a measured sound level to a reference pressure (20 micro-pascals).                                                                                                                                  |  |  |
| A-Weighted Decibel (dBA)               | A sound measurement scale that adjusts the pressure of individual frequencies according to human sensitivities. The scale accounts for the fact that the region of highest sensitivity for the average human ear is between 2,000 and 4,000 cycles per second, or hertz.                                                 |  |  |
| Equivalent Sound Level                 | The sound level containing the same total energy as a time varying signal over a given time period. The $L_{eq}$ is a value that expresses the time-averaged total energy of a fluctuating sound level.                                                                                                                  |  |  |
| Maximum Sound Level (L <sub>max)</sub> | The highest individual sound level (in dBA) occurring over a given time period.                                                                                                                                                                                                                                          |  |  |
| Minimum Sound Level ( $L_{min}$ )      | The lowest individual sound level (in dBA) occurring over a given time period.                                                                                                                                                                                                                                           |  |  |
| CNEL                                   | A rating of community noise exposure to all sources of sound that differentiates between daytime, evening, and nighttime noise exposure. A +4.77 dBA penalty is added to noise levels during the hours of 7:00 p.m. to 10:00 p.m. A +10 dBA penalty is added to noise levels during the hours of 10:00 p.m. to 7:00 a.m. |  |  |

# **Regional Conditions**

The Coliseum is located in an urbanized environment. The primary noise sources in the vicinity of the Coliseum are associated with traffic on the elevated Harbor Freeway (Interstate 110) as well as traffic on surface streets such as Vermont Avenue, Exposition Boulevard, Figueroa Street, and Martin Luther King Jr. Boulevard. The Coliseum is located within Exposition Park, which includes passive recreational spaces as well as County and State Museums. The majority of these areas are located north of the Coliseum. Within this park/institutional setting, the ambient noise environment is dominated by the Coliseum activities during special events. As stated previously in Section III, Project Description, the Coliseum currently operates with an average of 34 events per year (not including non-ticketed events).

Sai.

| Common Indoor<br>Noise Levels                      | Noise Level (dBA)          | Common Outdoor<br>Noise Levels                             |  |
|----------------------------------------------------|----------------------------|------------------------------------------------------------|--|
| Rock Band                                          | 110                        |                                                            |  |
|                                                    | 100                        | Jet Flyover @ 1,000 feet                                   |  |
| Inside Subway Train                                | 90                         | Gas Lawn Mower @ 3 feet<br>Diesel Truck @ 50 feet          |  |
| Food Blender @ 3 feet<br>Garbage Disposal @ 3 feet | 80                         | Noisy Urban Daytime                                        |  |
| Shouting @ 3 feet                                  |                            | Gas Lawn Mower @ 100 feet                                  |  |
| Vacuum Cleaner @ 10 feet                           | 70                         | Commercial Area                                            |  |
| Normal Speech @ 3 feet                             | 60                         | Heavy Traffic @ 300 Feet                                   |  |
| Large Business Office  Dishwasher Next Room        | 50                         | Quiet Urban Daytime                                        |  |
| Small Theater/Conference Room                      | 40                         | Quiet Urban Nightime                                       |  |
| (background)<br>Library                            | 30                         | Quiet Suburban Nightime                                    |  |
| Bedroom at Night<br>Concert Hall (background)      |                            | Quiet Rural Nightime                                       |  |
| Broadcast & Recording Studio                       | 20                         |                                                            |  |
|                                                    | 10                         |                                                            |  |
| Threshold of Hearing                               | 0                          |                                                            |  |
|                                                    | Source: Caltrans Noise Man | nual, California Department of Transportation, March, 1980 |  |



#### Sensitive Land Uses

There are a number of land uses in the Coliseum vicinity that can be considered sensitive to noise. These uses include:

- Passive recreational and open space areas in Exposition Park north and east of the Coliseum.
- Los Angeles County and State Museums in Exposition Park, including the Rose Garden.
- Multi-family housing located on the east side of Figueroa Street north of 39th Street.
- Multi-family housing located on the south side of Martin Luther King Jr. Boulevard between Figueroa Street and Menlo Avenue.
- Multi-family housing located on the south side of Martin Luther King Jr. Boulevard between Menlo Avenue and Vermont Avenue.
- USC Parkside Dormitories located on the north side of Exposition Boulevard near Vermont Avenue.
- The Los Angeles Child Guidance Center on the west side of Vermont between 39<sup>th</sup> Street and 38<sup>th</sup> Street.

#### **Noise Sources**

The noise produced at Coliseum events includes the following sources:

- Crowd noise (particularly yells and cheers at high attendance sports or concert events).
- Public Address System (amplified public announcements and/or play-by-play announcements).
- Amplified concert music.
- Traffic-related noise from motorists traveling to and from Coliseum events.
- Helicopters and other aircrafts covering events.

Noise generated at the Coliseum is largely contained within the bowl structure. There are circumstances and conditions, however, when the public address system or amplified concert music is discernible within Exposition Park. Infrequently, amplified sound generated at the Coliseum is discernible (greater than five decibels above the ambient sound level) in surrounding residential areas. In the past, concert music at the Coliseum has been discernible for areas such as Baldwin Hills that are located as far as three miles away from the facility. The reasons for this are as follows:

- Baldwin Hills is on a direct line-of-sight to the top rim of the Coliseum. There are no intervening obstructions that would act as noise barriers.
- Noise complaints were received in the evening hours when other community noise sources were relatively low.
- Concerts that have been noticeable have had sound systems produce levels in excess of 110
  decibels at the top rim of the Coliseum. At a distance of three miles (assuming the speaker
  cluster is located 500 feet from the rim of the Coliseum), noise levels of 80 decibels would
  occur.
- The rock concert sound spectrum tends to favor the lower sound wave frequencies created by drums and bass instruments. In the evening hours, similar to train noise, these lower frequencies are quite discernible when other community noise sources are relatively low.

For concerts using a central speaker cluster, located 500 feet or more from the rim of the Coliseum, a discernible change (five decibel increase above ambient) can be achieved three to four miles away in residential areas when the ambient residential noise levels are between 50-60 decibels and the sound level at the rim of the Coliseum ranges from 90-94 decibels.

# Amplified Concert Music

As indicated elsewhere in this report, the Coliseum is host to major music concerts on average of three times per year. These events do not use the Coliseum sound system, which is not suited for music. The sound system for concerts consists of the use of a central speaker cluster located on or adjacent to the stage erected for the event. This central speaker cluster is sometimes reinforced by relays located on the Coliseum field. Relay speakers are often elevated eight to 12 feet above the Coliseum floor. The acoustical objective of these systems is to ensure that concert goers can discern the dynamic range of the music. It is typically expected that the sound level achieved at the listener for concert music, particularly popular or rock type music, would be in the 95 to 110 decibel range. The lower end of the range would be representative of ballad-type popular music while the upper end is representative of very loud rock or soul music.

In most instances the speaker system used for music concerts places the speakers at greater distances from the audience as compared to a public address system. The results of this mean that sound levels on the exterior of the Coliseum are higher for concerts than for public address announcements. For example, the public address system could produce a sound level of 95 decibels with speakers located approximately 150 feet from the listener on the upper Coliseum rim. A central cluster concert could also produce 95 decibels for a listener at the rim of the Coliseum but the speakers would be typically located farther away (approximately 300 feet from the listener). For a location 500 feet from the speaker source (outside of the Coliseum), the resulting sound level for the public address system would be approximately 65 decibels (this assumes that the walls of the Coliseum would function as a noise barrier). By comparison, the sound level for the concert music at the same distance would be 71 decibels.

36

63

#### Noise from Sporting Events

As the Coliseum is mainly used for sporting events, and the main objective of the Proposed Project is to renovate the Coliseum to house a Los Angeles NFL team, the impact on noise created by such events is critical to evaluate. Ambient noise measurements were conducted in 2002 by Ove Arup & Partners which measured sound in and around the Coliseum during two separate football games and compared this with sound data collected during a non-event day at the Coliseum. The first football game occurred on November 16, 2002, between Arizona State University (ASU) and the University of Southern California (USC). This game had a recorded attendance of 63,241 persons, or approximately 70 percent of the Coliseum's maximum capacity. Acoustic measurements were also obtained during a game on November 30, 2002, between the University of Notre Dame (ND) and USC with a recorded attendance of 87,944 (approximately 95 percent capacity). The noise data for the non-event day at the Coliseum occurred on December 7, 2002. For each of the two games and the non-event day, Ove Arup & Partners recorded sound levels at five locations outside and one location inside the Coliseum. A description of the location and site characteristics for each of these receptor locations is provided in Table V.F-2. The locations of these six monitoring stations are depicted in Figure V.F-2.

Table V.F-3 summarizes the measurement duration for each receptor location during each recorded noise event. Table V.F-4 summarizes the main findings of the noise impact from the study. In three of the five recording stations outside the stadium (R2, R3, and R5), no audible Coliseum noise occurred during either football game. In the other two recording stations, R1 and R4, the percentage of time Coliseum noise was audible during the two games was minimal. The observed noise level from outside the Coliseum during the two football games ranged from 60 to 69 dBA, with the Coliseum press box recording station (R6) having obviously the highest noise levels of 84 and 86 dBA, respectively. It is a reasonable assumption that if the Proposed Project is constructed with a partial roof structure, it will absorb and reflect some of the noise produced inside the stadium, thus lowering the spill-over noise effect in the neighboring community. In addition, however, it must also be noted that helicopters associated with the football games were measured in the study. Such occurrences are directly attributable to the events at the Coliseum and thus contribute to the game day noise impacts. It was found that the helicopters produced sound at locations R1 through R5 that was noticeable for about 50% of the measurement times and reached sound levels of up to 70 dBA. Figure V.F-3 illustrates noise levels over time as measured at the Coliseum roof and at Location 4. The graphs display sound levels and their causes.

Table V.F-2
Sound Measurement Locations

| Sound<br>Measurement<br>Location | Description of<br>Location                                   | Estimated Distance from the Coliseum | Intervening<br>Structures | Existing Land Uses <sup>1</sup>                        |
|----------------------------------|--------------------------------------------------------------|--------------------------------------|---------------------------|--------------------------------------------------------|
| RI                               | Intersection of<br>Wisconsin St. &<br>39 <sup>th</sup> Place | 550                                  | No                        | Residential- Single Family Homes                       |
| R2                               | Intersection of<br>Menlo Ave. & W.<br>40 <sup>th</sup> Place | 650                                  | Yes                       | Residential- Apartments                                |
| R3                               | Intersection of W. 40 <sup>th</sup> Place & S. Hoover St.    | 550                                  | No                        | Residential- Apartments                                |
| R4                               | 702 W. 40 <sup>th</sup> Place                                | 600                                  | No                        | Residential- Mix of Single Family Homes and Apartments |
| R5                               | USC Watt Way Entrance                                        | 900                                  | Yes                       | USC Campus                                             |
| R6                               | Coliseum<br>Press Box Roof                                   | 0                                    | No                        | Coliseum                                               |

Based on site observations of Ove Arup Acoustics.

Source: Ove Arup & Partners California Ltd. Los Angeles Memorial Coliseum Acoustics Report, December 2002.

#### Noise from Event-Related Traffic

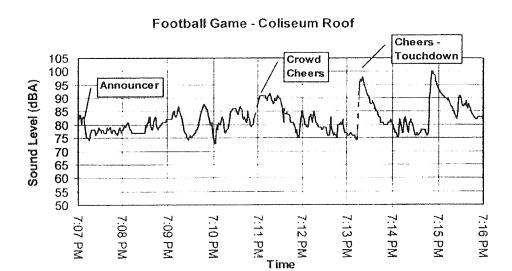
As discussed in Chapter V.I, Traffic, Access and Parking, the predominant mode of travel for Coliseum patrons is the automobile. Although there is considerable automobile activity prior to and following a Coliseum event, noise levels from this traffic are not significantly different from peak hour traffic noise. The reason for the relatively low increase in traffic noise is because of the lower vehicle speeds. Noise levels increase directly with vehicle speed. For example, 1,000 vehicles traveling at 35 miles per hour (mph) would produce a noise level of approximately 64 decibels at a distance of 50 feet. In comparison, vehicles operating in heavy traffic or congested conditions (approximately 15-20 mph) would produce noise levels of approximately 55-57 decibels. In terms of Coliseum events, field measurements and noise modeling from existing traffic volumes indicate that street traffic volumes can be as much as four to five times greater than typical non-event traffic volumes along Figueroa Street or Martin Luther King Jr. Boulevard without increasing ambient levels. The increase in event traffic is offset by the fact that the traffic is operating at extremely low speeds.



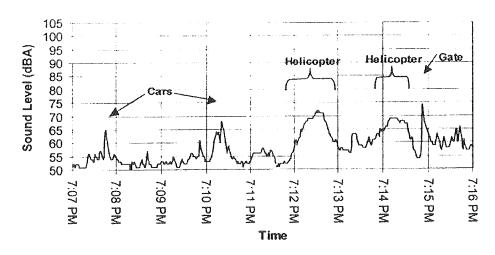


**Residential Measurement Location** 

Sources: Christopher A. Joseph & Associates and Ove Arup & Partners California Ltd, July 2003.




Approximate Scale 1" = 500'




CHRISTOPHER A. JOSEPH & ASSOCIATES Environmental Planning and Research

Figure V.F-2 Noise Sensitive Receptor Locations



Ambient During Football Game - Location 4 (720 W. 40th)



Source: Ove Arup & Partners Ltd., December 9, 2002.



CHRISTOPHER A. JOSEPH & ASSOCIATES Environmental Planning and Research

Figure V.F-3
Time History Correlation of Noise
Levels During Football Games

Table V.F-3
Sound Measurement Duration

|                               | Measurement Duration (Start and Finish Times) |                                |                       |  |  |
|-------------------------------|-----------------------------------------------|--------------------------------|-----------------------|--|--|
| Sound Measurement<br>Location | ASU vs. USC<br>11/16/02                       | Notre Dame vs. USC<br>11/30/02 | No Event<br>12/07/02  |  |  |
| RI                            | 4:46 p.m. – 5:01 p.m.                         | 5:30 p.m. – 5:45 p.m.          | 5:20 p.m. – 5:35 p.m. |  |  |
| R2                            | 5:16 p.m. – 5:31 p.m.                         | 5:51 p.m. – 6:06 p.m.          | 5:39 p.m. – 5:54 p.m. |  |  |
| R3                            | 5:38 p.m. – 5:53 p.m.                         | 6:09 p.m. – 6:24 p.m.          | 5:57 p.m. – 6:12 p.m. |  |  |
| R4                            | 6:03 p.m. – 6:18 p.m.                         | 7:08 p.m. – 7:23 p.m.          | 6:13 p.m. – 6:28 p.m. |  |  |
| R5                            | 6:31 p.m. – 6:46 p.m.                         | 7:44 p.m. – 7:59 p.m.          | 6:43 p.m. – 6:58 p.m. |  |  |
| R6                            | 3:45 p.m. – 7:19 p.m.                         | 5:12 p.m. – 8:20 p.m.          | N/A                   |  |  |

Source: Ove Arup & Partners California Ltd. Los Angeles Memorial Coliseum Acoustics Report, December 2002.

#### **ENVIRONMENTAL IMPACTS**

#### Thresholds of Significance

Construction-related impacts would be significant if, as indicated in the City of Los Angeles Noise Ordinance (No. 156,363), a noise-sensitive use is located within 500 feet of the Project Site and on-site construction noise levels exceed 75 dBA, measured 50 feet from the source.

For purposes of this analysis, a significant operational noise impact would occur if the Proposed Project causes an increase in ambient noise by 5 dBA, thus causing a violation of the City Noise Ordinance.

#### **Project Impacts**

#### Construction-Related Noise

The Proposed Project is anticipated to be constructed over an 18-20-month period. Construction noise would be generated on-site, within the Coliseum and surrounding perimeter grounds, and off-site as a result of construction equipment and haul trucks entering and leaving the site. As shown in Table V.F-5, outdoor construction noise levels at a distance of 50 feet from the source can range from 78 dBA L<sub>eq</sub> to 89 dBA L<sub>eq</sub> without any noise attenuating devices (e.g., mufflers, sound walls, etc.). With the use of mufflers, typical construction-related noise levels can range from 77 dBA L<sub>eq</sub> to 86 dBA L<sub>eq</sub> at a 50 feet distance from the source.<sup>2</sup> The impact of demolition and construction noise from within the Coliseum

<sup>&</sup>lt;sup>2</sup> USEPA, Noise from Construction Equipment and Operations, Building Equipment and Home Appliances, PB 206717, 1971.

would be reduced by the fact that the existing walls of the Coliseum will act as sound attenuation barriers. With an attenuation factor of up to 10 dBA for the exterior wall of the Coliseum breaking the line-of-sight from the noise source to surrounding areas, noise levels would be reduced to approximately 79 dBA at a distance of 50 feet from the source. Noise generated by the demolition of the outbuildings and other landscaping improvements outside the Coliseum would not be attenuated, as there are no intervening structures or obstacles separating the Coliseum grounds from the rest of Exposition Park. The nearest sensitive receptors within Exposition Park that would be affected by construction noise are the Senior Center and Child Care Center within the newly constructed Intergenerational Community Center (EPICC), the California Science Center, and the open space areas on the south lawn fronting the Natural History Museum. Portions of these uses are within 100 feet of the proposed active construction areas and will experience significant noise levels (above 75 dBA).

As a matter of distance and spherical spreading of sound energy, noise energy is attenuated by a factor of 6 dBA for each doubling of distance. As such, noise levels would be on the order of 69 dBA at a distance of 100 feet from the perimeter of the Coliseum, decreasing to a level of 63 dBA at a distance of 200 feet from the Project Site. Other sensitive uses within Exposition Park would not be exposed to significant construction noise levels. Since the properties adjacent to Exposition Park west of Vermont Avenue and south of Martin Luther King Jr. Boulevard are farther than 500 feet from the Coliseum, sensitive uses in those areas would not experience significant noise impacts from on-site construction activities.

Off-site construction noise will likely result from the ingress and egress of haul trucks used to transport excavated materials. Based upon preliminary estimates, approximately 250,000 cubic yards of earth and building material are estimated to be excavated and removed from the site during the construction process. The demolition and excavation process is anticipated to last approximately 6 months. Given the expansive parking areas associated with the Coliseum, haul trucks will not have to queue in any residential area or adjacent to any museum or park areas. Assuming the use of tandem bottom dump trucks with a hauling capacity of 15 cubic yards per truck, the demolition/excavation phase of the Proposed Project would generate approximately 118 haul trips per day, or up to 15 haul truck trips per hour. These trucks, however, will not use residential streets for access. The most direct and likely haul route from the site is from Martin Luther King Jr. Boulevard eastward to the Harbor Freeway.<sup>3</sup> There is one sensitive land use along this route, which is a multi-family housing project (Gilbert Lindsey Manor). Martin Luther King Jr. Boulevard east of Menlo Avenue experiences 32,310 car trips

The final haul route will be determined in consultation with the Los Angeles Department of Transportation, prior to the construction process.

Table V.F-4
Sound Measurements (in dBA) and Percentage of Audible Noise from the Coliseum

|                                               | $\mathbb{L}_{eq}$ in | dBA (15 min              | utes)       | Audit             | me Noise<br>ole (Over<br>s. Time) |                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------|----------------------|--------------------------|-------------|-------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sound<br>Measurement<br>Location <sup>a</sup> | ASU vs.<br>USC       | Notre<br>Dame vs.<br>USC | No<br>Event | ASU<br>vs.<br>USC | Notre<br>Dame<br>vs. USC          | Notes <sup>b</sup><br>Field Observations                                                                                                                                                                                                                                                                                                                         |
| RI                                            | 69                   | 64                       | 64          | 13%               | 13%                               | <ul> <li>Announcer is <u>clearly heard</u> (PA System)</li> <li>Crowed cheer is <u>audible</u></li> <li>Referee whistle and band also <u>heard</u></li> <li>General ambient noise is primarily due to traffic on Vermont Ave. and 39<sup>th</sup> Place, residents talking and street music</li> </ul>                                                           |
| R2                                            | 61                   | 66                       | 59          | 0%                | 0%                                | <ul> <li>Noise directly from Coliseum not audible</li> <li>Buildings block line-of-sight to Coliseum</li> <li>General ambient noise is mainly due to traffic on Martin Luther King (MLK) J. Blvd. and children playing</li> </ul>                                                                                                                                |
| R3                                            | 67                   | 58                       | 66          | 0%                | 0%                                | <ul> <li>Coliseum noise is not audible during ASU game</li> <li>Band is barely heard at this location durin Notre Dame game</li> <li>General ambient noise was from traffic on MLK Jr. Blvd.</li> </ul>                                                                                                                                                          |
| R4                                            | 61                   | 64                       | 64          | 4%                | 6%                                | <ul> <li>Announcer's voice (PA system) is fairly audible, but muffled</li> <li>Crowd and band can also be heard (faintly)</li> <li>General ambient noise was from traffic o MLK Jr. Blvd.</li> </ul>                                                                                                                                                             |
| R5                                            | 60                   | 65                       | 63          | 0%                | 0%                                | <ul> <li>Coliseum is not audible at this location duto distance</li> <li>Exposition Blvd. was closed to thru traffic during both games thus lower general ambient sound levels are recorded durin the games</li> <li>During the games general ambient noise was primarily from row of idling buse parked along the Exposition Park near th USC campus</li> </ul> |
| R6                                            | 84                   | 86                       | N/A         | 100%              | 100%                              | A                                                                                                                                                                                                                                                                                                                                                                |

<sup>&</sup>lt;sup>a</sup> See Figure V.F-2 for a map showing the physical location of these measurements and Table V.F-2 for location addresses.

Source: Ove Arup & Partners California Ltd. Los Angeles Memorial Coliseum Acoustics Report, December 2002.

Helicopters associated with the football game produced sound at locations R1 through R5 that was noticeable for about 50% of the measurement times and reached sound levels up to 70 dBA.

Table V.F-5
Outdoor Construction Noise Levels

|                            |                       | Noise Levels (dBA L <sub>eq</sub> ) <sup>a</sup> |                                          |  |
|----------------------------|-----------------------|--------------------------------------------------|------------------------------------------|--|
| Construction Phase         | Duration <sup>b</sup> | at 50 Feet (dBA L <sub>eq</sub> )                | at 50 feet with Mufflers (dBA $L_{eq}$ ) |  |
| Ground Clearing/Demolition | 12 weeks              | 84                                               | 82                                       |  |
| Excavation, Grading        | 12 weeks              | 89                                               | 86                                       |  |
| Foundations                | 28 weeks              | 78                                               | 77                                       |  |
| Structural                 | 52 weeks              | 85                                               | 83                                       |  |
| Finishing                  | 26 weeks              | 89                                               | 86                                       |  |

USEPA, Noise from Construction Equipment and Operations, Building Equipment and Home Appliances, PB 206717, 1971.
 The construction phasing is based on a 18-20-month (approx. 1.5 year) construction schedule and is approximate and subject to change.

Source: Christopher A. Joseph & Associates, 2003.

per day.<sup>4</sup> As depicted in Table V.F-4, the ambient noise levels along Martin Luther King Jr. Boulevard on days when no Coliseum events are scheduled range from 59 to 66 dBA. Previous studies along the same roadway segment have noted much higher ambient levels (i.e., up to 70.9 dBA) along this roadway segment.<sup>5</sup> Haul trucks can generate noise levels up to 85 dBA at a distance of 50 feet. The combined effect of the haul trucks and the existing volume of cars traveling along Martin Luther King Jr. Boulevard would have the potential to increase the ambient noise levels by more than 15 dBA on an intermittent basis between 7:00 a.m. and 6:00 p.m. Monday through Friday, and between 8:00 a.m. and 6:00 p.m. on Saturdays, for approximately 24 weeks.<sup>6</sup> This would result in a relatively short-term and temporary noise impact for this sensitive receptor.

# Coliseum Event Noise

At this preliminary stage in the design of the Proposed Project, information on the future sound system is conceptual in nature and subject to change. However, it is expected that the basic sound reinforcement system would provide coverage to:

• All ticketed seats within the stadium.

<sup>&</sup>lt;sup>4</sup> Exposition Park Intergenerational Community Center Environmental Impact Report, Community Redevelopment Agency of the City of Los Angeles, January 1999, (Table 15).

<sup>5</sup> Ibid (Table 16).

The referenced times and days of construction noise are based on compliance with the City of Los Angeles Municipal Code Noise Ordinance, Chapter IV, Section 41.40.

- Press box areas.
- Public areas such as concourse areas, concession areas, rest rooms, elevators and offices.
- Private boxes, lounges and suites.
- Ticket booth areas.
- College and NFL team lockers.

The design for the stadium would include a distributed sound system including hundreds of small sound speakers throughout the stadium and concourse areas. The arrangement and location of speakers would be designed to provide intelligible and clear sound coverage throughout the stadium seating areas with sufficient quality to allow reinforcement of a music program. The loudspeaker system would be developed and oriented to direct speakers in a manner that would minimize sound reflections, and the creation of echoes, from the structure. In addition, as part of the Proposed Project, a tensile fabric canopy would be erected above the north and south seating areas which would help absorb and deflect noise produced during an event.

Currently the Coliseum utilizes a typical older sound system, having one or two "sound clusters" that operate at high volumes to service the entire stadium. With distributed sound systems, hundreds of small speakers positioned throughout the stadium would require lower volumes to provide clear and audible sound. Since individual speakers would be placed closer to the patrons, the sound volume would be much lower than with the current sound cluster system. It should be noted that it is unlikely that the improved public address system or "house system" would be utilized as the main speakers for concert events. Typically, each concert holder sets up their own free-standing central speaker cluster system with relays located on and adjacent to the performance stage. The improvement of musical sound through the public address system would largely improve the intelligibility of band music during football games. It is anticipated that the intermittent public address system noise would be discernible (a three to five decibel change) in the portions of Exposition Park shielded from street traffic with ambient noise levels in the 55-60 decibel range. For areas affected by street traffic (residences on the east side of Figueroa Street and on the west side of Vermont Avenue), public address system noise would be masked by this traffic (ambient levels 65-70 decibels) and would not result in a three to five decibel change above ambient conditions. Noise sources during special events and football games would be substantially similar to the levels that are currently generated during events held at the Coliseum. Football events and music concert noise is likely to exceed ambient conditions by five decibels in residential adjacent areas (including Baldwin Hills) during off-peak traffic times when noise levels in surrounding communities are low. As a result, some residents may continue to occasionally find evening concert noise intrusive or annoying. However, as the Proposed Project involves the renovation of an existing recreational facility that already creates significant noise impacts, and the Project would not increase the intensity of crowds, the Project's operational noise impacts for any one event would be reduced and thus considered less than significant. Additionally, the increase in the annual use of the Coliseum with an additional 12 events added to the typical event schedule would be less than significant.

È

08

# Noise from Event Traffic

The maximum attendance at any one event at the Coliseum under the Proposed Project would be less than the recorded attendance level at the ND vs. USC football game had a recorded attendance of 87,944 persons. Therefore, sound levels recorded during this single event are representative of a worst-case scenario and exceeds the future capacity of the Coliseum by approximately 9,944 persons. Continued use of the Coliseum would result in ongoing nuisance noise effects similar to existing conditions. Such nuisances include loud voices from patrons leaving or returning to their cars, door slams, automobile alarms, automobile horns and radios, and engine run-ups. While it is highly unlikely that the Proposed Project would increase traffic-related noise levels above the existing maximum noise levels, the number of events, or days in which high noise levels are experienced, would be expected to increase by approximately 35 percent, or an additional 10-12 events a year. Since the Proposed Project involves the renovation and re-use of an existing recreational facility that already creates significant noise impacts, and the project would not increase the intensity of crowds, and would not substantially increase the existing average annual usage of venue, the Project's operational noise impacts from event-related traffic would be less than significant.

## **CUMULATIVE IMPACTS**

Short-term cumulative construction-noise impacts in the immediate vicinity of the Project Site could occur if related projects in close proximity to the Project Site are under construction during the same time period as the Proposed Project. A number or renovation and expansion projects within Exposition Park are currently planned or underway. Such projects are detailed in Section IV.C, Related Projects and include the following: #28 - Manual Arts New Elementary School, #30 - California Science Center Phase II & III Expansion, #31 - Science Museum School and Science Education Resource Center, #32 -California Science Center/African American Museum Parking Structure, #33 - Exposition Park Intergenerational Community Center (EPICC), and #37 – renovation and expansion of the Natural History Museum. The combined effect of these related projects in addition to the Proposed Project would result in cumulatively considerable noise impacts. However, the construction process for each of these related projects would not coincide as each project is involved with unrelated project teams and schedules. For example, the EPICC Center and California Science Center/African American Museum Parking Structure are near completion and would be operational by time construction commences on the Proposed Project. In other instances, such as for the Natural History Museum Expansion, the construction process would likely be delayed until after the Proposed Project is completed, as it is currently in the initial planning process and dependent upon future funding. The impacts of these cumulative projects, however, were previously analyzed in the Exposition Park Master Plan EIR, which concluded that with adherence to the City's Noise Ordinance regulations, along with implementation of reasonable noise reduction control measures during the construction process, cumulative noise impacts would be less than significant.

Future traffic growth and associated noise from related projects would not result in significant changes in ambient noise levels. As mentioned previously, the traffic patterns around the Coliseum are dramatically altered during periods when Coliseum events are scheduled. As a result, the incremental effect of ambient traffic growth and traffic growth generated by the related projects is diminished as a result of

30.

65 L. S.

lower traffic speeds and altered roadway patterns (road closures and detours). Since the Proposed Project will reduce the seating capacity of the Coliseum, the average number of vehicles generated by Coliseum events would not substantially alter the traffic-related noise levels that are currently generated prior to and after Coliseum events. Cumulative noise impacts from traffic would therefore be less than significant.

#### **MITIGATION MEASURES**

- 1. The Applicant shall comply with the construction hours as specified by the City LAMC Noise Ordinance, Chapter IV, Section 41.40., which prohibits construction before 7:00 a.m. or after 6:00 p.m. Monday through Friday, before 8:00 a.m. or after 6:00 p.m. on Saturday or any national holiday, and at anytime on Sunday.
- 2. The Applicant shall prepare a construction-related traffic plan detailing proposed haul routes and staging areas for the transportation of materials and equipment, with consideration for sensitive uses in the neighborhood. A traffic and parking plan for the construction phase will be submitted for approval by LADOT and the Department of Building and Safety prior to the issuance of any permits.
- 3. Adjacent museums and residents shall be given regular notification of major construction activities and their durations. A visible and readable sign (at a distance of 50 feet) shall be posted on the construction site identifying a telephone number where residents can inquire about the construction process and register complaints.
- 4. During construction, the Project contractors shall muffle and shield intakes and exhaust, shroud and shield impact tools, and use electric-powered rather than diesel-powered construction equipment, as feasible.
- 5. The perimeter of the Project Site (including the ancillary outbuildings proposed to be demolished) shall be enclosed with a temporary barrier wall for security and noise protection purposes. This barrier wall shall consist of a solid, heavy vinyl material or ¾-inch plywood positioned to block direct line of sight from the active construction areas and other open space areas and sensitive uses within Exposition Park.

#### LEVEL OF IMPACT AFTER MITIGATION

Based on the analysis above, significant construction noise impacts would result from construction activities in close proximity to two sensitive land uses within Exposition Park, the new Senior Citizen and Child Care Centers to be opened within EPICC, and the south lawn fronting the Natural History Museum. These areas could be exposed to noise levels of up to 75 dBA during the construction period. Implementation of the noise reduction measures listed above (i.e., construction of a temporary sound attenuation barrier during the construction process) and compliance with the City of Los Angeles Noise Ordinance (Section 41.40) would reduce construction-related noise impacts to less than significant levels.

While no new significant operational noise impacts would occur as a result of the Proposed Project, the recommended mitigation measures listed above would act to further reduce the operational noise impacts that already occur during major Coliseum events.

# V. ENVIRONMENTAL IMPACT ANALYSIS G. PUBLIC SERVICES 1. FIRE PROTECTION

## **ENVIRONMENTAL SETTING**

Fire protection services for the Project Site and surrounding area are provided by the Los Angeles City Fire Department (LAFD). These services are provided as directed by the Fire Protection and Prevention Plan, an element of the General Plan of the City of Los Angeles. The Fire Protection and Prevention Plan is intended to act as a guide to City departments, other government agencies, developers, and the public at-large for the construction, maintenance, and operation of fire protection facilities in the City and establishes standards for the distribution, design, construction and location of fire protection facilities including systems incorporated into private developments. These standards specify fire-flow criteria, minimum distances to fire stations, public and private hydrant specifications and location criteria, and access provisions for fire fighting vehicles and personnel. The LAFD has fire stations at the following locations for initial response service to Exposition Park and the Los Angeles Memorial Coliseum:

#### Fire Station No. 15

Task Force Station - Truck and Engine Company Paramedic Ambulance - EMT Ambulance 915 South Jefferson Boulevard Staffing - 14 Miles from Project Site - 0.6

#### Fire Station No. 46,

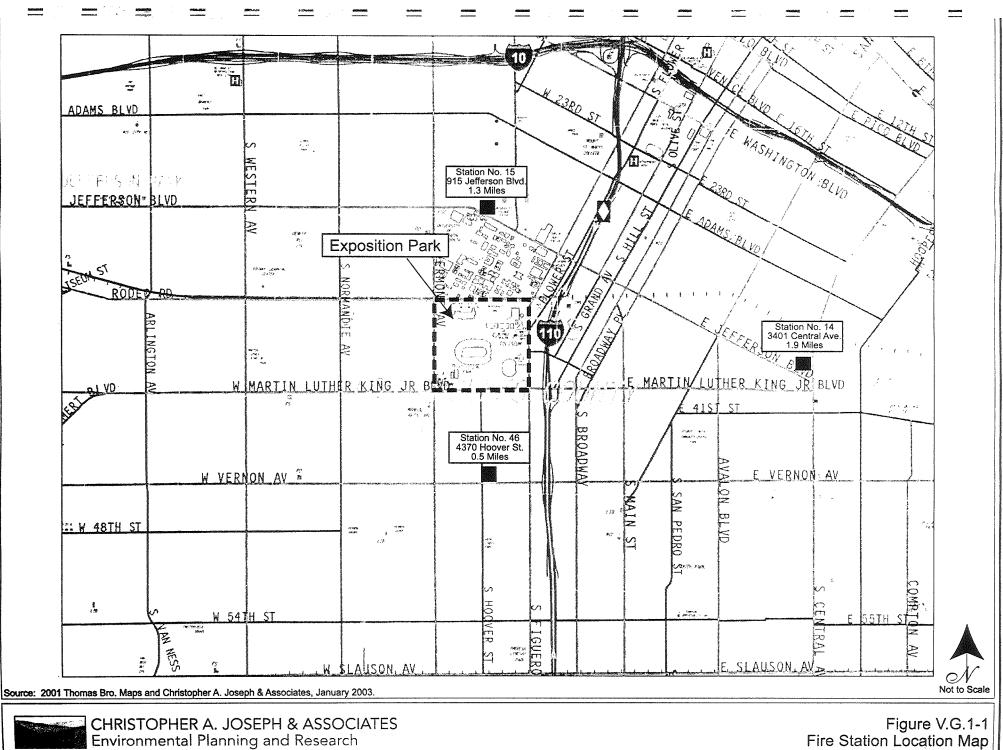
Single Engine Company
Paramedic Ambulance - Paramedic Supervisor
Battalion 3 Headquarters
4370 South Hoover Street
Staffing - 8
Miles from Project Site - 1.2

#### Fire Station No. 14

Task Force Station - Truck and Engine Company Paramedic Ambulance - EMT Ambulance 3401 South Central Avenue Staffing – 14

Ú,

# Miles from Project Site - 1.8<sup>1</sup>


Fire station locations are shown in Figure V.G-1, Fire Station Location Map. The above mileage figures represent estimated response distances to the intersection of Martin Luther King Jr. Boulevard and Hoover Street, south of the Project Site. Actual mileage into other areas of the Project Site would vary accordingly. The adequacy of fire protection for a given area is based on required fire-flow, response distance from existing fire stations, and the Fire Department's judgment for needs in the area. In general, the required fire-flow is closely related to land use. The quantity of water necessary for fire protection varies with the type of development, life hazard, occupancy and degree of fire hazard. Fire-flow requirements vary from 2,000 gallons per minute (GPM) in low-density residential areas to 12,000 GPM in high-density commercial or industrial areas. According to the Los Angeles Fire Department, the required fire-flow for the Proposed Project has been set at no change for GPM from existing fire hydrants.<sup>2</sup>

Response distances are based upon service radii in miles by required fire-flow. Based on a required fire-flow of 9,000 GPM, the first-due Engine Company should be located within ¾ mile, and the first-due Truck Company should be located within 1 mile. The closest Truck Company is currently located 0.6 mile from the Project Site, within the distance recommended by the Fire Department. As a result, the manual Fire Department response travel distance for the existing Coliseum would be considered adequate. The three identified fire stations serving the site currently have established emergency response plans for the Coliseum.

Typically, there are no City of Los Angeles Fire Department personnel on site during football or soccer games; however, a Los Angeles Fire Department Public Assemblage Inspector (Safety Watch Officer) on duty in the South-Central Area may inspect the site at any time. During concerts and other special events, there are as many as six on-duty Fire Department Safety Watch Officers located at the stadium. There is no Fire Command Post located on the current Coliseum grounds. Thus, the Safety Watch Officers may be both located in the press box and/or walking the grounds, staying in contact with fellow staff on-duty via radio communication. These Fire Department staff are paid by the City of Los Angeles Fire Department, which currently bills the Coliseum on a per-event basis. Within the Coliseum, a first aid station is located on the concourse level at Tunnel 6, with additional medical assistance teams located at Tunnels 6, 14, 23 and 29 at the yard level. In addition, emergency medical technician (EMT) services are currently retained by the Coliseum and stationed on the site during large Coliseum events, such as football games and concerts. These services generally include the provision of at least one ambulance.

Correspondence from Alfred B. Hernandez, Assistant Fire Marshall, City of Los Angeles Bureau of Fire Prevention and Public Safety, July 1, 2003.

<sup>&</sup>lt;sup>2</sup> Ibid.



Page V.G.1-3

2

useli Make

100

in the second

Current maximum capacity for Coliseum events is approximately 92,500 persons. Under existing operations, fire and emergency medical services are adequately provided on-site or available within an acceptable response time during sporting and special events.

#### **ENVIRONMENTAL IMPACTS**

#### Thresholds of Significance

The Proposed Project would have a significant impact on fire services if it requires the addition of a new fire station or the expansion, consolidation or relocation of an existing facility to maintain service.

# **Project Impacts**

The Proposed Project would renovate the Coliseum, reducing its maximum seating capacity from the current level of 92,500 persons to levels of approximately 78,000 persons. Project uses, building sizes and locations, designs, and building heights for the renovated Coliseum are discussed in detail in Section II.C of this report, Project Characteristics. The proposed renovation Project will be developed in accordance with all applicable State and local codes and ordinances, and the guidelines found in the Fire Protection and Fire Prevention Plan, as well as the Safety Plan, both of which are elements of the General Plan of the City of Los Angeles.

Two first-aid stations would be located on the upper concourse levels. These first aid rooms would likely handle most injury and first aid treatment cases. The emergency services elevator would provide nearby access to the yard level from each of the concourse level first aid rooms in order to facilitate direct access to waiting ambulances for more serious cases requiring off-site treatment and/or hospitalization. In addition, a medical examination and x-ray room will be located on the field level for team physicians to treat game-related injuries.

Development of the proposed project would not be expected to alter the existing administrative fire protection procedures currently in place at the Coliseum and the immediately surrounding area. In the renovated Coliseum, no LAFD personnel would typically be located on site during football games. However, the City of Los Angeles Public Assemblage Inspector (Safety Watch Officer) would continue to be able to inspect the site at any time. During concerts, off-road vehicle, and other special events, there would continue to be as many as six on-duty Fire Department Safety Watch Officers located at the stadium. The Coliseum would continue to reimburse the LAFD for the costs of such services on a perevent basis.

Exiting system components, including many of the access routes connecting the stadium to the yard level concourse, would be altered to varying degrees. Some of these alterations would allow for improved exiting by creating more options for possible emergency evacuation, in the event of a fire, earthquake, or other disaster (see also Section V.G.2, Police Protection). In the event of such an emergency, the Fire Department would work, in conjunction with the Police Department, to coordinate an emergency response. During such a disaster, the City of Los Angeles Police Department Chief of Police, as

designated by the Mayor of the City of Los Angeles, would be in charge of coordinating any emergency response effort in conjunction with the Fire Department.

According to the LAFD, the proposed project would not require any changes to the existing fire-flow conditions. Since the Coliseum is an existing use, the required fire flow is currently maintained at an acceptable level. Nevertheless, appropriate hydrologic pressure testing will be required to confirm the adequacy of the fire lines prior to construction. Based on the response distance from existing fire stations, the closest truck company would continue to be located within the ¾ mile recommended radius for adequate service capability. As a result, the Fire Department's service response distance to the site would continue to be considered adequate, and would not result in a significant impact.

Additionally, the LAFD considers intersections that operate in excess of capacity as decreasing the level of fire protection and emergency services that can be provided by the Department (see Section V.I Traffic, Access, and Parking, for a complete discussion of traffic impacts). Traffic on the roadways and intersections in the vicinity of the Coliseum would continue to stress the local network during Coliseum events to the point where most intersections in the vicinity would be operating in excess of capacity. As a result, the quality of Fire Department response would continue to be considered compromised by the difficulty which would be experienced in reaching the Coliseum with response vehicles due to severe traffic congestion prior to and following Coliseum events. However, development of the proposed project would not exacerbate existing adverse conditions with respect to traffic congestion during Coliseum events. The installation of sprinklers in enclosed areas, if required, may help reduce concerns of delayed response times.

#### **CUMULATIVE IMPACTS**

The development of other related projects in the immediate area, as well as the proposed project, may result in the need for increased staffing for existing facilities, additional fire protection facilities, and the relocation or expansion of present fire protection facilities, which could produce some areawide cumulative impacts on Fire Department resources. However, no immediate needs or plans have been identified to increase Fire Department staffing or resources in those areas which serve the proposed project. All of the identified related projects will be subject to review and approval by the Fire Department and/or other responsible agencies on a case-by-case basis. The extent of cumulative impacts is therefore considered to be less than significant.

#### MITIGATION MEASURES

As no significant impacts upon fire protection services are anticipated to occur as a result of the proposed project, no mitigation measures are required.

# V. ENVIRONMENTAL IMPACT ANALYSIS G. PUBLIC SERVICES 2. POLICE PROTECTION

# ENVIRONMENTAL SETTING

Police protection is provided to the Project Site by the City of Los Angeles Police Department (LAPD). The site is located within LAPD Reporting District (RD) 378, which consists entirely of Exposition Park. The boundaries of RD 378 are Exposition Boulevard to the north, Figueroa Street to the east, Martin Luther King Jr. Boulevard to the south, and Vermont Avenue to the west. RD 378 is located within the Southwest Area, one of the LAPD's 18 area divisions within the City. The Southwest Area is bounded by the Santa Monica Freeway (Interstate 10) to the north, the Harbor Freeway (Interstate 110) to the east, Vernon Avenue to the South, and La Brea Avenue to the west.

As shown in Figure V.G.2-1, Police Station Location Map, the Southwest Area police station is located at 1546 W. Martin Luther King Jr. Boulevard, approximately 1.2 miles west of the site. The current average response time to emergency calls in the Southwest Area is 11.1 minutes, compared to the 2002 average citywide response time of 10.2 minutes.<sup>1</sup> The Southwest Area currently staffs 327 sworn officers and 26 civilian support staff deployed over three watches.<sup>2</sup> The Project Site is routinely patrolled at all times by officers assigned to the Southwest Area.

Past annual crime statistics for the Southwest Area indicate a crime rate above the citywide average of 49 crimes per 1,000 persons, with the occurrence of approximately 79 crimes for each 1,000 persons during 2002. The predominant crimes most often committed in RD 378 consist of aggravated assault, other theft, and burglary from vehicles. Table V.G.2-1 presents crime statistics for RD 378 from 2002. Specific data for crimes occurring inside the Coliseum during events is not maintained by the LAPD.

Correspondence from Lieutenant Fred Booker, Officer in Charge of Community Relations Section, Office of the Chief of Police, July 8, 2003.

<sup>&</sup>lt;sup>2</sup> Ibid.

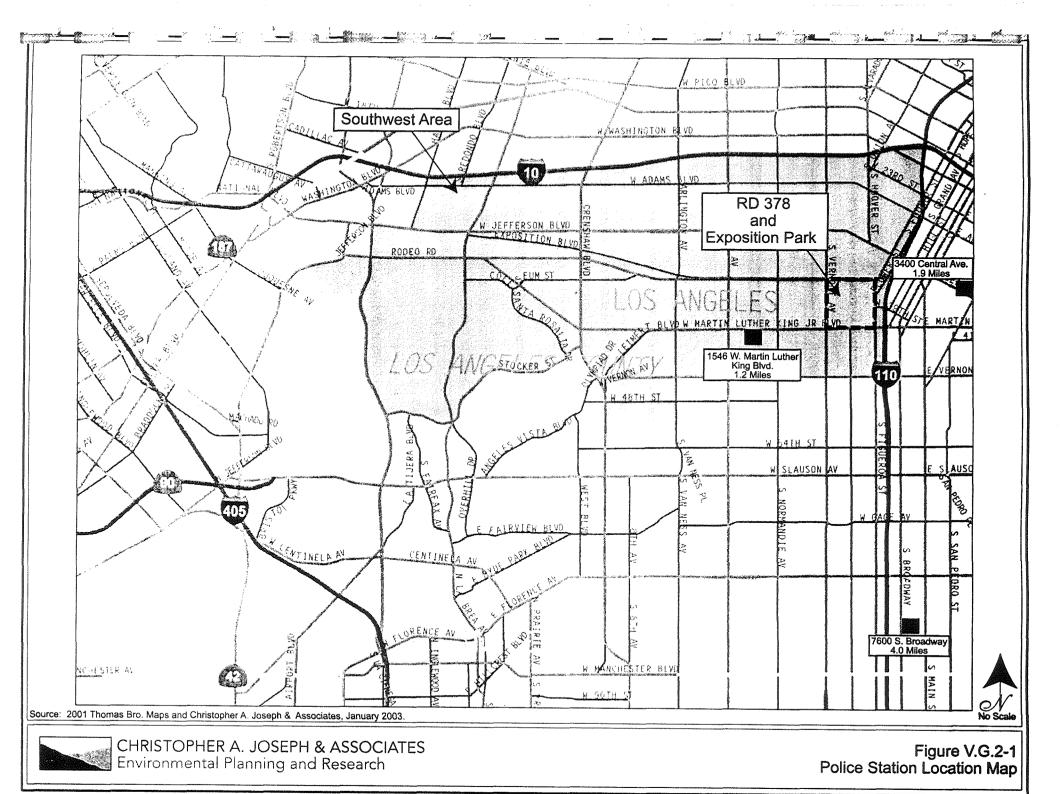



Table V.G.2-1
2002 Crime Statistics for RD 378, Southwest Area and Citywide

|                         | Number Of Crimes Committed |                |          |  |  |
|-------------------------|----------------------------|----------------|----------|--|--|
| Crime Type              | RD 378                     | Southwest Area | Citywide |  |  |
| Burglary from Business  | 1                          | 171            | 5,407    |  |  |
| Burglary from Residence | 1                          | 1,108          | 15,155   |  |  |
| Burglary Other          | 1                          | 229            | 4,758    |  |  |
| Street Robbery          | 9                          | 956            | 11,259   |  |  |
| Other Robbery           | 2                          | 491            | 5,998    |  |  |
| Murder                  | 0                          | 56             | 655      |  |  |
| Rape                    | 0                          | 109            | 1,400    |  |  |
| Aggravated Assault      | 10                         | 2,667          | 32,491   |  |  |
| Burglary from Vehicle   | 24                         | 2,136          | 29,135   |  |  |
| Theft from Vehicle      | 8                          | 833            | 13,467   |  |  |
| Grand Theft             | 7                          | 640            | 12,408   |  |  |
| Theft from Person       | 5                          | 95             | 1,006    |  |  |
| Purse Snatch            | 0                          | 53             | 348      |  |  |
| Other Theft             | 21                         | 2,269          | 22,890   |  |  |
| Bicycle Theft           | 0                          | 10             | 306      |  |  |
| Vehicle Theft           | 13                         | 1,998          | 34,123   |  |  |
| Bunco                   | 0                          | 2              | 133      |  |  |
| Total                   | 102                        | 13,823         | 190,939  |  |  |

Source: Lieutenant Fred Booker, Officer in Charge of Community Relations Section, Office of the Chief of Police, Los Angeles Police Department, July 8, 2003.

All spectator events at the Coliseum generate the need for additional police service in the area. During events, an additional complement of police personnel is provided and coordinated by the LAPD's Operations-South Bureau Special Events staff. Police protection during Coliseum events is provided through the use of patrol and footbeat units, motorcycle units, air units, horse patrols, mobile command posts, and a holding tank. During Coliseum events, the LAPD maintains a substation located at the west end of the stadium.

作 完

Š.

3.2

43

Supplementary police protection during Coliseum events is provided by the combined efforts of the following entities:

- On-Duty Detail composed of a maximum of approximately 50 uniformed on-duty LAPD officers from the Operations-South Bureau Special Events staff, whose primary duty is to police areas outside of the Coliseum.
- Off-Duty Detail composed of a maximum of approximately 160 uniformed off-duty LAPD officers hired by the Coliseum and/or event management, whose primary duty is to patrol the inside of the Coliseum.
- <u>Civilian Security Personnel</u> composed of a maximum of approximately 600 unarmed civilian personnel, divided between security staff wearing yellow jackets whose primary duties involve searching patrons as they enter specified events and providing crowd control inside the Coliseum, and crowd management personnel acting as ushers and ticket takers. These personnel are provided by Contemporary Services Corporation (CSC) and are also hired by the Coliseum or event management.

During events at the Coliseum, representatives from LAPD on-duty detail and off-duty detail as well as civilian security personnel are present in the command post, which is currently located on the roof of the press box. In the event of a major crowd control problem, the field commander of the on-duty detail assumes control of both on- and off-duty details. In addition, LAPD helicopters are occasionally utilized for observation purposes during events at the Coliseum.

To ensure that adequate safety measures are undertaken, event coordinators typically meet with the involved security entities prior to each event. Plans and estimates are made to properly deploy officers and security personnel throughout the Coliseum. These plans and estimates are made based on the estimated size of attendance, type of event, and the type of crowd the event draws. The number of security personnel from each of the categories listed above varies according to the above factors. Historically, approximately 160 off-duty police personnel have been retained to manage professional football games, approximately 100 are needed for an average concert, and approximately 60 are used for collegiate football games. Other events require the hiring of a lesser number of off-duty police personnel, depending primarily on the size of the expected crowd. Approximately 600 civilian security personnel would be assigned during a maximum crowd event, such as a concert, with approximately 300 retained for a professional football game. Approximately 250 civilian security personnel are typically utilized for a collegiate football game.<sup>3</sup> As with the off-duty police personnel, the number of civilian security staff

<sup>&</sup>lt;sup>3</sup> All civilian security personnel figures include crowd management personnel acting as ushers and ticket takers.

utilized during other Coliseum events depends primarily upon expected attendance and the nature of the event.

Many of the incidents requiring police attention during Coliseum events are alcohol-related. In response to the frequency of such incidents, the Coliseum Commission and event management have in the past instituted regulations concerning the sale of alcohol during football games on a trial basis in order to reduce potential problems. Such regulations have included stopping alcohol sales after the end of the third quarter and limiting patrons to a two-beer-per-person limit at all Coliseum concessions. Additionally, alcohol consumption at informal "tailgate" events in parking areas utilized for events prior to, during, and following professional football games is closely monitored by on-duty LAPD personnel.

In the event of an emergency situation at the Coliseum the LAPD would utilize the public address system to calm and instruct the crowd. At the same time, the field commander would assign uniformed police personnel to perform an orderly evacuation of the Coliseum. All emergency plans for the Coliseum are flexible, and would be carried out according to the particularities of the situation. In extreme cases, in what is called a tactical alert, the field commander could choose to call on additional police personnel who are on-duty in adjacent divisions.

Portions of Exposition Park adjacent to the Project Site, except the Sports Arena, are under the jurisdiction of the California State Police. In recent years, the LAPD has coordinated events with the help of the State Police in Exposition Park approximately twice a year. The State Police has utilized one or two patrol cars to monitor the area. During special events in Exposition Park, outside of the Coliseum itself, the State Police has typically designated a detail of up to 12 police personnel to assist the LAPD in police protection with both footbeat units and patrol cars. Recently, however, the California Museum of Science and Industry, under the auspices of the California State Police, has commissioned the formation of an Exposition Park State Police force. This force is responsible for the patrol and protection of Exposition Park with particular emphasis on the Park's museums and other public facilities. It is expected that this force will act as a support unit to existing on-duty LAPD personnel when necessary during Coliseum events.

# **ENVIRONMENTAL IMPACTS**

#### Thresholds of Significance

Impacts on police protection services would be significant if an increase in population and building area would result in a substantial need for additional police services or equipment. The adequacy of police protection is based on a number of factors, including officer-to-population ratio, land use type, response time, crime rate, and LAPD's judgment of project needs (anticipated crime rate and required police activity level) in the area.

# **Project Impacts**

The Proposed Project would reduce the Coliseum's existing maximum seating capacity from approximately 92,500 persons for all events to approximately 78,000 persons. The project would include the reconfiguration of the Coliseum's seating to provide for the addition of approximately 200 private luxury suites to be contained in three levels, and a separate level containing club seats. In addition, expanded locker rooms, and new offices and press/media facilities would be developed as part of the project. Project uses, building sizes and locations, designs, and building heights for the renovated Coliseum are discussed in detail in Section II.C, Project Characteristics.

The project would also include a security command center at the press level for both private security forces and Los Angeles Police Department personnel. Security offices would be located on the field level of the west end of the stadium. The primary functions served by the security command center office would be the staging of event personnel and the viewing of security monitors receiving feeds from cameras positioned around the perimeter of the stadium. The command post would be shared by LAPD and private security personnel. In addition, several small (approximately 100 square feet each) security holding rooms would be located in the renovated Coliseum on various levels at locations in proximity to the emergency services elevator, which connects the field level with each concourse level. The remainder of the security personnel would be positioned around the various levels and sections of the Coliseum. Parking and/or access for police vehicles would be provided at the main service ramp/tunnel from Menlo Avenue in the southwest corner of the field.

The Proposed Project would retain 26 of the 28 existing tunnels connecting the yard level concourse with the seating area of the Coliseum. Although detailed emergency evacuation plans would be created by the LAPD prior to the opening of the renovated Coliseum, it is anticipated that such evacuations would be somewhat easier to accomplish in the renovated stadium. Factors for this anticipated improvement in potential evacuation procedures include the development of generally separate means of access between each level and the yard level concourse, the decreasing of the distance between landings on the exit stairs, and the decreasing of the maximum number of seats between aisles, with the result being that the renovated Coliseum would be in closer compliance with the applicable State and/or City codes than the existing stadium. As a result of these alterations, the efficiency of an emergency evacuation would be expected to improve slightly over existing conditions.

The number and type of events to be held in the Coliseum following project implementation are anticipated to remain similar to existing levels of use, with the addition of the NFL as a permanent tenant. Therefore, development of the Proposed Project is not expected to place an increased burden on police services in the Southwest Area. The maximum possible attendance at most events (excluding concerts) would be reduced from the existing capacity by approximately 14,500 persons, depending on the event. As a result, the maximum number of supplemental police and security personnel needed for any single Coliseum event would not be expected to increase upon project development. Similarly, the Proposed

Project is not anticipated to have any adverse impact on the ability of officers to respond to calls at the Coliseum. The current level of service will continue to be adequate assuming continued use of off-duty police officers and private civilian security personnel. Overall, the Proposed Project is not expected to result in the alteration of the existing police protection personnel arrangement in place at the Coliseum. However, the LAPD has indicated that a project of this size would have a significant impact upon police services in the Southwest Area.

# Security Plan

As part of the Proposed Project, a Security Plan would be developed and implemented by the Applicant to minimize the potential for on-site crime and the need for LAPD services. The plan would outline the security services and features to be implemented, as determined in consultation with the LAPD. The following would be included as part of the plan:

- Provision of an on-site security force which would monitor and patrol the Coliseum site (including the Coliseum and surrounding areas in and adjacent to Exposition Park), prior to, during and after Coliseum events. Security officers shall perform the following duties:
  - o Pedestrian, vehicular, and/or bicycle patrols by uniformed security officers;
  - Circulation of plainclothes security officers during events;
  - o Implementation of a video camera surveillance system and/or a closed-circuit television system.
- Additional security features shall be incorporated into on-site parking lots, including the following:
  - o "Spotters" for parking areas, positioned to be able to view entire lots;
  - Clear public views of all parking areas;
- Security lighting shall incorporate the following:
  - Design of entryways, seating areas, lobbies, elevators, locker rooms, service areas, and other areas within and adjacent to the Coliseum with good illumination and minimum dead space to eliminate areas of concealment;
  - Full cutoff fixtures which minimize glare from the light source and provide light downward and inward to structures to maximize visibility.
- Provision of lockable doors to all entryways, locker rooms, practice facilities, offices, the press box, and concessions;

- Installation of alarms at all entryways and ancillary structures;
- Maximum accessibility for emergency service personnel and vehicles into each structure, and provision to the Southwest Area Commanding Officer of detailed diagram(s) of the site, including access routes, unit numbers, and any information that would facilitate police response.

In addition, security procedures regarding initial response, investigation, detainment of crime suspects, LAPD notification, crowd and traffic control, and general public assistance shall be outlined in the Security Plan. The plan would be subject to review by the LAPD, and any provisions pertaining to access would be subject to approval by the LADOT.

## **CUMULATIVE IMPACTS**

The development of the identified related projects may create additional demands for police services in the study area, which could result in an adverse cumulative impact. The development of commercial and retail-related projects may also create an additional demand on staffing within the LAPD's Southwest, Newton, and Rampart Areas through an increase in the number of police-related problems due to corresponding increases in area traffic, parking demand, and daytime population. All of the identified related projects will be subject to review and approval by the Police Department and/or other responsible agencies on a case-by-case basis. NFL games would also likely be played on only one or two weekday games per year, occurring either on Monday or Thursday nights. Thus, the added demands of the Proposed Project would be limited in nature, as opposed to other commercial and retail development which generate constant demands for such services. The extent of cumulative impacts is therefore considered to be less than significant.

# **MITIGATION MEASURES**

The following mitigation measures are recommended to ensure that an adequate level of police protection continues to be provided on the Project Site during Coliseum events:

- 1. Plot plans for the proposed renovation shall be submitted to the Los Angeles Police Department's Crime Prevention Section for review and comment. Security features subsequently recommended by the LAPD shall be implemented to the extent feasible.
- 2. Building plans shall be filed with the LAPD Southwest Area Commanding Officer. Plans shall include access routes, floor plans, evacuation routes, and any additional information that might facilitate prompt and efficient police response.
- 3. Security features shall be provided on the construction site(s), such as guards, fencing, and locked entrances.

-4

E.

- 4. Landscaping shall not be planted in a way that could provide cover for persons tampering with doors or windows of commercial facilities, or for persons lying in wait for pedestrians or parking lot users.
- 5. Additional lighting shall be installed where appropriate as determined in consultation with the LAPD.
- 6. Safety features shall be incorporated into Proposed Project to assure pedestrian safety, assist in controlling pedestrian traffic flows, and avoid pedestrian/vehicular conflicts on-site. Safety measures may include provision of security and traffic control personnel; clearly designated, well-lighted pedestrian walkways on-site; special street and pedestrian-level lighting; physical barriers (e.g., low walls, landscaping), particularly around the perimeter of the Coliseum, to direct pedestrians to specific exit locations that correspond to designated crosswalk locations on adjacent streets.
- 7. A Security Plan shall be developed and implemented by the Applicant, in consultation with the LAPD, outlining the security services and features to be provided in conjunction with the Proposed Project. Security features may include but are not limited to the provision of a private on-site security force, implementation of a surveillance system, installation of locks and alarms on entryways where appropriate, security and parking lot lighting, "spotters" to survey parking lots, and maximum accessibility for emergency service personnel. The plan shall be reviewed by the LAPD, and any provisions pertaining to access shall be subject to review by the LADOT. A copy of the Plan shall be provided to the LAPD Southwest Area Commanding Officer.
- 8. An Emergency Procedures Plan shall be established and implemented by the Applicant outlining guidelines and procedures in the event of civil disturbance, evacuation, and other types of emergencies. The plan shall be subject to review by the LAPD, and any provisions pertaining to access shall be subject to review by the LADOT. A copy of the Plan shall be provided to the LAPD Southwest Area Commanding Officer.
- 9. Traffic control personnel may be provided on adjacent roadways and in parking areas during Coliseum events and immediately preceding and following events to help prevent vehicles and pedestrians from obstructing emergency access.

In addition to the foregoing recommendations and requirements, measures recommended and/or required under Section V.I, Traffic, Access, and Parking shall be implemented as appropriate.

## LEVEL OF IMPACT AFTER MITIGATION

The LAPD has indicated that the Proposed Project would significantly impact the services rendered by the Los Angeles Police Department. However, it is expected that supplemental police personnel would continue to be requested and funded by the Coliseum or the NFL, as needed during Coliseum events. With implementation of the required mitigation measures identified above, including the implementation of the proposed Security Plan, and continued deployment of supplemental police personnel during Coliseum events, impacts to LAPD services would be reduced to less than significant levels.

# V. ENVIRONMENTAL IMPACT ANALYSIS H. UTILITIES

# 1. ENERGY CONSERVATION

#### **ENVIRONMENTAL SETTING**

The Project Site is currently developed with the Los Angeles Memorial Coliseum, a multi-purpose outdoor stadium with a maximum seating capacity of 92,500 persons. Several ancillary structures are located adjacent to and surrounding the Coliseum on the Project Site. These structures include ticket booths, restroom facilities, and concession-related service buildings. The Project Site is situated within Exposition Park, which is developed with several other publicly oriented facilities, including the Los Angeles Memorial Sports Arena, the California Science Center, and the County Museum of Natural History, among others. The Project Site is served by existing infrastructure.

The majority of the Coliseum's energy demands are generated by major events. The Coliseum has hosted an average of 34 events per year over the past four calendar years (1999 through 2002) with a total average annual attendance of 837,071 persons. Full spectator capacity at the Coliseum (92,500 persons) was not reached on any occasion during the aforementioned four-year study period, and has only been reached on infrequent occasions throughout the history of the stadium. In addition to event-related energy demands the Coliseum operates ancillary offices for day-to-day management and grounds maintenance uses. For a more detailed discussion of the parameters of the time period and attendance data utilized in this study, see Section IV.B of this report, Analytical Assumptions.

# Electricity

Electrical utility service is currently provided to both the Project Site and the surrounding locale by the City of Los Angeles Department of Water and Power (DWP). The DWP distributes electricity to this area of the City of Los Angeles from the following facilities:

- Century Receiving Station B, located near the intersection of Central Avenue and Century Boulevard, approximately 5.0 miles southeast of the Project Site;
- Distributing Station (DS) 13, located near the intersection of Normandie Avenue and Jefferson Boulevard, approximately 0.7 miles northwest of the Project Site;

These 34 average annual events do not include non-ticketed events.

1

- Distributing Station (DS) 19, located near the intersection of San Pedro Street and Jefferson Boulevard, approximately 1.25 miles east of the Project Site; and
- Distributing Station (DS) 32, located near the intersection of Woodlawn Avenue and Vernon Avenue, approximately 1.0 miles southeast of the Project Site.

Existing electrical service facilities on the Project Site consist of two Customer Stations (CS-47 and CS-66), which are supplied from the DWP's 4.8 kilovolt (kV) distribution system, and three Industrial Stations (IS-1632, IS-1649, and IS-1946), which are supplied from the DWP's 34.5 kV distribution system. These five facilities are situated at various locations around the Coliseum. Four of these five facilities are exclusively for on-site electricity consumption, while the fifth (IS-1946) also serves other electricity loads within Exposition Park. Each facility is owned and maintained by the DWP.

During major events, electricity is consumed for a variety of uses, the most significant of these being field lighting and scoreboard and videoboard operation. Other less intensive event-associated uses of electricity on-site include public address/sound system operation, television and radio transmission equipment, internal stadium lighting (locker rooms, press box, etc.), stadium and field maintenance equipment, and food preparation. The primary electricity-consumptive on-site use not associated with Coliseum events is the daily lighting of the Coliseum Commission offices, continual security and maintenance lighting, and the operation of office equipment. It should be noted that the majority of annual on-site electricity consumption occurs during Coliseum events, an average of 34 days per year. Electricity usage on-site is reduced substantially during periods when no stadium events are being held.

Table V.H.1-1 presents total and average electricity consumption data for the Project Site over a four-year period from 1999-2002. As shown in Table V.H.1-1, an average total of approximately 2,152,982 kilowatt hours (kWh) of electricity are consumed annually on the Project Site by the existing Coliseum and its related facilities, an average of approximately 63,323 kWh per event.<sup>2</sup> As previously stated, the majority of the electricity consumed on-site is for the purpose of field lighting and scoreboard/videoboard operation.

Represents average annual energy consumption for both events and non-event periods divided by the average annual number of events at the Coliseum.

Table V.H.1-1
Existing Electricity Consumption

| Fiscal Years                 | Average Number<br>of Events | Average Annual Electricity Consumption (kWh) | Average Electricity<br>Consumption per Event<br>(kWh) |
|------------------------------|-----------------------------|----------------------------------------------|-------------------------------------------------------|
| 1999-2002                    | 34                          | 2,152,982                                    | 63,323                                                |
| Source: Los Angeles Memorial | Coliseum Commission, 2003.  |                                              |                                                       |

#### Natural Gas

The Southern California Gas Company (SCG) provides natural gas to the City of Los Angeles through existing gas mains located under the streets and public right-of-ways. Natural gas service is provided in accordance with the Gas Company's policies and extension rules on file with the California Public Utilities Commission (PUC) at the time contractual agreements are made.

The State of California produces about 16 percent of the natural gas it uses. The remaining 84 percent is obtained from sources outside of the state: 46 percent from the Southwest, 28 percent from Canada, and 10 percent from the Rocky Mountain area. In the last ten years three new interstate gas pipelines were built to serve California, expanding the over one million miles of existing pipelines. However, the availability of natural gas is based upon present conditions of gas supply and regulatory policies. As a public utility, SGC is under the jurisdiction of the California Public Utilities Commission (PUC), but can also be affected by actions of federal regulatory agencies. Should these agencies take any action that affects gas supply or the conditions under which service is available, gas service would be provided in accordance with those revised conditions.

Natural gas service is currently provided to the site by the Southern California Gas Company from an existing four-inch main under Menlo Avenue and an existing three-inch main under Hoover Street. Individual service lines run from each of these gas mains to the Coliseum structure. Other lines serve the off-site portions of Exposition Park, including the Sports Arena, from main lines under Figueroa Street and Martin Luther King Jr. Boulevard. Natural gas is currently consumed at the Coliseum for water heating; space heating in the Coliseum Commission offices, locker rooms, and press box; operation of the Olympic torch; and boiler operation. It should be noted that the majority of natural gas consumption on-site occurs during Coliseum events. Natural gas usage on-site is reduced substantially during periods when no events are scheduled. Table V.H.1-2 presents total and average natural gas consumption data for the Project Site over the four-year period from 1999-2002. As shown in Table V.H.1-2, an approximate average of 1,048,390 cubic feet (cf) of natural gas is consumed annually on the Project Site by the

<sup>3</sup> California Home Page: www.energy.ca.gov/html/calif energy facts.html, March 8, 2002.

Table V.H.1-2
Existing Natural Gas Consumption

| Fiscal Years                                            | Average Number<br>of Events | Average Annual Natural<br>Gas Consumption<br>(cf) | Average Natural Gas<br>Consumption per Event<br>(cf) |  |  |
|---------------------------------------------------------|-----------------------------|---------------------------------------------------|------------------------------------------------------|--|--|
| 2000-2002                                               | 34                          | 1,048,390                                         | 30,835                                               |  |  |
| Source: Los Angeles Memorial Coliseum Commission, 2003. |                             |                                                   |                                                      |  |  |

Coliseum. This total represents an average of 30,835 cf of natural gas consumed by the stadium per Coliseum event.<sup>4</sup>

## **ENVIRONMENTAL IMPACTS**

# Thresholds of Significance

Implementation of a project would create a significant impact upon electricity or natural gas resources if its demand for electricity or natural gas cannot be served by existing infrastructure and/or supply.

## **Project Impacts**

#### Short-Term Energy Consumption

Energy would be consumed during the demolition, excavation and site preparation, and construction phases of the Proposed Project for grading and materials transfer by heavy-duty equipment, which is usually diesel powered. At this time, it is expected that the heavy equipment involved in the demolition, excavation and site preparation, and construction phases of the Project would include crawler-excavators, loaders, bulldozers, graders, water trucks, street sweepers, tractors, cranes, and fork lifts. In addition, dump trucks would be used to haul excavated earth and building material to disposal sites throughout the construction period. It is estimated that the majority of heavy equipment use on the site would occur during the first six months of the approximately 18- to 20-month construction period. The construction contractor is currently evaluating the feasibility of recycling existing concrete building materials to be

Ę.,

C3

Represents average total natural gas consumption for both events and non-event periods divided by the average annual number of events at the Coliseum.

removed for use in the Proposed Project. Recycling efforts, if employed, would be accomplished on-site and may require additional equipment not presented in Table V.H.1-3, including a concrete recycling facility and a batch plant.

It is estimated that the Proposed Project will require the export of approximately 250,000 cubic yards of soil and debris. The demolition and excavation phases of the project are anticipated to last approximately 6 months. Assuming the use of tandem bottom dump trucks with a hauling capacity of 15 cubic yards per truck, the demolition/excavation phase of the renovation project would generate approximately 118 haul trips per day. As shown in Table V.H.1-3, an approximate total of 58,331 gallons of diesel fuel would be consumed by heavy equipment during the construction period. In addition, it is estimated that approximately 75,000 cubic yards of new concrete would be needed on-site from local and regional suppliers. Assuming a truck capacity of 9.5 cubic yards, a round haul trip of 25 miles, and a fuel consumption rate of ten miles per gallon, it is estimated that a total of 7,895 truck trips consuming a total of 19,738 gallons of diesel fuel would be consumed, as shown in Table V.H.1-3. It is further estimated that approximately 150,000 gallons of diesel fuel will be consumed by construction equipment operating on site. Therefore, a total of 228,069 gallons of diesel fuel are estimated to be consumed during the excavation, grading, and construction process.

Additional energy usage would be associated with the construction of the Project itself, including any onsite electrical power usage for tools and other heavy equipment. Construction worker travel to and from the Project Site would also result in the additional consumption of approximately 967,648 gallons of vehicular unleaded fuel during the approximately 18- to 20-month construction period.<sup>6</sup> In addition to approximately 228,069 gallons of diesel fuel and 967,648 gallons of vehicular fuel, and an unquantifiable amount of electricity and natural gas would be consumed as a result of short-term (20-month) construction-related activities.

# **Long-Term Energy Consumption - Electricity**

The Proposed Project would consist of renovating the Coliseum, reducing its maximum seating capacity from the current level of 92,500 persons to 78,000 persons. The Proposed Project would include the reconfiguration of the Coliseum's seating to provide for the addition of approximately 200 private suites

Based on a total of 16,666 haul truck trips during a 6-month period with approximately 23.5 working days per month. Fuel consumption rates were based on a haul trip length of approximately 35 miles round trip and a fuel consumption rate of 10 miles per gallon.

Based upon an average work day with 1,000 construction workers on-site each day over a 20-month construction period (23.5 working days per month) and a round trip commuting distance of 35 miles at an average consumption rate of 17 miles per gallon.

Table V.H.1-3
Construction Equipment Fuel Consumption

| Phase/Equipment                                   | Number Of Pieces/Total Fuel Consumed (Gallons) |
|---------------------------------------------------|------------------------------------------------|
| Demolition Phase                                  |                                                |
| Crawler-Excavators                                | 3                                              |
| Loaders                                           | 3                                              |
| Bulldozers                                        | 2                                              |
| <b>Excavation Phase</b>                           |                                                |
| Crawler-Excavators                                | 2                                              |
| Loaders                                           | 4                                              |
| Bulldozers                                        | 2                                              |
| Graders                                           | 1                                              |
| Water Trucks                                      | 2                                              |
| Street Sweepers                                   | 2                                              |
| Construction Phase (Concrete)                     |                                                |
| Tractors                                          | 4                                              |
| Loaders                                           | 2                                              |
| Cranes                                            | 3                                              |
| Fork Lifts                                        | 3                                              |
| Total From Heavy Equipment:                       | 150,000 gallons                                |
| Dump Trucks (Excavation Phase) <sup>b</sup>       | 58,331 gallons                                 |
| Concrete Trucks (Construction Phase) <sup>c</sup> | 19,738 gallons                                 |
| <b>Total Project Diesel Fuel Consumption:</b>     | 228,069 gallons                                |

<sup>&</sup>lt;sup>a</sup> Assumes 10 pieces of equipment operating continuously on the site for six months (141 days) at a fuel consumption rate of 125 gallons per day per equipment piece.

Source: Christopher A. Joseph & Associates, 2003.

to be located in three levels. Additionally, expanded locker rooms, and new offices and press/media facilities would be developed as part of the Project. The Proposed Project would remove all but one of the existing outbuildings surrounding the Coliseum structure and would include the construction of two new ancillary structures, each 20,000 square feet, for retail or office use. Both ancillary structures would be operable on a day-to-day basis throughout the year.

Electrical service to the renovated Coliseum would continue to be provided by the DWP's 34.5 kV distribution system with transformation to the Coliseum's utilization voltage to take place on the Project Site. To accomplish this, a new Industrial Station and approximately eight new Customer Stations would be located within or adjacent to the Coliseum. The Proposed Project would include the replacement and/or updating of most of the existing Coliseum's electricity-consuming facilities.

While reducing the maximum attendance capacity for any one event, the Proposed Project would increase the total number of electricity-consumptive facilities located on-site through the replacement of existing restroom and concession facilities with a greater number of new facilities, the expansion of the existing home and visiting team locker rooms, the construction of the new food service/maintenance building, the development of separate club level concession counters and lounges, the construction of approximately 200 private suites with wet bar and bathroom facilities, and more expansive press box and communication facilities. The addition of closed circuit television monitors to all concession areas, suites, and lounges; new lighting to all interior and exterior portions of the Coliseum; additional elevators located throughout the stadium; and a new sound system with auxiliary speakers in restrooms, offices, and locker rooms would also add to the existing number of electricity-consuming uses on the site. All food preparation centers in the Proposed Project would be equipped with electrical service, as would all private suites. Air conditioning would likely be provided throughout many of the enclosed portions of the Coliseum, including the private suites, concession stands, club level common areas, press box, and outlying ticket offices. In addition, ventilation of many of the semi-enclosed portions of the stadium would be provided. All of these improvements and additions would increase the number of electricity-using facilities on the site, thereby increasing the site's total electricity consumption by a corresponding amount.

Electricity consumption for the Proposed Project was estimated using the amount of electricity currently consumed on the Project Site. As seen in Table V.H.1-4, electricity consumed by the Proposed Project would be approximately 63,323 kWh per event. On event and non-event days the Proposed ancillary uses are expected to consume approximately 1,419 kWh per day. Annually, the Proposed Project will consume approximately 3.4 million kWh (based on 46 events per year and ancillary use daily throughout the year). This represents an increase of approximately 1.2 million kWh per year over existing conditions.

Table V.H.1-4
Proposed Project Electricity Consumption

| Development             | Average Number of<br>Events per Year | Consumption Rate                 | Total Annual<br>Consumption (kWh) |  |  |  |
|-------------------------|--------------------------------------|----------------------------------|-----------------------------------|--|--|--|
| Stadium                 | 46                                   | 63,323 (kWh/event) a             | 2,912,858                         |  |  |  |
| Ancillary Office/Retail | 40,000 sf                            | 12.95 (kWh/sf/year) <sup>b</sup> | 518,000                           |  |  |  |
|                         |                                      | Subtotal Proposed Project        | 3,430,858                         |  |  |  |
|                         | 2,152,982                            |                                  |                                   |  |  |  |
|                         | Net Increase in Annu                 | al Electricity Consumption       | 1,277,876                         |  |  |  |

<sup>&</sup>lt;sup>a</sup> Based on average electricity consumption rate per event (for 34 annual events averaged over a four year period) provided by the Los Angeles Memorial Coliseum Commission, 2003.

Based on a usage of 365 days per year.

In general, electricity consumption on event days at the Coliseum is not nor would it be a direct function of attendance levels, as many of the primary electricity-consumptive facilities on the site, such as lighting. scoreboard and videoboards, and air conditioning would be utilized during most events regardless of the size of the crowd present. However, it should be noted that many of these electricity-consuming uses would only be in full operation during events with sufficient attendance levels to warrant their use. For example, the number of concession stands and restrooms utilized during an event would be dependent on the attendance at that event. For the purposes of this analysis, it has been assumed that the electricity currently consumed on-site would continue to be utilized for the same purposes in the renovated stadium on event days and that the two new ancillary structures proposed would consume electricity independently, on a daily basis regardless of event days or characteristics. It is also likely that the electrical infrastructure in the renovated Coliseum would exhibit an increase in energy efficiency when compared to the existing facilities. This assumption is based upon the development of energy conservation standards established by the California Energy Commission under Title 24; standards which were not in place when the Coliseum was constructed. As stated previously, however, it is likely that the additional number of electricity-consumptive uses to be contained within the Proposed Project would more than offset any reduction in electricity use associated with improved infrastructure. The increase in electricity consumption on the site resulting from the Proposed Project would be primarily associated with the increased number of visitor facilities, such as private suites, more concessions, and the overall increase in the amount of enclosed square footage within the Coliseum, as well as the operation of a new field lighting system.

Following implementation of the Proposed Project, the majority of the peak electricity consumption periods on the site would continue to occur during Coliseum event days, which are largely confined to weekends and weekday evenings. These time periods are also off-peak periods for the areawide consumption of electricity. As a result, the ability of the DWP's regional infrastructure to deliver the peak electrical requirement to the site would not be expected to be severely affected by implementation of the Proposed Project. However, the precise number, size, and locations of any new necessary transformer stations, as well as details concerning the DWP's planned distribution system cannot be determined until the DWP has evaluated the electrical load estimates and service requirements for the Proposed Project. Additional power facilities could be required in order to serve the load growth associated with the Proposed Project. Construction of these facilities may result in some temporary secondary impacts in the forms of noise, air pollution, and traffic congestion during construction.<sup>7</sup>

Source: Letter from Edward Karapetian, Manager of Environmental and Governmental Affairs, City of Los Angeles Department of Water and Power, December 19, 1990.

Development of the Proposed Project would continue existing uses of local and regional energy resources on the Project Site. Upon completion and operation, the Proposed Project would be estimated to consume approximately 3.4 million kWh of electricity per year, an increase of 1.2 million kWh when compared to the existing Coliseum. It has not yet been determined whether the local off-site electricity infrastructure would be able to handle the anticipated increase in yearly power consumption on the Project Site associated with implementation of the Proposed Project, but since the increase in electricity consumption will only occur approximately 46 days per year, and will be low on non-event days, the impact is expected to be less than significant. If improvements to the local distribution system are determined to be necessary by the DWP in order to serve the Project, they would be required to be implemented prior to Project completion. Such improvements however, could be made with minimal impact upon the surrounding land uses, and all property owners would be notified in advance if temporary electricity outages are expected. Impacts to electricity infrastructure and supply would be less than significant.

# **Long-Term Energy Consumption - Natural Gas**

With the development of the Proposed Project, natural gas would continue to be provided to the Project Site by the Southern California Gas Company from existing facilities in the vicinity of the site. While reducing the maximum attendance capacity for most events, the Proposed Project would increase the total number of gas-consumptive facilities located on-site through the replacement of existing concession facilities with a greater number of new facilities, the expansion of the existing home and visiting team locker rooms, the construction of the new food service/maintenance building, the development of separate club level concession counters and lounges, the construction of approximately 200 private suites with wet bar facilities, and more expansive press box facilities. All food preparation centers in the Proposed Project would be equipped with gas service. The Proposed Project would also include the construction of two new buildings, each approximately 20,000 square feet, to accommodate ancillary office or retail uses. Both ancillary structures would be operable on a day-to-day basis throughout the year. All of these improvements and additions would increase the number of gas-using facilities on the site, thereby increasing the site's total natural gas consumption by a corresponding amount. consumption at the Coliseum is not a direct function of attendance levels, as many of the primary gasconsumptive facilities on the site, such as those associated with food preparation and water heating, would be utilized during most events regardless of the size of the crowd present. However, it should be noted that many of these gas-consuming uses would only be in full operation during events with sufficient attendance levels to warrant their use. For example, the number of concession stands and restrooms utilized during an event would be dependent on the attendance at that event.

For the purposes of this analysis, it has been assumed that the natural gas currently consumed on-site would continue to be used for the same purposes under the Proposed Project. The additional ancillary structures would slightly increase the use of natural gas on the site. Since development of the Project would include the replacement and/or modernization of much of the gas delivery infrastructure, as well as of the gas-utilizing fixtures within the Coliseum, it has been assumed that the natural gas infrastructure in

the renovated Coliseum would exhibit an increase in energy efficiency when compared to the existing facilities. This assumption is based upon the development of energy conservation standards established by the California Energy Commission under Title 24; standards which were not in place when the Coliseum was constructed. However, it is likely that the additional number of gas-consumptive uses to be contained within the Proposed Project would more than offset any reduction in the use of natural gas to be associated with the installation of improved infrastructure.

Natural gas consumption by the Proposed Project was estimated using the amount of electricity currently consumed on the Project Site and projecting an increase in up to 12 additional football games per year. As seen in Table V.H.1-5, natural gas consumed by the Proposed Project would be approximately 33,835 cf per event. The proposed ancillary uses would consume approximately 2,630 cf of natural gas per day. Annually, the Proposed Project would be anticipated to consume approximately 2.3 million cf (based on stadium consumption during 46 events per year and ancillary use daily throughout the year). This represents an increase of approximately 1.3 million cf of natural gas per year over existing conditions.

Table V.H.1-5
Proposed Project Natural Gas Consumption

| Development                                    | Average Number of<br>Events per Year | Consumption Rate               | Total Annual<br>Consumption<br>(cf) |
|------------------------------------------------|--------------------------------------|--------------------------------|-------------------------------------|
| Stadium                                        | 46                                   | 30,835 (cf/event) <sup>a</sup> | 1,418,410                           |
| Ancillary Office/Retail                        | 40,000 sf                            | 2 (cf/sf/month)                | 960,000                             |
|                                                | 2,378,410                            |                                |                                     |
| Less Existing Natural Gas Consumption          |                                      |                                | 1,048,390                           |
| Net Increase in Annual Natural Gas Consumption |                                      |                                | 1,330,020                           |

Based on average natural gas consumption rate per event provided by the Los Angeles Memorial Coliseum Commission, 2003.

Source: Christopher A. Joseph & Associates, 2003.

Following implementation of the Proposed Project, the majority of the natural gas consumption on the site would continue to occur during Coliseum event days, which are largely confined to weekends and weekday evenings. These time periods are also off-peak periods for the areawide consumption of natural gas. As a result of off-peak hour use, the ability of the Southern California Gas Company's regional infrastructure to deliver the peak natural gas requirement to the site would not be expected to be severely affected by implementation of the Proposed Project. If it is determined that off-site gas delivery system improvements are necessary to serve the anticipated Project peak load of 33,835 cf per event, they would be required to be implemented prior to Project completion.

### **CUMULATIVE IMPACTS**

Development and implementation of the related projects within the study area would result in the consumption of approximately 405,713 kWh of electricity and approximately 1,110387 cf of natural gas per day (based on stadium consumption during 46 days per year and related project and ancillary structures consumption daily throughout the year), as shown in Tables V.H.1-6 and V.H.1-7. Although the cumulative impact of the identified related projects may require the installation of additional electrical and/or natural gas distribution facilities, service availability, and thus the extent of any potential locally occurring cumulative impacts on utility service, would necessarily be determined through the environmental review process for each individual project. The construction of any power distribution facilities required in association with any related project may cause limited local short-term impacts in the forms of unavoidable noise, air pollution, and traffic congestion during construction. Even so, it is not expected that the development of these projects would represent a level of use of regional energy resources that could result in a significantly adverse cumulative impact.

# **MITIGATION MEASURES**

No significant impacts upon electricity or natural gas resources or infrastructure systems have been identified, thus no mitigation measures are required. Nevertheless, the LADWP recommends the following measures be incorporated into the final design as feasible, to reduce the Project's demands for energy resources.

1. During the design process, the applicant should consult with the Los Angeles Department of Water and Power, Efficiency Solutions Business Group, regarding possible energy efficiency measures. The applicant shall incorporate measures to meet or, if possible, exceed minimum efficiency standards for Title XXIV of the California Code of Regulations.

# LEVEL OF SIGNIFICANCE AFTER MITIGATION

While the Proposed Project's impact upon electricity and natural gas resources and infrastructure would be less than significant prior to mitigation, implementation of the mitigation measure listed above would serve to further reduce the Project's demand for energy resources.

Table V.H.1-6
Estimated Electricity Consumption by Related Projects

| Land Use                      | Size         | Consumption Rate (kilowatt hours/year) a | Total<br>(kilowatt hours/day) |
|-------------------------------|--------------|------------------------------------------|-------------------------------|
| Apartment                     | 179 du       | 5,172/du                                 | 2,536                         |
| Community Facility/Clinic     | 78,840 sf    | 17,100/1,000 sf                          | 3,694                         |
| Elementary/Junior High School | 1,211,403 sf | 12,200/1,000 sf                          | 203                           |
| High School                   | 1,815,581 sf | 12,200/1,000 sf                          | 232                           |
| Light Industrial              | 700,000 sf   | 12,200/1,000 sf                          | 23,397                        |
| Market/Grocery                | 8,720 sf     | 55,200/1,000 sf                          | 1,319                         |
| Multi-Use Development         | 6,914,165 sf | 15,300/1,000 sf                          | 289,827                       |
| Museum                        | 1,128,000 sf | 12,200/1,000 sf                          | 37,703                        |
| Office                        | 447,500 sf   | 17,100/1,000 sf                          | 20,965                        |
| Parking Facility              | 2,400 spaces |                                          | 0                             |
| Restaurant                    | 17,443 sf    | 47,600/1,000sf                           | 2,275                         |
| Retail                        | 107,370 sf   | 15,300/1,000 sf                          | 4,501                         |
| Storage                       | 7,910 sf     | 5,300/1,000 sf                           | 115                           |
| Theater <sup>b</sup>          | 33,420 sf    | 12,200/1,000 sf                          | 1,117                         |
| University                    | 440,000 sf   | 12,200/1,000 sf                          | 14,707                        |
| Wholesale Trade Space         | 215,000 sf   | 5,300/1,000 sf                           | 3,122                         |
|                               |              | Cumulative Total                         | 405,713                       |

Based on rates provided by the SCAQMD, CEQA Air Quality Handbook, 1993.

# Notes:

du = dwelling unit

sf = square feet

Source: Christopher A. Joseph & Associates, 2003.

Used Pacific Theaters Seat Rate (1 seat = 20 sf).

Table V.H.1-7
Estimated Natural Gas Consumption by Related Projects

| Land Use                      | Size         | Consumption Rate (cubic feet/month) a | Total<br>(cubic feet/day) |
|-------------------------------|--------------|---------------------------------------|---------------------------|
| Apartment                     | 179 du       | 4,011.5/du                            | 23,935                    |
| Community Facility/Clinic     | 78,840 sf    | 2,000/1,000 sf                        | 5,256                     |
| Elementary/Junior High School | 1,211,403 sf | 2,000/1,000 sf                        | 80,760                    |
| High School                   | 1,815,581 sf | 2,000/1,000 sf                        | 121,038                   |
| Light Industrial              | 700,000 sf   | 2,000/1,000 sf                        | 46,667                    |
| Market/Grocery                | 8,720 sf     | 2,900/1,000 sf                        | 843                       |
| Multi-Use Development         | 6,914,165 sf | 2,900/1,000 sf                        | 668,369                   |
| Museum                        | 1,128,000 sf | 2,000/1,000 sf                        | 75,200                    |
| Office                        | 447,500 sf   | 2,000/1,000 sf                        | 29,833                    |
| Parking Facility              | 2,400 spaces |                                       | 0                         |
| Restaurant                    | 17,443 sf    | 2,900/1,000sf                         | 1,686                     |
| Retail                        | 107,370 sf   | 2,900/1,000 sf                        | 10,379                    |
| Storage                       | 7,910 sf     | 2,000/1,000 sf                        | 527                       |
| Theater <sup>b</sup>          | 33,420 sf    | 2,000/1,000 sf                        | 2,228                     |
| University                    | 440,000 sf   | 2,000/1,000 sf                        | 29,333                    |
| Wholesale Trade Space         | 215,000 sf   | 2,000/1,000 sf                        | 14,333                    |
|                               |              | Cumulative Total                      | 1,110,387                 |

<sup>&</sup>lt;sup>a</sup> Based on rates provided by the SCAQMD, CEQA Air Quality Handbook, 1993.

# Notes:

du = dwelling unit

sf = square feet

Source: Christopher A. Joseph & Associates, 2003.

b Used Pacific Theaters Seat Rate (1 seat = 20 sf).

# V. ENVIRONMENTAL IMPACT ANALYSIS H. UTILITIES 2. WATER CONSERVATION

### ENVIRONMENTAL SETTING

Water service is provided to both the Project Site and the surrounding locale by the City of Los Angeles Department of Water and Power (DWP). Existing water lines serving the Project Site include a 16-inch main under Figueroa Street, a 12-inch main under Martin Luther King Jr. Boulevard, and a four-inch main under Menlo Avenue. Additional nearby lines include a 61-inch main under the Figueroa Street easement and an eight-inch main under Menlo Avenue.

The Coliseum is serviced by DWP water mains via two main feeder (lateral) lines which merge inside the stadium. These feeder lines enter the Coliseum along the north and south exteriors of the structure. The Coliseum's internal water delivery infrastructure has been upgraded and, in parts, replaced at various intervals throughout the stadium's nearly 80 year history. The most recent major overhaul occurred in 1973 when many of the deteriorating internal lines required upgrading and, in some cases, complete replacement. During the 1984 Olympic Games, water pressure and leakage problems were experienced in the yard and concourse levels of the Coliseum. In response, a new pump station was installed and some water lines were replaced and upgraded. In the years since these improvements were made, water system leakages and/or pressure problems have continued to occur within the Coliseum, due primarily to the age of the stadium's interior infrastructure. Low-flow showerheads and toilet flush valve water conservation devices were installed throughout the Coliseum during and following the 1984 Olympic Games. Trough-type urinals, which generally use a greater quantity of water than individual urinals and/or toilets, are currently installed in several of the restroom facilities in the Coliseum. The Coliseum's grass field is irrigated by sprinkler heads percolating through a gravity drain system. The water used for field irrigation drains into a sump located under the west end of the field, from which it is ejected to the storm drain system.

In terms of the City's overall water supply, in addition to local groundwater sources, the DWP operates and receives water via the Los Angeles-Owens River aqueduct and is a member of the Metropolitan Water District of Southern California (MWD). According to DWP projections, these three sources will supply the City's water needs beyond the year 2020. According to recent projections, the City's water demand for 2020 is estimated at 900 cubic feet per second (cfs). The City of Los Angeles Department of Water and Power (DWP) is responsible for ensuring that water demand within the City is met and that State and federal water quality standards are achieved. For the fiscal year of 2001-2002, City water supplies were derived from the following sources: (1) the Los Angeles Aqueduct, approximately 34 percent; (2) groundwater, approximately 11 percent; and (3) purchases from the Metropolitan Water

District (MWD), approximately 55 percent.<sup>1</sup> Although, the amount of water obtained from these sources varies from year to year and is primarily dependent on weather conditions and demand.

Water storage is essential for the DWP to supply water during high demand conditions and provide for firefighting and emergencies. The City water system includes 104 tanks and reservoirs ranging in size from 10,000 to 60 billion gallons with a total capacity of 109 billion gallons. Water is currently being consumed on the Project Site for a variety of event-related uses, primarily field irrigation, landscaping, public restrooms, locker rooms, concession uses, concourse washdowns, and public drinking fountains. In addition to these uses, the daily operation of the Coliseum Commission staff offices and ticket offices consumes a smaller amount of water. Water consumption on-site is reduced during periods when no stadium events are being held, with landscaping and field irrigation being the primary uses.

The Coliseum has hosted an average of 34 events per year over the past three calendar years (1999 through 2002) with a total average annual attendance of 259,087 persons, or 32,386 per event.<sup>3</sup> Full spectator capacity at the Coliseum (92,500 persons) was not reached on any occasion during the aforementioned three-year study period, and has only been reached on infrequent occasions throughout the history of the stadium. For a more detailed discussion of the parameters of time period and attendance data utilized in this study, see Section IV.A of this report, Analytical Assumptions. As shown in Table V.H.2-1, an average of approximately 444,000 gallons of water are consumed per event on the Project Site by the existing Coliseum and its related facilities, an average of approximately 15 million gallons per year.<sup>4</sup>

Table V.H.2-1
Existing Water Consumption

| Development                                                                           | Size (seats) | Consumption Rate a (gallons/day/seat) b | Total Consumption (gallons/day) |
|---------------------------------------------------------------------------------------|--------------|-----------------------------------------|---------------------------------|
| Coliseum Seats                                                                        | 92,500       | 4.8                                     | 444,000                         |
|                                                                                       | 444,000      |                                         |                                 |
| Total Existing Water Consumption per Event  Total Existing Water Consumption per Year |              |                                         | 15,096,000                      |

Water consumption rate is 120% of wastewater generation rate provided by the City of Los Angeles Department of Public Works, Bureau of Sanitation, July 29, 2003.

Gallons per day are for event days only.

<sup>&</sup>lt;sup>1</sup> City of Los Angeles Department of Water and Power, <u>Urban Water Management Plan</u>, Fiscal Year 2001-2002 Annual Update.

<sup>&</sup>lt;sup>2</sup> City of Los Angeles, Draft L.A. CEQA Thresholds Guide, May 1998.

These 34 average annual events do not include non-ticketed events. Source: Los Angeles Coliseum Commission, July 2003.

<sup>&</sup>lt;sup>4</sup> Based on a 34-event year.

### **ENVIRONMENTAL IMPACTS**

# Thresholds of Significance

Implementation of a project would result in a significant impact on water service if either of the following occurs: 1) demand by the project exceeds the ability of the DWP to service the area based on anticipated water supplies; or 2) water demand generated by the project exceeds the capacity of existing or planned water distribution systems, resulting in an unmet need for additional infrastructure in order to provide adequate levels of service.

# **Project Impacts**

Project implementation would consist of the renovation of the Los Angeles Memorial Coliseum, reducing its maximum seating capacity from the current level of 92,500 persons to levels of 78,000 persons. Renovation would include the reconfiguration of the Coliseum's seating to provide for the addition of approximately 200 private suites. Additionally, expanded locker rooms, and new offices and press/media facilities would be developed as part of the Project. The Proposed Project would remove all of the existing outbuildings surrounding the Coliseum structure and would include the construction of two new ancillary buildings, each 20,000 square feet, to be used for office or retail structures. Both ancillary uses would be operable on a day-to-day basis throughout the year. For a more detailed discussion of Project uses, building locations, and designs for the renovated Coliseum, see Section III.C, Project Characteristics.

While reducing the maximum attendance capacity for all events, the Proposed Project would increase the total number of water consumptive facilities located on-site through the renovation of existing restroom and concession facilities with a greater number of new facilities, the expansion of the existing home and visiting team locker rooms, the construction of the new food service/maintenance areas, the development of separate club level concession counters and lounges, the construction of approximately 200 private suites with wet bar and bathroom facilities, and more expansive press box facilities.

It is been assumed that all the water delivery infrastructure and fixtures used within the renovated Coliseum would exhibit an increase in efficiency when compared to the existing facilities, requiring the use of less water to perform the same function. The new system would eliminate existing leakages and pressure problems associated with the existing infrastructure, and would conform to current standards not in place at the time of the Coliseum's original construction or subsequent upgrades.

As shown in Tables V.H.2-2 and V.H.2-3, water consumption on the site is estimated to be approximately 468,000 gallons per event with the development of the Proposed Project, assuming maximum levels of attendance at all events, and 7,200 gallons of water per day on non-event days. This results in a total of approximately 24 million gallons of water consumed by the Project per year, based on a rate of 46 events per year and daily use of the ancillary structures. This is a per-event increase in water consumption of 24,000 gallons per event, and a non-event day increase of 7,200 gallons of water per day. It should be noted that the maximum possible water consumption for any Coliseum event could be reduced below projected levels upon implementation of the Proposed Project through the installation of

more water-efficient infrastructure and fixtures, as described above. Additionally, because events are not anticipated to achieve maximum capacity frequently, it can be assumed that water consumption will be below the projected rates for most events.<sup>5</sup>

Table V.H.2-2
Proposed Project Water Consumption on Event Days

| Development                                 | Size                            | Consumption Rate a, b      | Total Consumption (gallons/day) |
|---------------------------------------------|---------------------------------|----------------------------|---------------------------------|
| Coliseum Seats                              | 78,000 seats                    | 4.8 (gallons/seat/day)     | 374,400                         |
| Luxury Suites <sup>c</sup>                  | 4,000 seats                     | 21.6 (gallons/seat/day)    | 86,400                          |
| Ancillary Office/Retail                     | 40,000 sf                       | 180 (gallons/1,000 sf/day) | 7,200                           |
|                                             | 468,000                         |                            |                                 |
|                                             | Less Existing Water Consumption |                            |                                 |
| Total Project Net Increase                  |                                 |                            | 24,000                          |
| Proposed Project Water Consumption per Year |                                 |                            | 21,528,000                      |

<sup>&</sup>lt;sup>a</sup> Water consumption rate is 120% of wastewater generation rate provided by the City of Los Angeles Department of Public Works, Bureau of Sanitation, July 29, 2003.

Table V.H.2-3

Proposed Project Water Consumption on Non-Event Days

| Development                                                                                                           | Size                      | Consumption Rate a         | Total Consumption<br>(gallons/day) |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------|------------------------------------|
| Ancillary Office/Retail                                                                                               | 40,000 sf                 | 180 (gallons/1,000 sf/day) | 7,200                              |
| Pro                                                                                                                   | posed Project Water Consu | mption on Non-Event Days   | 7,200                              |
| Proposed Project Water Consumption per Year                                                                           |                           |                            | 2,628,000                          |
| Water consumption rate is 120% of wastewater generation rate provided by the City of Los Angeles Department of Public |                           |                            |                                    |

Water consumption rate is 120% of wastewater generation rate provided by the City of Los Angeles Department of Public Works, Bureau of Sanitation, July 29, 2003.

Water service for the Coliseum would continue to be provided by the City of Los Angeles Department of Water and Power from the existing 16-inch main under Figueroa Street, 12-inch main under Martin Luther King Jr. Boulevard, and four-inch main under Menlo Avenue. As discussed in Section V.G.1 of this report, Fire Protection, the Proposed Project is estimated to continue to require a fire-flow of approximately 9,000 gallons per minute from six fire hydrants flowing simultaneously, the same as the existing Coliseum.

b Gallons per day are for event days only.

The Proposed Project includes 200 suites for a total of approximately 4,000 seats.

With development of the proposed project, concerts and/or special public speaking events would be the only types of events at which the maximum current capacity could feasibly be retained. The maximum potential capacity of the Coliseum would be reduced for all other types of events.

It has not been determined at this time whether adequate capacity to meet the site's anticipated future water demand currently exists in the water mains serving the site. The Project Site's peak flow water demand would be anticipated to increase with Project implementation corresponding to increases in water consumptive fixtures and a higher number of events per year. As such, impacts to water services are may be adverse and significant.

At this time, the adequacy of existing water infrastructure to serve the Project Site has not been determined. If, upon formal assessment, water capacity and service is determined to be inadequate, and the local water delivery system requires upgrading, the resulting construction may cause a temporary impact on the surrounding communities due to noise, increased air/dust pollution, and traffic congestion throughout the duration of the necessary construction activities. A determination regarding the need for off-site water system improvements would need to be made prior to the commencement of Project construction activities, with any corresponding improvements to be completed prior to Project completion.

### **CUMULATIVE IMPACTS**

Development of the Proposed Project would result in a consumption rate of approximately 460,800 gallons per event, assuming maximum attendance at all Coliseum events, and a non-event average of approximately 7,200 gallons per day, resulting in a total annual water consumption of approximately 24 million gallons per year (based on an average of 46 events per year and daily operation of ancillary structures). This results in a net increase of 24,000 gallons on event days, and an increase of 7,200 gallons per day on non-event days.

Related projects in the vicinity of the Project Site would be estimated to consume a total of approximately 993,637 gallons of water per day upon completion, as shown in Table V.H.2-4. Annual water consumption expected to be associated with the proposed and related projects is estimated at approximately 394 million gallons of water per year (based on related projects and ancillary uses consuming 365 days a year and Proposed Project consuming 46 days per year). As with the Proposed Project, all related projects will be subject to the City-mandated water conservation program as long as the program remains in effect. As the adequacy of existing water infrastructure has not been determined, the Proposed Project, in conjunction with the related projects, may cause a significant adverse impact to water services. Assuming related projects are in full compliance with the program, however, and the Proposed Project implements the mitigation measures listed below, any impact to water services can be reduced to a less than significant level. Ultimately, the service availability for each individual project can only be determined on a project-by-project basis.

Table V.H.2-4
Estimated Water Consumption by Related Projects

| Land Use                      | Size           | Consumption Rate<br>(gallons/day) <sup>a</sup> | Total<br>(gallons/day) |
|-------------------------------|----------------|------------------------------------------------|------------------------|
| Apartment                     | 179 du         | 176/du                                         | 31,504                 |
| Community Facility/Clinic     | 78,840 sf      | 275/1,000 sf                                   | 21,681                 |
| Elementary/Junior High School | 6,062 students | 10/student                                     | 60,620                 |
| High School                   | 6,954 students | 14/student                                     | 97,356                 |
| Light Industrial              | 700 employees  | 13/employee                                    | 9,100                  |
| Market/Grocery                | 8,720 sf       | 88/1,000 sf                                    | 767                    |
| Multi-Use Development         | 6,914,165 sf   | 88/1,000 sf                                    | 608,447                |
| Museum                        | 1,128,000 sf   | 22/1,000 sf                                    | 24,816                 |
| Office                        | 447,500 sf     | 165/1,000 sf                                   | 73,838                 |
| Parking Facility              | 2,400 spaces   |                                                |                        |
| Restaurant                    | 17,443 sf      | 330/1,000sf                                    | 5,756                  |
| Retail                        | 107,370 sf     | 88/1,000 sf                                    | 9,449                  |
| Storage                       | 7,910 sf       | 22/1,000 sf                                    | 174                    |
| Theater                       | 1,670 seats    | 4/seat                                         | 6,680                  |
| University <sup>b</sup>       | 440,000 sf     | 88/1,000 sf                                    | 38,720                 |
| Wholesale Trade Space         | 215,000 sf     | 22/1,000 sf                                    | 4,730                  |
|                               |                | Subtotal                                       | 993,637                |
|                               | 460,800        |                                                |                        |
|                               | 7,200          |                                                |                        |
|                               | 1,461,637      |                                                |                        |

# Notes:

du: dwelling unit.

Source: Christopher A. Joseph & Associates, 2002.

# **MITIGATION MEASURES**

To reduce impacts to less than significant levels, the following mitigation measures are required:

- 1. The Project Applicant shall be required to comply with any improvements necessary to meet Los Angeles Fire Department fire-flow requirements for the Proposed Project.
- 2. The Proposed Project shall incorporate water saving techniques as required by the City of Los Angeles' mandatory water conservation program (Ordinance Nos. 166,080 and 163,532). Water conservation measures described in the ordinance include, but are not limited to, the following:

sf: Square feet,

Based on 120% of wastewater generation rates provided by the City of Los Angeles Public Works Bureau of Sanitation, March 2002.

Based on rates for Library/Public Area provided by the City of Los Angeles Public Works Bureau of Sanitation, March 2002.

- As necessary, the Project Site shall be landscaped with drought-tolerant/indigenous species (xeriscape).
- Low flow flush valves and shower head water-conservation devices shall be installed in all restroom and/or locker room facilities.

In addition, the City of Los Angeles Department of Water and Power recommends the following water conservation measures:

- 3. Automatic sprinkler systems should be set to irrigate landscaping during early morning hours or during the evening to reduce water losses from evaporation. However, care must be taken to reset sprinklers to water less often in cooler months and during the rainfall season so that water is not wasted by excessive landscape irrigation.
- 4. Reclaimed water should be investigated as a source to irrigate large landscaped areas, including the grass playing field.
- 5. On-site recycling of drainage from water used for playing field irrigation should be investigated.
- Recirculating hot water systems which can reduce water waste in long piping systems where water must be run for considerable periods before hot water is received at the outlet should be investigated.
- 7. Plumbing fixtures should be selected which reduce potential water loss from leakage due to excessive wear of washers.

# LEVEL OF IMPACT AFTER MITIGATION

The Proposed Project's impacts to water service are expected to be less than significant after the implementation of the above mitigation measures.

# V. ENVIRONMENTAL IMPACT ANALYSIS H. UTILITIES 3. SANITARY SEWERS

### ENVIRONMENTAL SETTING

The City of Los Angeles Department of Public Works, Bureau of Sanitation Division provides sewer conveyance infrastructure and wastewater treatment services to the Project area. The Hyperion Treatment Plant (HTP), located directly west of the Los Angeles International Airport in Playa Del Rey, provides treatment capacity for all wastewater flows generated within the Central Business District Redevelopment Project Area. In December of 1998, the HTP was upgraded to provide full secondary treatment for all influent based on an average dry weather flow of 450 million gallons per day (mgd). The HTP currently processes average wastewater flows of approximately 350 mgd.<sup>1</sup>

The Hyperion Service Area (HSA) encompasses approximately 328,000 acres, or approximately 515 square miles, of the greater Los Angeles area. The HSA also serves 53,000 acres outside the jurisdiction of the City of Los Angeles on a contract basis. The HSA includes approximately 96 percent of the total area served by the LADWP.

#### **Local Infrastructure**

Existing sewer lines serving the Project Site include a network of six-, eight-, and ten-, twelve-, and 18-inch lines surrounding the Project Site and Exposition Park. These lines feed into a 44-inch pipe under Exposition Boulevard and a 75-inch pipe in Rodeo Road.

In 1998, several communities in South Los Angeles suffered severe sewage spills during the unusually heavy rainstorms of El Niño because of the failure of the main sewer, the North Outfall Sewer (NOS). The NOS is over 70 years old and is lined with holes and cracks from normal wear and tear, and it is filled nearly to capacity even in dry weather. The sewage overflows were caused by a combination of the age, size, and condition of NOS along with the heavy rains. In September 1998, the Regional Water Quality Control Board (RWQCB) issued a cease and desist order requiring the City of Los Angeles to complete construction of several new sewers throughout the City in approximately seven years, including the East Central Interceptor Sewer (ECIS).

The North Outfall Sewer - East Central Interceptor Sewer (NOS-ECIS) is a new sewer line currently under construction that will allow wastewater to be diverted from the middle portion of the existing NOS so that NOS can be rehabilitated and to provide additional capacity for projected wastewater

City of Los Angeles, Department of Public Works, Bureau of Sanitation, July 29, 2003.

flows. ECIS will extend from the north part of Baldwin Hills in Culver City to just east of the Los Angeles river near Mission Road making it approximately eleven miles long. The first phase of ECIS construction began in April 2001 and will be completed by December 1, 2003. Unit 3W of the ECIS project line runs east/west through Exposition Boulevard between Grand Avenue and Arlington Avenue. This extension runs north of and adjacent to Exposition Park.

The Project Site is currently developed with the Los Angeles Memorial Coliseum, a multi-purpose outdoor stadium with a maximum seating capacity of 92,500 persons. Several ancillary structures are located on-site adjacent to and surrounding the Coliseum. These structures include a museum, retail shop, ticket booths, restroom facilities, and concession-related buildings. The site is situated within Exposition Park, which is developed with several other publicly-oriented facilities, including the Los Angeles Memorial Sports Arena, the California Science Center, and the County Museum of Natural History, among others.

The Coliseum has hosted an average of 34 events per year over the past three calendar years (1999 through 2002) with a total average annual attendance of 259,087 persons, or 32,386 per event.<sup>2</sup> Full spectator capacity at the Coliseum (92,500 persons) was not reached on any occasion during the aforementioned three-year study period, and has only been reached on infrequent occasions throughout the history of the stadium. However, the existing sewer system infrastructure at the Coliseum is designed to accommodate its maximum seating capacity at any one time. For a more detailed discussion of the parameters of time period and attendance data utilized in this study, see Section IV.B of this report, Analytical Assumptions.

Sewage is currently being generated on the Project Site from a variety of uses, the most significant of these being public restrooms, showers in the locker rooms, and concession stand/food preparation uses. In addition to these event-specific uses, the daily operation of the Coliseum Commission staff offices and ticket offices generate a comparatively small amount of sewage. It should be noted that the majority of annual on-site sewage generation occurs during Coliseum events. Sewage generation on-site is reduced during periods when no stadium events are being held. Table V.H.3-1 indicates the estimated total amount of sewage generated on the Project Site under existing conditions based on maximum capacity on an event day. It should be noted that maximum capacity at the Coliseum never occurred over the three-year study period analyzed to determine average events per year. Correspondingly, maximum capacity has only been reached on infrequent occasions throughout the history of the Coliseum. As shown, at maximum capacity an estimated 370,000 gallons of sewage is generated per event on the Project Site by the existing Coliseum and its related facilities. Based on the average rate of 34 events per year, this results in an annual average of approximately 12.6 million gallons per year.

These 34 average annual events do not include non-ticketed events.

Table V.H.3-1
Existing Wastewater Generation

| Development                                                                          | Size<br>(seats) | Generation Rate <sup>a</sup> (gallons/day/seat) <sup>b</sup> | Total Generation<br>(gpd) |  |
|--------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------|---------------------------|--|
| Coliseum Seats                                                                       | 92,500          | 4                                                            | 370,000                   |  |
| Total Existing Wastewater Generation per Event                                       |                 |                                                              | 370,00                    |  |
| Total Existing Wastewater Generation per Year                                        |                 |                                                              | 12,580,000                |  |
| City of Los Angeles Department of Public Works, Bureau of Sanitation, July 29, 2003. |                 |                                                              |                           |  |
| <sup>b</sup> Gallons per day are for event days.                                     |                 |                                                              |                           |  |

# **ENVIRONMENTAL IMPACTS**

### Thresholds of Significance

A project would have a significant impact on sanitary sewer systems if its implementation would result in a measurable increase in wastewater generation to a point where it would cause a sewer line to become constrained, or if the project's wastewater flows would substantially or incrementally exceed the capacity of existing or planned wastewater conveyance systems or treatment facilities that serve the area.

# **Project Impacts**

# **Temporary Construction Impacts**

Project construction would involve excavation and grading activities in the immediate vicinity of the Coliseum structure. Utility infrastructure, including existing sewer lines would be upgraded as necessary to accommodate new connections. Such improvements would be limited to the feeder lines connecting the Coliseum to the main sewer system and would not require disruption of the existing main lines. Therefore, construction activities would not result in a significant impact upon the existing sewer system infrastructure.

# **Operational Impacts**

Wastewater generation associated with the Proposed Project was calculated using generation factors based on land use, as provided by the City of Los Angeles.<sup>3</sup> The estimated net increase was analyzed relative to infrastructure and treatment plant capacity. While reducing the maximum attendance capacity

City of Los Angeles, Department of Public Works, Bureau of Sanitation, July 29, 2003.

ú

for all events, the Proposed Project would increase the total number of sewage generators on the site through the replacement of existing restroom and concession facilities with a greater number of new facilities, the expansion of the existing home and visiting team locker rooms, the construction of the new food service/maintenance building, the development of separate club level concession counters and lounges, the construction of approximately 200 private suites with wet bar and bathroom facilities, and more expansive press box facilities. However, it should be noted that event-related sewage generation would remain a direct function of attendance levels, with only as many restrooms and concession stands operating as necessary to meet the need at any given event. As a result, a net increase in the number of such sewage generating facilities would not necessarily result in a corresponding increase in on-site sewage generation.

For the purposes of this analysis, it has been assumed that all existing sewage generating uses would continue in the renovated Coliseum. Projected on-site sewage generation with implementation of the Proposed Project is presented in Tables V.H.3-2 and V.H.3-3. These estimates assume maximum capacity and that the renovated Coliseum would host 64 events per year. The estimates also assume that the ancillary structures will be operable daily throughout the year. As stated above, maximum capacity at the Coliseum has occurred infrequently over its history, and not once in the years between 1999 and 2002.

As shown in Table V.H.3-2 above, the Proposed Project would be estimated to generate approximately 390,000 gallons of sewage per event, assuming maximum attendance at all Coliseum events. Table V.H.3-3 shows that ancillary structures will generate approximately 6,000 gallons of wastewater per day, or almost 2.2 million gallons per year, unrelated to the number of events held. This represents an increase of approximately 20,000 gallons per event over existing sewage generation on event days at the Coliseum and an increase of 6,000 gallons daily on non-event days. Assuming the per-event generation of 384,000 gallons of sewage, and 46 events per year, all at maximum capacity, Project sewage generation would be approximately 18 million gallons per year. It should be noted that the maximum possible sewage consumption from the site experienced during any Coliseum event could be reduced from projected levels upon implementation of the Proposed Project. This reduction would be accomplished through the installation of a more water-efficient infrastructure and fixtures which could result in a reduction in the average per-person per-event sewage generation. Additionally, it is unlikely that this maximum sewage generation situation would occur in the future.

The estimated existing and Proposed Project sewer generation rates are based on a sold-out scenario, where the stadium is at maximum capacity. The City of Los Angeles Department of Public Works, Bureau of Sanitation has determined that impacts on City of Los Angeles sewer services by the Proposed Project will be less than significant, assuming maximum capacity conditions. Additionally, the HTP has on average 100 million gpd of remaining capacity daily. The Proposed Project is anticipated to contribute approximately 6,000 gallons per day on a daily basis and approximately 384,000 gallons of wastewater per event day to the average daily intake of 350 million gallons at the HTP. This represents an

<sup>&</sup>lt;sup>4</sup> City of Los Angeles, Department of Public Works, Bureau of Sanitation, July 29, 2003.

Table V.H.3-2
Proposed Project Wastewater Generation on Event Days

| Development                                           | Size         | Generation Rate a, b       | Total Generation<br>(gpd) |
|-------------------------------------------------------|--------------|----------------------------|---------------------------|
| Coliseum Seats                                        | 74,000 seats | 4 (gallons/seat/day)       | 296,000                   |
| Luxury Suites <sup>c</sup>                            | 4,000 seats  | 18 (gallons/seat/day)      | 72,000                    |
| Ancillary Office/Retail                               | 40,000 sf    | 150 (gallons/1,000 sf/day) | 6,000                     |
| Pro                                                   | 374,000      |                            |                           |
| Less Existing Wastewater Generation on Event Days     |              |                            | 370,000                   |
| Total Project Net Increase on Event Days <sup>d</sup> |              |                            | 20,000                    |
| Proposed Project Wastewater Generation per Year       |              |                            | 17,940,000                |

- <sup>a</sup> City of Los Angeles Department of Public Works, Bureau of Sanitation, July 29, 2003.
- b Gallons per day are for event days only.
- <sup>c</sup> The Proposed Project includes approx. 200 suites for a total of 4,000 seats.
- Includes wastewater generation by ancillary structures, as illustrated in Table V.H.3-3.

insignificant daily contribution to the HTP's daily capacity and an event-day contribution of approximately 0.38 percent of the remaining daily capacity at the facility. This 0.38 percent increase is expected to occur on approximately 46 days per year and is not considered a significant impact to the HTP's capacity or infrastructure.

# **CUMULATIVE IMPACTS**

As shown in Table V.H.3-4, related projects in the vicinity of the Project Site are estimated to generate approximately 896,202 gallons of sewage per day, or approximately 327 million gallons per year. Related project sewage generation would account for less than 0.2 percent of the maximum daily sewage flow currently allowed by the HTS system. The Proposed Project and related projects are estimated to generate a total of approximately 1.3 million gallons of sewage on event days at the Coliseum, or approximately 354 million gallons of wastewater per year (based on 365 days of related project and ancillary structure generation and 46 events per year of stadium generation). On event days, sewage generated by the proposed and related projects would account for approximately 1.3 percent of the remaining daily sewage capacity currently available at the HTP. On non-event days, related projects and the museum and retail uses would contribute approximately 0.9 percent of the remaining daily capacity at the HTP. Those related projects not yet under construction would be subject to interim and future ordinances which restrict the issuance of building permits based upon the availability of allotted monthly sewer capacity. The extent of each project's impact will depend on the availability of allotted sewer capacity at the time each project application is considered by the City.

Table V.H.3-3
Proposed Project Wastewater Generation on Non-Event Days

|                                                                                                   |           |                            | Total Generation |
|---------------------------------------------------------------------------------------------------|-----------|----------------------------|------------------|
| Development                                                                                       | Size      | Generation Rate a          | (gpd)            |
| Ancillary Office/Retail                                                                           | 40,000 sf | 150 (gallons/1,000 sf/day) | 6,000            |
| Proposed Project Wastewater Generation on Non-Event Days                                          |           |                            | 6,000            |
| Proposed Project Wastewater Generation on per Year                                                |           |                            | 2,190,000        |
| <sup>a</sup> City of Los Angeles Department of Public Works, Bureau of Sanitation, July 29, 2003. |           |                            |                  |

Table V.H.3-4
Estimated Wastewater Generation by Related Projects

| Land Use                      | Size                        | Consumption Rate (gpd) * | Total<br>(gpd) |
|-------------------------------|-----------------------------|--------------------------|----------------|
| Apartment                     | 179 du                      | 160/du                   | 32,041         |
| Community Facility/Clinic     | 78,840 sf                   | 250/1,000 sf             | 19,710         |
| Elementary/Junior High School | 6,062 students              | 8/student                | 48,496         |
| High School                   | 6,954 students              | 12/student               | 83,448         |
| Light Industrial              | 700 employees               | 12/employee              | 8,400          |
| Market/Grocery                | 8,720 sf                    | 80/1,000 sf              | 698            |
| Multi-Use Development         | 6,914,165 sf                | 80/1,000 sf              | 553,133        |
| Museum                        | 1,128,000 sf                | 20/1,000 sf              | 22,560         |
| Office                        | 447,500 sf                  | 150/1,000 sf             | 67,125         |
| Parking Facility              | 2,400 spaces                |                          | 0              |
| Restaurant                    | 17,443 sf                   | 300/1,000sf              | 5,233          |
| Retail                        | 107,370 sf                  | 80/1,000 sf              | 8,590          |
| Storage                       | 7,910 sf                    | 20/1,000 sf              | 158            |
| Theater <sup>b</sup>          | 1,670 seats                 | 4/seat                   | 6,680          |
| University <sup>c</sup>       | 440,000 sf                  | 80/1,000 sf              | 35,200         |
| Wholesale Trade Space         | 215,000 sf                  | 20/1,000 sf              | 4,730          |
|                               |                             | Subtotal                 | 896,202        |
|                               |                             | Stadium                  | 384,000        |
|                               | Ancillary Museum and Retail |                          |                |
|                               |                             | Cumulative Total         | 1,286,202      |

<sup>&</sup>lt;sup>a</sup> Based on 120% of wastewater generation rates provided by the City of Los Angeles Public Works Bureau of Engineering, March 2002.

Notes:

du = dwelling unit

sf = square feet

Source: Christopher A. Joseph & Associates, 2002.

b Used Pacific Theaters Seat Rate (1 seat = 20 sf).

<sup>&</sup>lt;sup>c</sup> Based on rates for Library/Public Area provided by the City of Los Angeles Public Works Bureau of Engineering, March 2002.

d Event days only.

# MITIGATION MEASURES

Project impacts to sewer services will be less than significant; therefore no mitigation measures are required.

# V. ENVIRONMENTAL IMPACT ANALYSIS H. UTILITIES 4. SOLID WASTE AND DISPOSAL

### **ENVIRONMENTAL SETTING**

Within the City of Los Angeles, solid waste management, including collection and disposal services and landfill operation, is administered by various public agencies and private companies. Single-family residential and limited multiple-family residential refuse is collected by the City of Los Angeles Bureau of Sanitation; waste generated by most multi-family residential sources and all commercial and industrial sources is collected by private contractors. Waste disposal sites are operated by both the City and County of Los Angeles, as well as by private companies. In addition, transfer stations are utilized to store debris temporarily until larger hauling trucks are available to transport the materials directly to the landfills. Landfill availability is limited by several factors, some of which include the following: 1) restrictions to accepting waste generated only within a landfill's particular jurisdiction and/or wastershed boundary; 2) tonnage permit limitations; 3) operational constraints; and 4) corporate objectives of landfill owners and operators.

The California Integrated Waste Management Act of 1989 (AB 939) was enacted to reduce, recycle, and reuse solid waste generated in the State to the maximum amount feasible. Specifically, the Act required city and county jurisdictions to identify an implementation schedule to divert 50 percent of the total waste stream from landfill disposal by the year 2000 and 70 percent by the year 2020. The Act also requires each city and county to promote source reduction, recycling, and safe disposal or transformation.

AB 939 further requires each city to conduct a Solid Waste Generation Study and to prepare a Source Reduction and Recycling Element (SRRE) to describe how it would reach the goals. The SRRE contains programs and policies for fulfillment of the goals of the Act, including the above-noted diversion goals and must be updated annually to account for changing market and infrastructure conditions. As projects and programs are implemented, the characteristics of the waste stream, the capacities of the current solid waste disposal facilities, and the operational status of those facilities are upgraded, as appropriate. California cities and counties are required to submit annual reports to the California Integrated Waste Management Board to update the Board on the city's progress toward the AB 939 goals. To date, implementation of AB 939 has proven to be a successful method of reducing landfill waste.

Correspondence from Los Angeles Office of the Board of Public Works, Karen Coca, January 30, 2002.

١ ..

. .

lia.

2

Given the multitude of haulers solid waste is likely disposed of at a variety of landfills, potentially including the Bradley Landfill or Sunshine Canyon Landfill. The Bradley Landfill is currently permitted to intake 10,000 tons per day of solid waste and receives approximately 2,250 tons per day. This indicates that the Bradley Landfill is currently permitted to receive an additional 7,750 tons per day of solid waste. In addition, the City is exploring plans to construct or purchase other solid waste facilities, including a materials recovery facility and a transfer station, the details of which are currently unavailable.<sup>2</sup> The Sunshine Canyon Landfill Facility, located in Sylmar, has approximately 9.72 million tons of capacity remaining with an average daily intake of 6,515 tons per day.<sup>3</sup>

Facility expansions and new landfills are continuously being sought as existing facility capacity diminishes. Mandatory City waste reduction and recycling programs (in compliance with the September 1989 California Integrated Solid Waste Management Act, SB AB 939) are greatly reducing the amount of waste that would otherwise have entered area landfills. In addition, Orange County accepts solid waste from Los Angeles County.

The Project Site is currently developed with the Los Angeles Memorial Coliseum, a multi-purpose outdoor stadium with a maximum seating capacity of 92,500 persons. In addition, several ancillary structures are located on-site adjacent to and surrounding the Coliseum. These structures include ticket booths, restroom facilities, and concession-related buildings. The site is situated within Exposition Park, which is developed with several other publicly-oriented facilities, including the Los Angeles Memorial Sports Arena, the California Science Center, and the Los Angeles County Museum of Natural History, among others.

Throughout the City of Los Angeles, solid waste generated by commercial land uses is gathered by private collectors contracted directly by the individual property owners. A private solid waste collector is currently retained by the Coliseum Commission to collect solid waste from the site on an "on-call" basis for all spectator events. In addition to the solid waste generated by Coliseum events, a small amount of solid waste is generated on a year-round basis by the operation of the Coliseum Commission administrative offices. This solid waste is taken to dumpsters located adjacent to the Los Angeles Memorial Sports Arena, which adjoins the site on the southeast, from which it is picked up by a private collector on a regular basis.

The Coliseum has hosted an average of 34 events per year over the past three calendar years (1999 through 2002) with a total estimated annual attendance of 837,071 persons.<sup>4</sup> Full spectator capacity at

<sup>&</sup>lt;sup>2</sup> California Integrated Waste Management Board, Board Meeting May 13-14, 2003, "Agenda Item 7 (Revised)."

<sup>&</sup>lt;sup>3</sup> County of Los Angeles, Department of Public Works, November 7, 2002.

These 34 average annual events do not include non-ticketed events, like those used in the utility rate tables, Los Angeles Coliseum Commission, July 2003.

the Coliseum (92,500 persons) was not reached on any occasion during the aforementioned three-year study period, and has only been reached on infrequent occasions throughout the history of the stadium. For a more detailed discussion of the parameters of time period and attendance data utilized in this study, see Section IV.B of this report, Analytical Assumptions. As shown in Table V.H.4-1, the Coliseum currently generates approximately 837,071 pounds of solid waste on annual basis, or approximately 419 tons per year.

Table V.H.4-1
Existing Solid Waste Generation

| Existing Development/Event Types | Average Annual Attendance | Generation Rate b<br>(pounds/person/event) | Total Generation<br>(lbs/day) |
|----------------------------------|---------------------------|--------------------------------------------|-------------------------------|
| Coliseum (92,500 Seats)          |                           |                                            | ,                             |
| Misc. Sports (H.S. Football)     | 17,622                    | 1                                          | 17,622                        |
| Motorsports                      | 31,886                    | 1                                          | 31,886                        |
| Religious Events                 | 45,000                    | 1                                          | 45,000                        |
| Misc. Cultural Events            | 44,751                    | 1                                          | 44,751                        |
| Concerts                         | 67,517                    | 1                                          | 67,517                        |
| Soccer                           | 196,820                   | 1                                          | 196,820                       |
| USC Football                     | 341,425                   | 1                                          | 341,425                       |
| XFL Football                     | 92,050                    | 1                                          | 92,050                        |
| T                                | otal Existing Solid Wa    | ste Generation per Year                    | 837,071                       |

<sup>&</sup>lt;sup>a</sup> Based on an average of 34 events per year. The estimate of the total annual attendance for exiting Coliseum events was based on the cumulative total of the average recorded attendance levels (averaged over the past 4 years) for each event type multiplied by the number of events held each year for each type of event.

Source: Christopher A. Joseph & Associates, 2003.

### ENVIRONMENTAL IMPACTS

### Thresholds of Significance

Implementation of a project would result in a significant impact on solid waste if the existing landfill facilities could not adequately handle the project's waste; if the disposal of project-related solid waste would result in a premature exhaustion of a landfill's capacity; or if the project conflicts with local, state, and federal laws and regulations pertaining to solid waste management.

### **Project Impacts**

The Proposed Project would result in the removal of much of the existing building material on-site, including all of the concession and restroom buildings outlying the Coliseum on the site, as well as some of the interior of the existing stadium. Additional grading and excavation of earth materials

Based on the City of Los Angeles Bureau of Sanitation's "cafeteria" generation rate of one pound of solid waste generated per person per event, determined to be the most accurate and conservative available rate.

would add to the total amount of material estimated to be removed from the site during the construction period, an estimated total of approximately 250,000 cubic yards. It has not yet been determined whether or not landfills would be utilized as receptor sites for all or part of this material. Preliminary plans call for the disposal of materials generated during the excavation and construction period at another development site needing imported fill material, with the use of landfills being considered only as a last resort. If landfills are utilized, an undeterminable amount of landfill capacity would be required to accommodate non-hazardous debris removed from the site during the construction phase.

Assuming the existing average annual attendance levels for all current event types at the Coliseum remain relatively constant, and up to 12 additional NFL events are held per year (assuming maximum capacity for all 12 events), the Proposed Project would be anticipated to generate approximately 1,860,671 pounds or approximately 930 tons of solid waste per year (See Table V.H.4-2). Existing uses on the site generate approximately 837,071 pounds (or approximately 419 tons) of solid waste per year. Therefore, implementation of the Proposed Project would generate a net increase of approximately 1,023,600 pounds (or approximately 512 tons) per event. Development of the Proposed Project could potentially result in an approximate 23 % increase in the volume of solid waste generated by the Coliseum. Since the Proposed Project represents a relatively low increase in annual solid waste generation at the Project Site as compared to existing conditions, and regional landfill capacity is currently adequate to accommodate the regional solid waste demands for the City of Los Angeles, impacts associated with the Proposed Project would be considered less than significant.

Table V.H.4-2
Proposed Project Solid Waste Generation

| Development                                  | Average Annual Attendance | Generation Rate                   | Total Generation<br>(lbs/yr)<br>837,071 |  |
|----------------------------------------------|---------------------------|-----------------------------------|-----------------------------------------|--|
| Existing Uses (Ave. 34 events)               | 837,071                   | 1 lb./person/event)               |                                         |  |
| NFL Football (12 events @ 78,000 seats max.) |                           |                                   |                                         |  |
| General and Club Seats (74,000)              | 888,000                   | 1 lb./person/event)) <sup>a</sup> | 888,000                                 |  |
| Luxury Suite Seats (4,000) <sup>b</sup>      | 48,000                    | 1 lb./person/event)               | 48,000                                  |  |
| Ancillary Office/Retail (40,000 sf) °        |                           | 6 (lbs./1,000 sf/day)             | 87,600                                  |  |
|                                              | 1,860,671                 |                                   |                                         |  |
|                                              | (837,071)                 |                                   |                                         |  |
| Net I                                        | 1,023,600                 |                                   |                                         |  |

Based on the City of Los Angeles Bureau of Sanitation's "cafeteria" generation rate of one pound of solid waste generated per person per event, determined to be the most accurate and conservative available rate.

Source: Christopher A. Joseph & Associates, 2003.

Based on approximately 20 seats per suite, with approximately 200 suite.

Assumes this is a new use operating 365 days per year.

### **CUMULATIVE IMPACTS**

Development and implementation of the related projects within the study area would result in the generation of approximately 76,171 pounds (or approximately 38 tons) of solid waste per day. This equates to approximately 27.8 million pounds (or approximately 13,901) tons annually (See Table V.H.4-3). Implementation of the Proposed Project with the related projects would generate an average of approximately 28.8 million pounds (or approximately 14,413 tons) of solid waste per year. This results in an average solid waste generation of approximately 39.4 tons per day.

The Proposed Project would not contribute to a cumulative adverse impact to solid waste as there is currently adequate capacity at the regional landfills to accommodate the proposed project and the cumulative related projects identified herein. As discussed above, the Sunshine Canyon Landfill is permitted to receive up to 5,500 tons of solid waste each day from the City. The Sunshine Canyon Landfill currently receives approximately 3,500 tons of solid waste daily from the City and has a remaining daily capacity of 2,000 tons. Assuming that all of the cumulative solid waste is sent to the Sunshine Canyon Landfill with no waste stream diversion, the additional 39.4 tons of cumulative solid waste per day would not cause the Sunshine Canyon Landfill to exceed its permitted daily capacity from the City. As previously discussed, additional capacity to accommodate the cumulative disposal needs of the Proposed Project and related projects may become available as the City develops solutions to meet the future disposal needs at a regional level (e.g., expanding existing landfills, transporting waste to other landfills, converting waste to energy, recycling and waste reduction). Furthermore, similar to the Proposed Project, the related projects would be subject to the requirements of AB 939 (i.e., divert 50 percent of the solid waste generated from landfills through waste reduction, recycling and composting). Consequently, the cumulative solid waste impact is considered to be less than significant.

# **MITIGATION MEASURES**

The Proposed Project is not anticipated to result in any significant adverse impacts relating to the disposal of solid waste, therefore, no mitigation measures are required for incorporation into the Proposed Project.

Table V.H.4-3
Estimated Solid Waste Generation by Related Projects

| Land Use                             | Size         | Generation Rate <sup>a</sup> (lbs/day) | Total<br>(lbs/day) |  |  |  |
|--------------------------------------|--------------|----------------------------------------|--------------------|--|--|--|
| Apartment                            | 179 du       | 4/du                                   | 716                |  |  |  |
| Community Facility/Clinic            | 78,840 sf    | 7/1,000 sf                             | 552                |  |  |  |
| Elementary/Junior High School        | 1,211,403 sf | 7/1,000 sf                             | 8,480              |  |  |  |
| High School                          | 1,815,581 sf | 7/1,000 sf                             | 12,709             |  |  |  |
| Light Industrial                     | 700,000 sf   | 5/1,000 sf                             | 3,500              |  |  |  |
| Market/Grocery                       | 8,720 sf     | 5/1,000 sf                             | 44                 |  |  |  |
| Multi-Use Development                | 6,914,165 sf | 5/1,000 sf                             | 34,571             |  |  |  |
| Museum                               | 1,128,000 sf | 5/1,000 sf                             | 5,640              |  |  |  |
| Office                               | 447,500 sf   | 6/1,000 sf                             | 2,685              |  |  |  |
| Parking Facility                     | 2,400 spaces |                                        |                    |  |  |  |
| Restaurant                           | 17,443 sf    | 50/1,000sf                             | 872                |  |  |  |
| Retail                               | 107,370 sf   | 5/1,000 sf                             | 537                |  |  |  |
| Storage                              | 7,910 sf     | 5/1,000 sf                             | 40                 |  |  |  |
| Theater <sup>b</sup>                 | 1,670 seats  | 1/seat                                 | 1,670              |  |  |  |
| University <sup>c</sup>              | 440,000 sf   | 7/1,000 sf                             | 3,080              |  |  |  |
| Wholesale Trade Space                | 215,000 sf   | 5/1,000 sf                             | 1,075              |  |  |  |
|                                      |              | Subtotal (Daily)                       | 76,171             |  |  |  |
| Cumulative Total (Annual) 27,802,415 |              |                                        |                    |  |  |  |

a Based on land use type, provided by the City of Los Angeles Bureau of Sanitation, "Solid Waste Generation," 1981.

### Notes:

du = dwelling unit

sf = square feet

Source: Christopher A. Joseph & Associates, 2002.

Used Pacific Theaters Seat Rate (1 seat = 20 sf).

c Based on rates for Library/Public Area land use, provided by the City of Los Angeles Public Works Bureau of Engineering, March 2002.

# V. ENVIRONMENTAL IMPACT ANALYSIS I. TRAFFIC, ACCESS AND PARKING 1. TRAFFIC AND ACCESS

### INTRODUCTION

This section summarizes the traffic impact analysis prepared by Kaku Associates, dated August 2003. The analysis method was developed in coordination with the City of Los Angeles Department of Transportation (LADOT). The complete traffic report and detailed calculation worksheets are contained in Appendix D to this EIR.

As acknowledged by LADOT in responding to the Notice of Preparation, the scope of analysis and mitigation measures for this study were developed in consultation with LADOT. The base assumptions, technical methodologies, and geographic coverage of the study were identified as part of the study approach as described below.

This study assumes completion of the Proposed Project in the Year 2006. The potential impacts of the Proposed Project are, therefore, reliant on the assessment of future conditions for weekday games in 2006. These include an analysis of the following traffic scenarios:

- Existing (2002/2003) Conditions -- The analysis of existing traffic conditions provides a basis for the remainder of the study. The existing conditions analysis includes an assessment of streets, traffic volumes, and operating conditions.
- <u>Cumulative Base (2006) Conditions</u> -- Future traffic conditions without the Proposed Project were developed for the year 2006. The objective of this analysis is to project future traffic growth and operating conditions that could be expected to result from regional growth and related projects in the vicinity of the Project Site by the year 2006. This condition also includes traffic generated by the Staples Center and the Los Angeles Convention Center.
- <u>Cumulative (2006) Conditions Plus Project</u> -- Traffic expected to be generated by the Proposed Project is added to the Cumulative Base traffic forecasts. The impacts of the Proposed Project on future traffic operating conditions can then be identified.

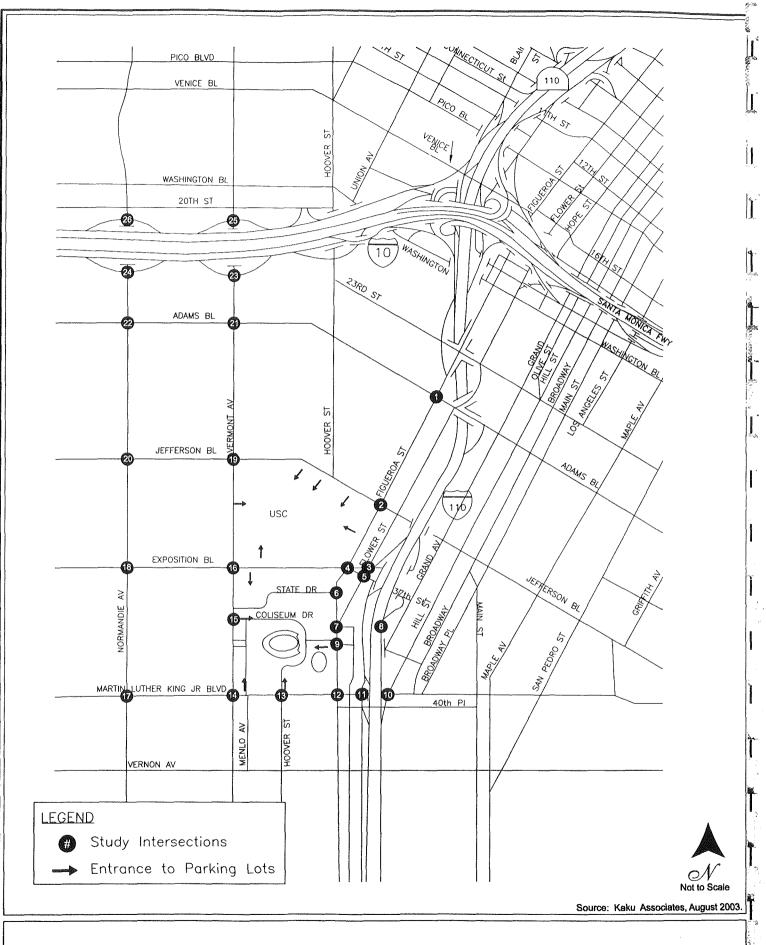
The study examines the conditions for a weekend (Saturday) college football game at the Coliseum, based on a November 30, 2002 game between USC and Notre Dame. This scenario is examined in detail, as it represents a worst possible scenario for the weekend game. The attendance was 87,944 persons, which exceeds the proposed 78,000-person capacity expected for an NFL weekend game. The potential impacts of the Proposed Project are, therefore, reliant on the assessment of present conditions for weekend USC games.

The weekday games are due to commence at 6 p.m. Pacific Standard Time, meaning that approximately 50 percent of the vehicles going to the Coliseum will arrive in the hour prior to the start of the game. This time period is the approximate peak traffic hour for the area surrounding the Coliseum and, as such, represents the largest traffic volumes. It should be noted however, that weekday NFL games would only occur for one night during each season and would not occur during every season.

The following 26 intersections, which are illustrated in Figure V.I.1-1, along with the project location, are to be analyzed with respect to the scenarios above:

- 1. Figueroa Street and Adams Boulevard
- 2. Figueroa Street and Jefferson Boulevard
- 3. Flower Street and Exposition Boulevard
- 4. Figueroa Street and Exposition Boulevard & 37th Street
- 5. Flower Street and 37th Street
- 6. Figueroa Street and State Drive
- 7. Figueroa Street and 38th Place/Flower Street
- 8. I-110 High Occupancy Vehicle (HOV) ramps and 39th Street
- 9. Figueroa Street and 39th Street/Coliseum Drive
- 10. I-110 Northbound Ramps/Hill Street and Martin Luther King Jr. Boulevard
- 11. I-110 Southbound Ramps and Martin Luther King Jr. Boulevard
- 12. Figueroa Street and Martin Luther King Jr. Boulevard
- 13. Hoover Street and Martin Luther King Jr. Boulevard
- 14. Vermont Avenue and Martin Luther King Jr. Boulevard
- 15. Vermont Avenue and 39th Street
- 16. Vermont Avenue and Exposition Boulevard
- 17. Normandie Avenue and Martin Luther King Jr. Boulevard
- 18. Normandie Avenue and Exposition Boulevard
- 19. Vermont Avenue and Jefferson Boulevard

- 20. Normandie Avenue and Jefferson Boulevard
- 21. Vermont Avenue and Adams Boulevard
- 22. Normandie Avenue and Adams Boulevard
- 23. Vermont Avenue and I-10 eastbound ramps
- 24. Normandie Avenue and I-10 eastbound ramps
- 25. Vermont Avenue and I-10 westbound ramps
- 26. Normandie Avenue and I-10 westbound ramps


### **ENVIRONMENTAL SETTING**

# **Existing Street System**

Regional access to the Project Site is provided by the Harbor Freeway (Interstate 110) and the Santa Monica Freeway (Interstate 10). The Harbor Freeway is located less than ½ mile east of the Project Site and the Santa Monica Freeway is located approximately 1½ miles north of the Proposed Project. The study area is bounded by Martin Luther King Jr. Boulevard on the south, Vermont Avenue on the west, Exposition Boulevard on the north, and Figueroa Street on the east. Street descriptions are provided below:

Martin Luther King Jr. Boulevard -- Martin Luther King Jr. Boulevard, which borders the Project Site to the south, provides six travel lanes during the a.m. peak period and five lanes during the p.m. peak period (three westbound lanes and two eastbound lanes) south of the Project Site. The travel lanes are separated by a dual left turn centerline except between Broadway and Figueroa Street (where a double yellow centerline is used). Parking is prohibited between Figueroa Street and Vermont Avenue on the southbound side of the street during the a.m. peak period and on the north side at all times. The posted speed limit is 35 miles per hour.

<u>Vermont Avenue</u> -- Vermont Avenue borders the Project Site to the west and provides four travel lanes separated by a double yellow striped centerline except between Martin Luther King Jr. Boulevard and Adams Boulevard, where a combination of dual left-turn centerline, double yellow centerline, and a raised median are used. The posted speed limit is 35 miles per hour.





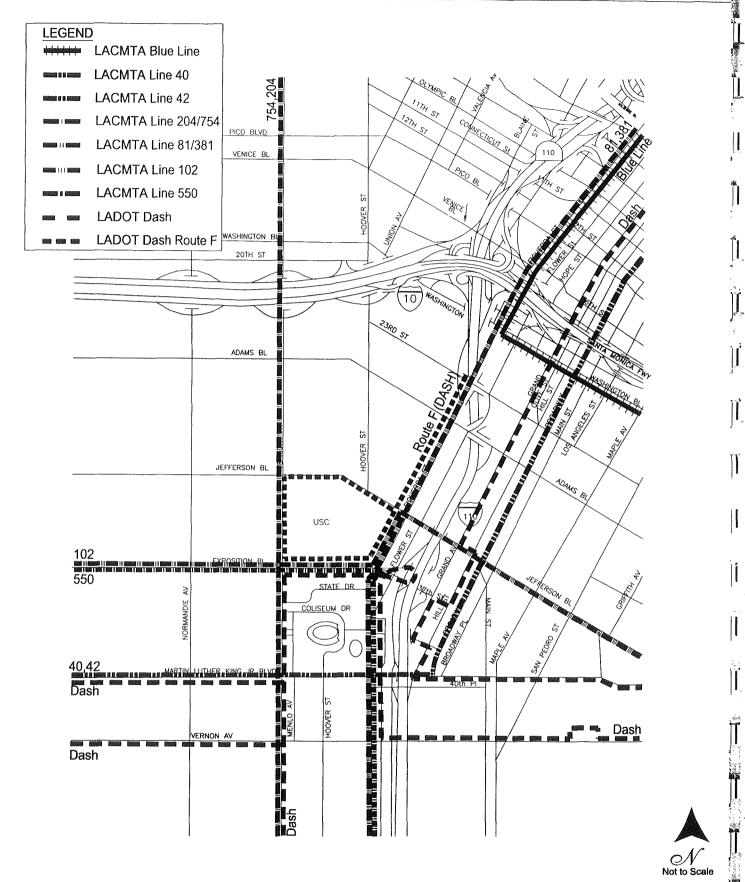
CHRISTOPHER A. JOSEPH & ASSOCIATES Environmental Planning and Research

Figure V.I.1-1 Study Location and Analyzed Intersections

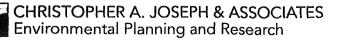
<u>Hoover Street</u> -- Hoover Street provides four travel lanes separated by a double yellow striped centerline between Vernon Avenue and Martin Luther King Jr. Boulevard and a dual left turn centerline between Jefferson Boulevard and Venice Boulevard. The posted speed limit is 35 miles per hour.

<u>Figueroa Street</u> -- Figueroa Street borders the Project Site to the east and provides six travel lanes between 48<sup>th</sup> Street and 39<sup>th</sup> Street, which are separated by a dual left turn centerline during the a.m. and p.m. peak periods. Between 39<sup>th</sup> Street and Venice Boulevard there are five travel lanes (three northbound and two southbound). The lanes are separated by a raised median from 39<sup>th</sup> street to Jefferson Boulevard and by a dual left turn centerline from Jefferson Boulevard to Venice Boulevard. The posted speed limit is 35 miles per hour.

Normandie Avenue -- Normandie Avenue has four travel lanes between 48<sup>th</sup> Street and Washington Boulevard. These travel lanes are separated by a double yellow centerline between 48<sup>th</sup> Street and Jefferson Boulevard and a dual left turn centerline between Jefferson Boulevard and Washington Boulevard. The posted speed limit is 35 miles per hour.


Adams Boulevard -- Adams Boulevard provides four travel lanes between Maple Avenue and Normandie Avenue. The travel lanes are separated by a double yellow centerline for the majority of the street except between Hill Street and I-110 ramps and Hoover Street and Magnolia Avenue, where a dual left turn centerline is used. The posted speed limit is 35 miles per hour.

<u>Jefferson Boulevard</u> -- Jefferson Boulevard provides four travel lanes between Maple Avenue and Figueroa Street and these are separated by a double yellow centerline. There are six travel lanes between Figueroa Street and Vermont Avenue separated by a raised center median, and there are four travel lanes between Vermont Avenue and Normandie Avenue separated by a combination of dual left turn and double yellow centerlines. The posted speed limit is 35 mile per hour.


<u>Exposition Boulevard</u> -- Exposition Boulevard borders the Project Site to the north and provides between five and seven travel lanes between the I-110 Northbound ramp and Normandie Avenue. These lanes are separated by a raised median and the posted speed limit is 35 miles per hour.

### **Public Transit**

The study area is served by bus lines and the Metro Blue Line operated by Los Angeles County Metropolitan Transportation Authority (LACMTA) and two bus lines operated by the LADOT. These transit lines are described below and their routes in relation to the Project Site are shown in Figure V.I.1-2.



Source: Kaku Associates, August 2003.



- <u>LACMTA Blue Line</u> -- The Metro Blue Line is a north/south rail line that runs from Long Beach to downtown Los Angeles. The Blue Line travels close to the Project Site and has stops located at Vernon Avenue, Washington Boulevard, and Grand Avenue. The hours of operation are from 5 a.m. until midnight.
- <u>LACMTA Line 40</u> -- LACMTA Line 40 is a local east/west line from Union Station in downtown Los Angeles to the South Bay Galleria Transit Center in the City of Redondo Beach.
- <u>LACMTA Line 40</u> -- travels on Martin King Luther Jr. Boulevard through the study area. The service runs daily, evenings, and weekends.
- <u>LACMTA Line 42</u> -- LACMTA Line 42 is a local east/west line from Union Station in downtown Los Angeles to the LAX Bus Center. LACMTA Line 42 travels on Martin King Luther Jr. Boulevard through the study area. The service runs daily, evenings, and weekends.
- <u>LACMTA Lines 204/754</u> -- LACMTA Lines 204/754 are local north/south lines from the Children's Hospital in Los Angeles to the Athens community in Los Angeles County. LACMTA lines 204/754 travel on Vermont Avenue through the study area. The service runs daily, evenings, and weekends.
- <u>LACMTA Lines 81/381</u> -- LACMTA Lines 81/381 are local north/south lines from Eagle Rock Plaza to the Rosewood Community in Los Angeles County. LACMTA Lines 81/381 travel on Figueroa Street through the study area. The service runs daily, evenings, and weekends.
- <u>LACMTA Line 102</u> -- LACMTA Line 102 is a local east/west route from La Brea Avenue to City of Vernon. LACMTA Line 102 travels along Exposition Boulevard through the study area. The service runs daily, evenings until 9 p.m., and weekends.
- <u>LACMTA Line 550</u> -- LACMTA Line 550 is a north/south express route from San Pedro to West Hollywood. LACMTA Line 550 travels along Exposition Boulevard through the study area. The service runs daily, evenings, and weekends.
- <u>LADOT Dash Southeast Line</u> -- The LADOT Dash Southeast Line is a community transit line that provides service to USC, Exposition Park, and southeast Los Angeles. The LADOT Dash Southeast Line provides a connection to the Metro Blue Line stations in the southeast Los Angeles area. The LADOT Dash Southeast line travels on Vermont Avenue, Exposition Boulevard, and Figueroa Street through the study area. The service runs weekdays between 6:30 a.m. and 7:00 p.m. and on Saturdays between 10:00 a.m. and 5:30 p.m.
- <u>LADOT Dash King-East Line</u> -- The LADOT Dash King-East Line is a community transit line that provides service along Martin Luther King Jr. Boulevard east of Figueroa Street. The

co 🔏

-

service operates in a clockwise direction and goes as far as Washington Boulevard to the north, Martin Luther King Jr. Boulevard to the south, Central Avenue to the east and Figueroa Street to the west. The service runs weekdays between 7:00 a.m. and 7:00 p.m. and on Saturdays between 9:00 a.m. and 6:00 p.m.

- <u>LADOT Dash Leimert/Slauson</u> -- The LADOT Dash Leimert/Slauson Line is a community transit line that provides service along Martin Luther King Jr. Boulevard west of Vermont Avenue. It has stops along Vermont Avenue and travels west to Crenshaw Boulevard. The service runs weekdays between 6:30 a.m. and 7:00 p.m. and on Saturdays between 9:00 a.m. and 6:30 p.m..
- <u>LADOT Dash Downtown Los Angeles Route F</u> -- The LADOT Dash Route F is a transit line that provides service to USC, Exposition Park, and downtown Los Angeles. The LADOT Dash Downtown Route F line travels on Exposition Boulevard and Figueroa Street through the study area. The service runs weekdays between 6:30 a.m. and 6:30 p.m. and weekends between 10:00 a.m. and 5:00 p.m..

### Level of Service Methodology

Level of service (LOS) is a qualitative measure used to describe the condition of traffic flow, ranging from excellent conditions at LOS A to overload conditions at LOS F. LOS D is the typically recognized minimum acceptable level of service in urban areas. Level of service definitions for signalized intersections are provided in Table V.I.1-1.

The "Critical Movement Analysis-Planning" method from the *Transportation Research Circular No.* 212 - Interim Materials on Highway Capacity (Transportation Research Board, 1980) was used to determine the intersection volume to capacity (V/C) ratio and corresponding level of service for the signalized intersections.

The 26 analyzed intersections are all controlled by traffic signals, and all but two of the signalized intersections are currently operated under the Automated Traffic Surveillance and Control (ATSAC) system. In accordance with LADOT procedures, capacity values were increased by seven percent at intersections included in the ATSAC system as a reflection of ATSAC's estimated benefit to the transportation system. The two intersections not included in the ATSAC system are:

- Figueroa Street and Exposition Boulevard
- I-110 northbound ramps/Hill Street and Martin Luther King Jr. Boulevard

The area is under the ATSC (Adaptive Traffic Control System), but the estimated benefit from this system, an increase of approximately three percent per intersection, has not been included due to the

Table V.I.1-1
Level of Service Definitions for Signalized Intersections

| Level of Service | Volume/Capacity Ratio | Definition                                                                                                                                                                                              |  |  |
|------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| A                | 0.000-0.600           | EXCELLENT. No vehicle waits longer than one red light and no approach phase is fully used.                                                                                                              |  |  |
| В                | >0.601-0.700          | VERY GOOD. An occasional approach phase is full utilized; many drivers begin to feel some what restricted within groups of vehicles.                                                                    |  |  |
| С                | >0.701-0.800          | GOOD. Occasionally drivers may have to wait through more than one red light; backups may develop behind turning vehicles.                                                                               |  |  |
| Ď                | >0.801-0.900          | FAIR. Delays may be substantial during portions of the rush hours, but enough lower volume periods occur to permit clearing of developing lines, preventing excessive backups.                          |  |  |
| E                | >0.901-1.000          | POOR. Represents the most vehicles intersection approaches can accommodate; may be long lines of waiting vehicles through several signal cycles.                                                        |  |  |
| F                | > 1.000               | FAILURE. Backups from nearby locations or on cross streets may restrict or prevent movement of vehicle out of the intersection approaches. Tremendous delay with continuously increasing queue lengths. |  |  |

Source: Transportation Research Board, Highway Capacity Manual, Special Report 209, 1994.

system not running in "adaptive" mode. The adaptive mode is a set of procedures that adapt the system, using real time traffic information, to optimize the signals and hence improve the intersection LOS.

### **Existing Traffic Conditions**

# Existing Weekend Scenario

The following section presents the existing traffic volumes for a weekend USC Trojans Football game at the Coliseum and the resulting level of service (LOS) at each of the study intersections. This analysis is used as a proxy for a projected weekend NFL game at the Coliseum, which will have a reduced capacity in comparison to current USC games. The overall reduction in maximum seating capacity is 14,500 seats. Therefore, the USC game is considered a worse scenario in terms of traffic than an NFL game would present.

# Existing Weekend Traffic Volumes

Weekend afternoon (2:00 p.m. to 5:00 p.m.) and evening (6:30 p.m. to 9:30 p.m.) traffic counts were conducted by Kaku Associates, Inc. on Saturday, November 30, 2002 at the 26 analyzed intersections. These counts were conducted on the day of a collegiate football game between USC and Notre Dame, where the attendance was 87,944 people. These volumes are illustrated in Figure V.I.1-3 and represent the existing weekend traffic.

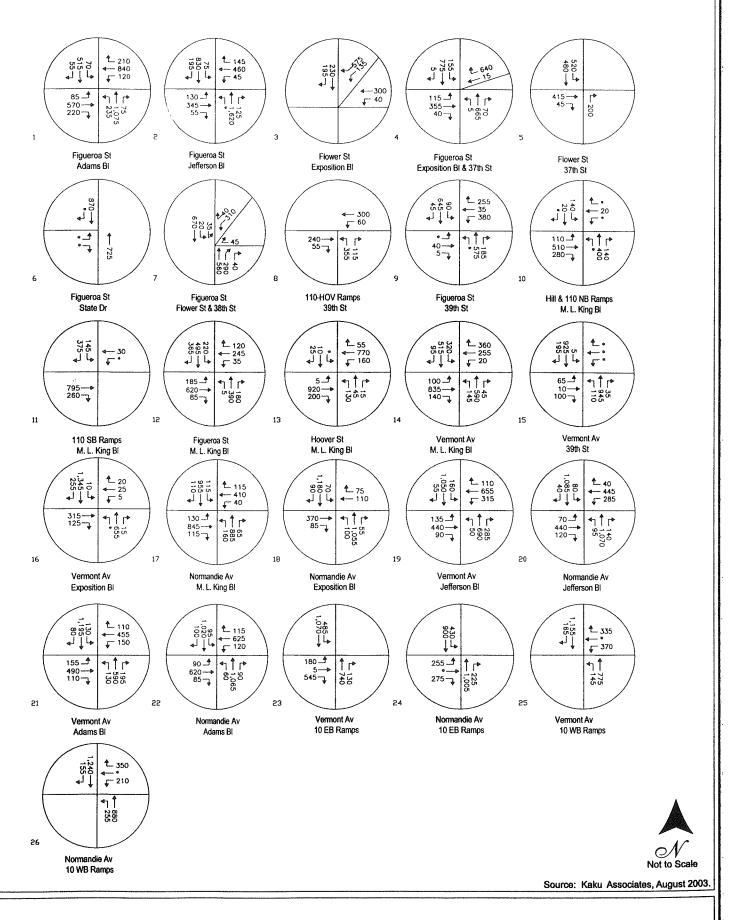
This particular date was chosen because the counts (from 6:30 p.m. to 9:30 p.m.) would capture the traffic associated with the National Hockey League (NHL) Los Angeles Kings and Chicago Blackhawks game at the Staples Center in downtown Los Angeles on the same day.

# Existing Levels of Service - Weekend Scenario

Table V.I.1-2 summarizes the existing V/C ratios and corresponding LOS at each of the study intersections for both weekend and weekday conditions. As shown in Table V.I.1-2, during weekend conditions 25 out of the 26 intersections operate at LOS C or better. The intersection at Vermont Avenue and Adams Boulevard operates at LOS D. The existing volume analysis shows that the 26 intersections are currently working satisfactorily prior to game day traffic.

# Existing Weekday Scenario

Existing Weekday Traffic Volumes


Weekday intersection turning movement counts were conducted during the afternoon (4:00 p.m. to 7:00 p.m.) peak periods on Tuesday, Wednesday, and Thursday, April 22-24, 2003, at the 26 analyzed intersections. These counts are considered representative for a Monday or Thursday night game, when weekday NFL games are traditionally played.

The peak hour was extrapolated from the counts as 4:45 p.m. to 5:45 p.m. for 15 of the intersections and from 5:00 p.m. to 6:00 p.m. for seven intersections. The remaining four intersections are outside of these periods. For the purpose of this study, 5:00 p.m. to 6:00 p.m. was used as the peak hour for the study in the vicinity of the project location. This period is used to reflect the traffic conditions that are expected prior to a game in the evening peak rush hour.

Figure V.I.1-4 illustrates the existing weekday traffic volumes and turning movements for the 5:00 p.m. to 6:00 p.m. peak hour.

### Existing Levels of Service - Weekday Scenario

Television scheduling and the need to broadcast games live throughout the United States currently governs the timing of NFL weekday night football games. While this does not represent a concern for games that are played on the east coast or in the central United States, games on the west coast operate on Pacific Standard Time, which is three hours behind Eastern Standard Time, two hours behind Central Time region and one hour behind the Mountain Time region. Hence games would not start any



- 487

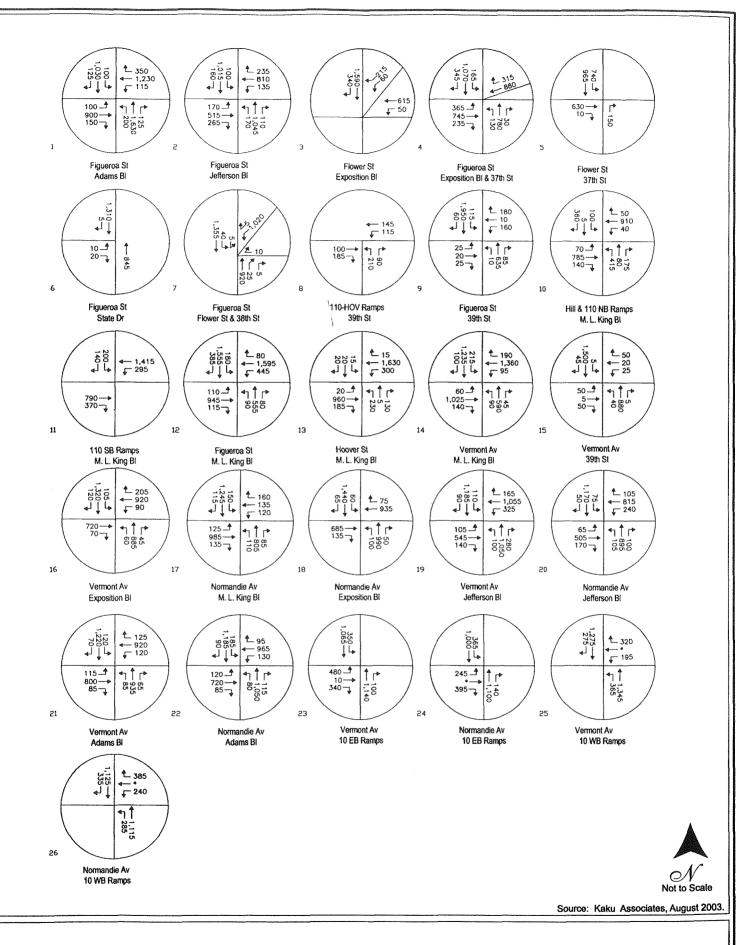

CHRISTOPHER A. JOSEPH & ASSOCIATES Environmental Planning and Research

Figure V.I.1-3
Existing Weekend Traffic Volumes
Without Project

Table V.I.1-2
Intersection Level of Service Analysis – Existing Conditions

| _                                      | Time   | Weekend Conditions |     | Weekday Conditions |      |
|----------------------------------------|--------|--------------------|-----|--------------------|------|
| Intersection                           | Period | V/C                | LOS | V/C                | LOS  |
| Figueroa St. & Adams Bl.               | PM     | 0.112              | A   | 0.881              | (D)  |
| Figueroa St. & Jefferson Bl.           | PM     | 0.411              | Α   | 0.714              | С    |
| Flower St. & Exposition Bl.            | PM     | 0.326              | A   | 0.517              | A    |
| Figueroa St. & Exposition Bl.          | PM     | 0.798              | С   | 0.985              | (E)  |
| Flower St. & 37 <sup>th</sup> St.      | PM     | 0.274              | A   | 0.365              | Ã    |
| Figueroa St. & State Dr.               | PM     | 0.174              | A   | 0.239              | A    |
| Figueroa St. & 38th St.                | PM     | 0.359              | A   | 0.716              | С    |
| I-110 HOV Ramps & 39th St.             | PM     | 0.286              | A   | 0.271              | Α    |
| Figueroa St. & 39th St.                | PM     | 0.362              | A   | 0.524              | A    |
| I-110 NB Ramps/Hill & M.L.King Jr. Bl. | PM     | 0.672              | В   | 0.760              | С    |
| I-110 SB Ramps & M.L.King Jr. Bl.      | PM     | 0.302              | A   | 0.459              | A    |
| Figueroa St. & M.L.King Jr. Bl.        | PM     | 0.449              | A   | 1.047              | (F)  |
| Hoover St. & M.L.King Jr. Bl.          | PM     | 0.386              | A   | 0.552              | A    |
| Vermont Av. & M.L.King Jr. Bl.         | PM     | 0.699              | В   | 0.865              | D    |
| Vermont Av. & 39 <sup>th</sup> St.     | PM     | 0.494              | A   | 0.568              | A    |
| Vermont Av. & Exposition BI.           | PM     | 0.479              | A   | 0.783              | С    |
| Normandie Av. & M.L.King Jr. Bl.       | PM     | 0.631              | В   | 0.784              | С    |
| Normandie Av. & Exposition Bl.         | PM     | 0.579              | A   | 0.741              | C    |
| Vermont Av. & Jefferson Bl.            | PM     | 0.739              | C   | 0.882              | D    |
| Normandie Av. & Jefferson Bl.          | PM     | 0.726              | С   | 0.757              | C    |
| Vermont Av. & Adams Bl.                | PM     | 0.818              | D   | 0.922              | ( E) |
| Normandie Av. & Adams Bl.              | PM     | 0.763              | С   | 0.958              | É    |
| Vermont Av. & I-10 EB Ramps            | PM     | 0.762              | С   | 0.800              | С    |
| Normandie Av. & I-10 EB Ramps          | PM     | 0.711              | С   | 0.849              | D    |
| Vermont Av. & I-10 WB Ramps            | PM     | 0.651              | В   | 0.743              | С    |
| Normandie Av. & I-10 WB Ramps          | PM     | 0.738              | С   | 0.745              | С    |

Source: Kaku Associates, Traffic Study for the Los Angeles Memorial Coliseum Renovation Project, August 2003.





CHRISTOPHER A. JOSEPH & ASSOCIATES Environmental Planning and Research Figure V.I.1-4
Existing Weekday Traffic Volumes
Without Project

å

الميان الميان

later than 6:00 p.m. Pacific Standard Time.

Traffic count data from the 5:00 to 6:00 p.m. peak hour was used to analyze the LOS for all 26 intersections. This time period was used as it is considered the time when game-generated traffic will be at its most concentrated level. This period is deemed to attract approximately 50 percent of NFL game-generated traffic.

The results in Table V.I.1-2 show that there is currently one intersection operating at LOS F: Figueroa Street and Martin Luther King Jr. Boulevard. Three intersections operate at LOS E (Figueroa Street and Exposition Boulevard, Vermont Avenue and Adams Boulevard, and Normandie Avenue and Adams Boulevard). The other 22 intersections operate between LOS A and LOS D.

#### **Congestion Management Program**

Intersection analyses complying with Los Angeles County 2002 Congestion Management Program (CMP) requirements were also completed. The Transportation Impact Analysis (TIA) section of the CMP requirements describes the threshold criteria used to identify potential CMP monitoring locations that needed to be included in the traffic analysis. Based on the CMP criteria, the following locations needed to be analyzed:

- All CMP arterial monitoring intersections, including monitored freeway on- or off-ramp intersections where the Proposed Project will add 50 or more trips during either the a.m. or p.m. weekday peak hours (of adjacent street traffic).
- All mainline freeway monitoring locations where the Proposed Project will add 150 or more trips, in either direction, during either the weekday a.m. or p.m. peak hours.

#### **METHODOLOGY**

In order to correctly evaluate the potential impact of the Proposed Project on the local street system, it was necessary to develop estimates of traffic conditions both with and without the Proposed Project.

# Weekend Traffic Analysis

Traffic volumes are first estimated for the study area without the Proposed Project, which were taken from the observed ground counts from November 30, 2002. These can be seen in Figure V.I.1-3. In addition the weekend volumes with Proposed Project can be seen in Figure V.I.1-5 and V.I.1-6, which represent the pre-event and post-event traffic conditions respectively. The observed traffic counts used in the analysis for pre- and post-event conditions reflect the street closures and turn prohibitions that are part of LADOT's event management plan.

#### Weekday Traffic Analysis

Future traffic volumes are first estimated for the study area without the Proposed Project. These future forecasts reflect traffic increases due to general regional growth, traffic that is generated by other specific developments in the vicinity of the Project Site, and event related traffic at the Staples Center and Los Angeles Convention Center. These future conditions serve as the Cumulative Base conditions. The estimated project traffic is then added to the Cumulative Base traffic forecasts, resulting in the forecast of future conditions. This represents the Cumulative Plus Project conditions.

# Weekday Traffic Generation of Cumulative Development Projects

The Cumulative Base conditions include three distinct elements: (1) growth in existing background traffic volumes reflecting the effects of overall regional growth and development both inside and outside of the study area, (2) traffic generated by the Staples Center and Los Angeles Convention Center, and (3) the traffic generated by specific cumulative projects within or near a two-mile radius of the study area.

#### **Areawide Traffic Growth**

The background growth in traffic reflected the overall regional growth both inside and outside of the study area. A growth factor of one percent per year was used in the analysis, based on general traffic volume growth factors suggested in the 2002 Congestion Management Program for Los Angeles.<sup>1</sup> The Coliseum is situated in Regional Statistical Area (RSA) 17. Annual growth in RSA 17 is 0.86 percent. Using a more conservative growth rate of one percent, the existing traffic volumes are adjusted upwards by three percent to reflect three years of background traffic growth, ultimately representing the year 2006.

#### Staples Center and Los Angeles Convention Center Traffic Projections

The Staples Center and Los Angeles Convention Center traffic projections represent additional traffic that may occur on a game day. This is added to the existing conditions traffic volumes. It is expected that all attempts will be made to avoid a conflict on game day, as the NFL weekday games occur occasionally. The traffic volumes for the Staples Center and Convention Center were taken from the Traffic Impact Analysis for the Proposed Los Angeles Sports and Entertainment Complex prepared by Korve Engineering, Inc. in March, 1997.

<sup>&</sup>lt;sup>1</sup> Los Angeles County Metropolitan Transportation Authority, June 2002.

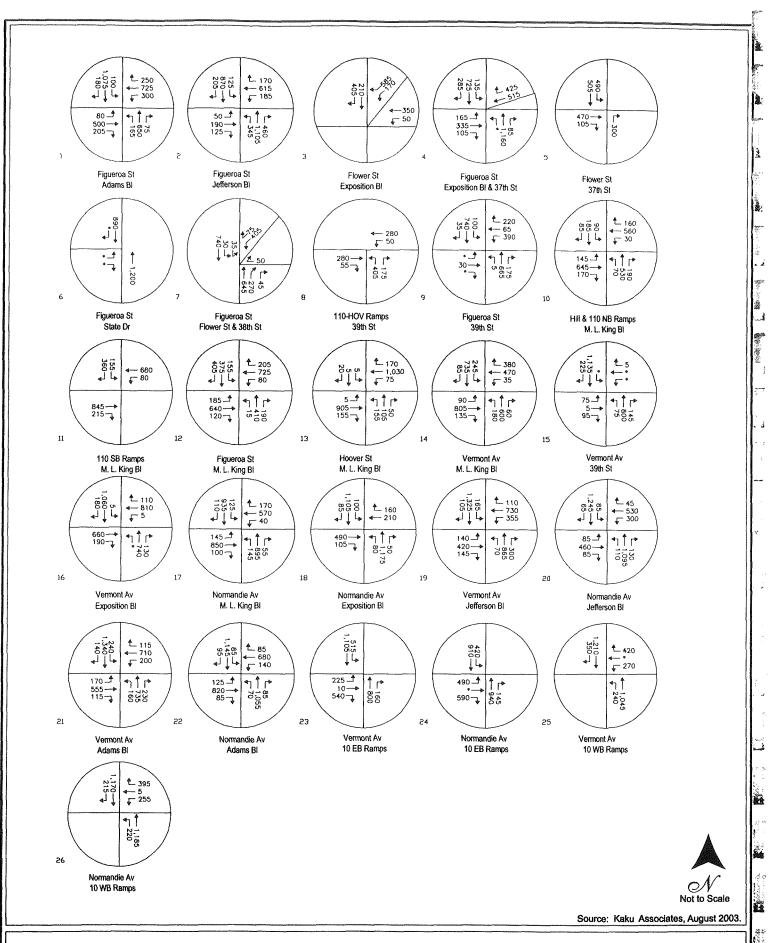
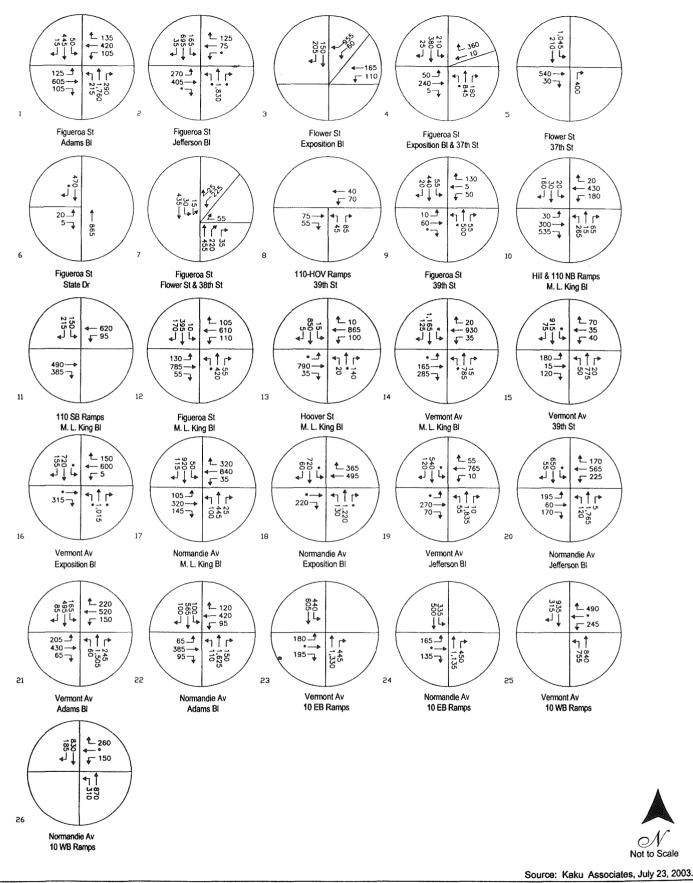




Figure V.I.1-5
Pre Event Weekend Traffic
Volumes With Project





**CHRISTOPHER A. JOSEPH & ASSOCIATES Environmental Planning and Research** 

Figure V.I.1-6 Post Event Weekend Traffic **Volumes With Project** 

# **Traffic Generation of Cumulative Development Projects**

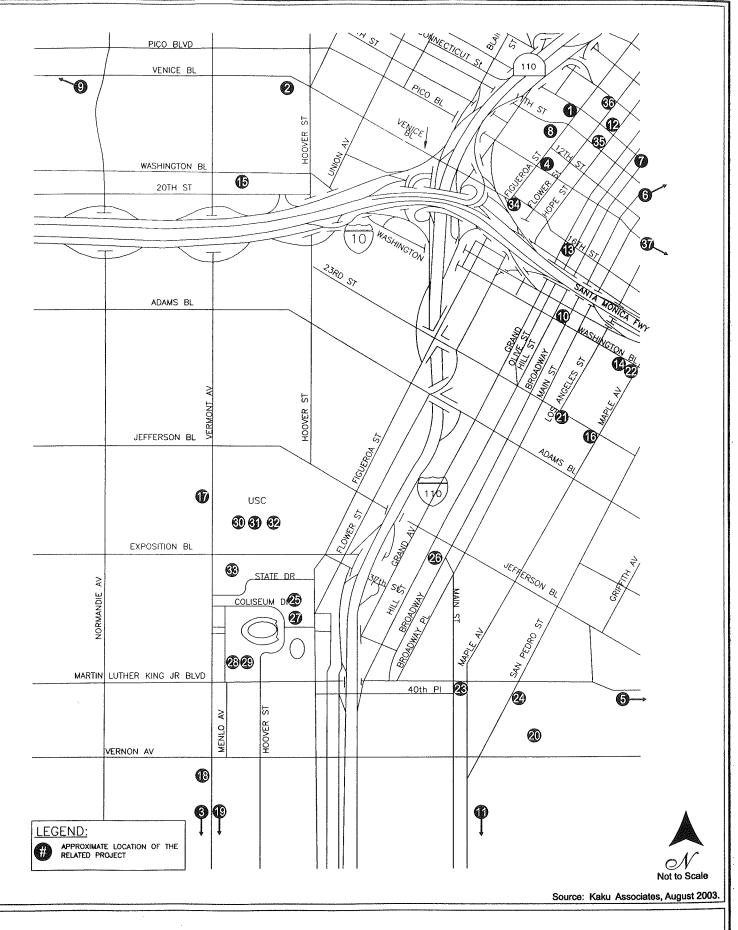
The next future traffic scenario is that of cumulative projects, which will be added to the project traffic. This is traffic expected to be generated by specific development projects within, or with the potential to affect, the study area. Information regarding potential future projects either under construction, planned, or proposed for development was obtained from several sources including recently conducted traffic studies, the Los Angeles Unified School District (LAUSD), the City of Los Angeles Planning Department, the Community Redevelopment Agency (CRA), and the LADOT. The locations of the cumulative projects are illustrated in Figure V.I.1-7.

It is also expected that the Los Angeles Memorial Sports Arena will not pose a problem on game nights. Since the Sports Arena is controlled by the Coliseum Commission, it is assumed that every attempt will be made to ensure that there is no event scheduled on the same day as an NFL game.

Trip generation estimates for the cumulative projects were prepared using rates/equations contained in Trip Generation, 6<sup>th</sup> Edition.<sup>2</sup> The cumulative projects would generate a total of approximately 77,000 daily trips and 12,500 afternoon peak hour trips.

#### **Cumulative Base Traffic Volumes**

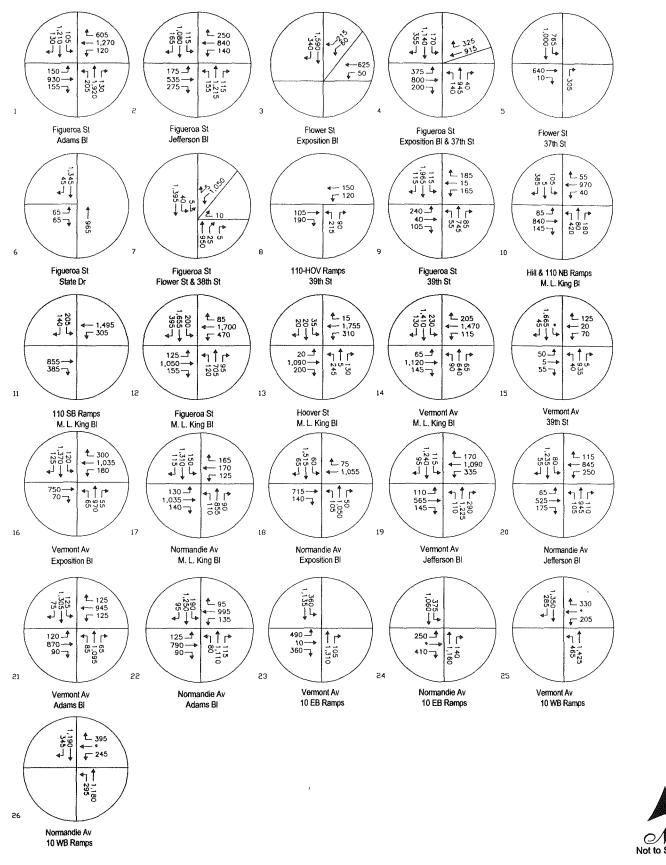
The Cumulative Base traffic volumes, future conditions without the Proposed Project, were produced by adding the traffic expected to be generated by the cumulative projects, the Staples Center, and the Los Angeles Convention Center to the existing volumes (which were increased by three percent to account for ambient growth). The resulting traffic volumes at the 26 analyzed intersections represent the Year 2006 Cumulative Base conditions, i.e., future conditions in 2006 without the Proposed Project. Figure V.I.1-8 describes these conditions.


#### Weekday Project Traffic Volumes

The preparation of traffic generation estimates for the Proposed Project involves three steps: trip generation, trip distribution, and traffic assignment.

#### Average Vehicle Occupancy (AVO) and Protect Traffic Generation

The Coliseum currently has a maximum seating capacity of 92,500. While maximum capacity has not been achieved in recent years, the highest recorded attendance level reached during the past four years occurred during a USC football game with a recorded attendance of 87,944 persons. The Proposed Project would decrease the Coliseum's maximum seating capacity to approximately 78,000 seats. In comparison to a maximum capacity event under existing conditions, the Proposed Project would decrease maximum attendance levels by approximately 14,500 persons. In comparison to the highest


<sup>&</sup>lt;sup>2</sup> Institute of Transportation Engineers, 1997.





CHRISTOPHER A. JOSEPH & ASSOCIATES Environmental Planning and Research

Figure V.I.1-7 Cumulative Development Projects



Source: Kaku Associates, August 2003.



attendance level achieved during the past four years, the Proposed Project would reduce attendance by approximately 10,000 persons.

# **Average Vehicle Occupancy**

Discussions were held with the LADOT staff to determine the most appropriate trip generation rate to estimate traffic generation characteristics of the Proposed Project. It was decided that a detailed analysis of the Average Vehicle Occupancy (AVO) should be carried out to accurately reflect a typical NFL weekday game, as the average number of occupants per vehicle significantly affects the total number of vehicles that can be accommodated at the Coliseum. Kaku Associates, Inc. has recently undertaken a study for the proposed NFL Cardinals stadium in Arizona where the trip generation was determined using a 3.0 AVO. Details from this study are attached in Appendix D.

A previous study for the Coliseum undertaken by DKS Associates in 1991 discusses the adoption of specific rates for vehicle occupancy based on events at Los Angeles Dodger Stadium and the Greek Theatre. It concluded that average vehicle occupancy of 2.7 persons per vehicle was a reasonable, conservative value. Historical data from this study was analyzed for different events at the Coliseum; these events included college football games and concerts. The results are shown in Table V.I.1-3. Details from this study are attached in Appendix D.

A study by Korve Engineering, Inc. was completed in 1997 for the proposed Los Angeles Sports and Entertainment Complex. This is now known as the Staples Center, located in downtown Los Angeles. The study recommends an AVO of 2.75 persons. Details from this study are attached in Appendix D.

For the purpose of trip generation analysis for this study, the AVO rate was assumed to be 2.7 persons per vehicle. This rate is slightly lower than other NFL stadiums in order to produce a more conservative estimate.

#### Trip Generation

Based on consultation with LADOT, it can be assumed that approximately five percent of patrons arrive at the Coliseum by transit and 95 percent arrive by automobile. Therefore, the 78,000 seats for NFL games at the Coliseum would generate approximately 3,900 transit trips and using an AVO of 2.7, the remaining trips would arrive in approximately 27,450 vehicles.

It is assumed that 50 percent of the inbound trips occur during the p.m. peak hour. This would generate approximately 13,750 vehicle trips during the pre-event p.m. peak hour. The trip generation was developed using the equations below:

Number of Vehicle trips =  $78,000 \times 95$  percent auto arrival = 27,444 vehicle trips 2.7 persons/auto

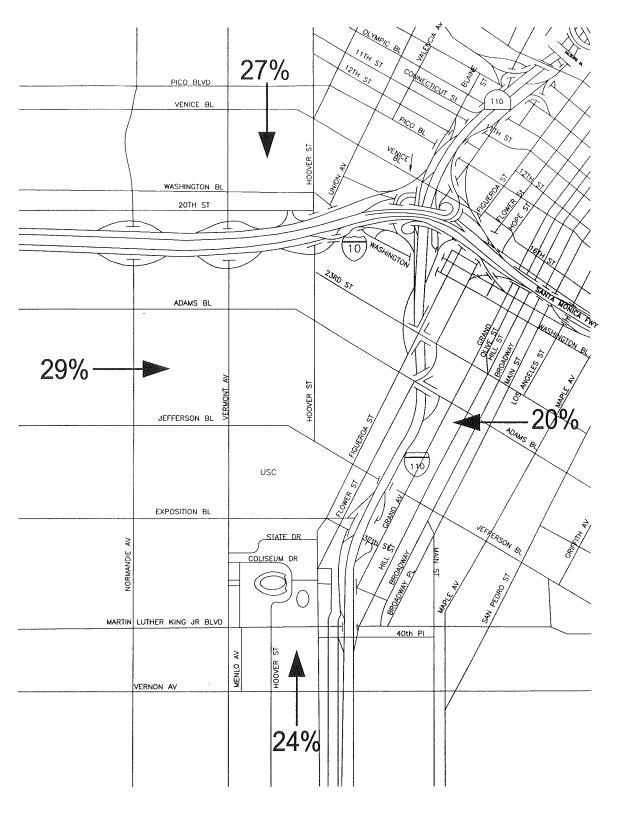
Pre Event Peak Auto Arrival =  $27,444 \times 50$  percent peak hour inbound = 13,722 vehicle trips

Table V.I.1-3

Average Vehicle Occupancy Based on Historical Coliseum Data

| Event               | Typical Attendance Levels (persons) | Arriving via Automobile (Persons) | Average Parking Demand (Spaces) | Ave. Vehicle<br>Occupancy<br>(Persons Per Auto) |
|---------------------|-------------------------------------|-----------------------------------|---------------------------------|-------------------------------------------------|
| College Football    | 65,178                              | 52,142                            | 19,312                          | 2.7                                             |
| Professional Soccer | 47,032                              | 37,626                            | 13,936                          | 2.7                                             |
| Soccer              | 17,757                              | 14,206                            | 5,261                           | 2.7                                             |
| Concerts            | 66,598                              | 53,278                            | 19,732                          | 2.7                                             |
| Motocross           | 35,391                              | 28,313                            | 10,486                          | 2.7                                             |
| Special Events      | 16,700                              | 13,360                            | 4,948                           | 2.7                                             |

Source: Kaku Associates, Traffic Study for the Los Angeles Memorial Coliseum Renovation Project, August, 2003.


# Weekday Project Traffic Distribution/Assignment

The geographic distribution of the traffic generated by the Proposed Project was determined in consultation with LADOT staff. The direction that traffic will approach the stadium depends largely on the efficiency of the highway system serving the site and the geographical distribution of population in the region. The distribution of spectators arriving is as follows and is illustrated in Figure V.I.1-9:

| TOTAL                                                           | <u>100%</u> |
|-----------------------------------------------------------------|-------------|
| East on the Santa Monica Freeway (I-10) and eastbound arterials | 29%         |
| North on the Harbor Freeway (1-110) and northbound on arterials | 24%         |
| West on the Santa Monica Freeway (I-10) and westbound arterials | 20%         |
| South on the Harbor Freeway (I-110) and southbound on arterials | 27%         |

The trips generated by the Proposed Project were assigned to the street system utilizing the distribution pattern illustrated in Figure V.I.1-9 and were assigned the destination of a parking lot at either USC or the Coliseum (with the Coliseum lots being filled first). It was decided to assign vehicles to parking lots, as this is where the majority of vehicles end up parking. Vehicles may also opt to use private parking lots in the area if they fail to find parking in the lots used by the Coliseum and USC.

23





Source: Kaku Associates, August 2003.



CHRISTOPHER A. JOSEPH & ASSOCIATES Environmental Planning and Research

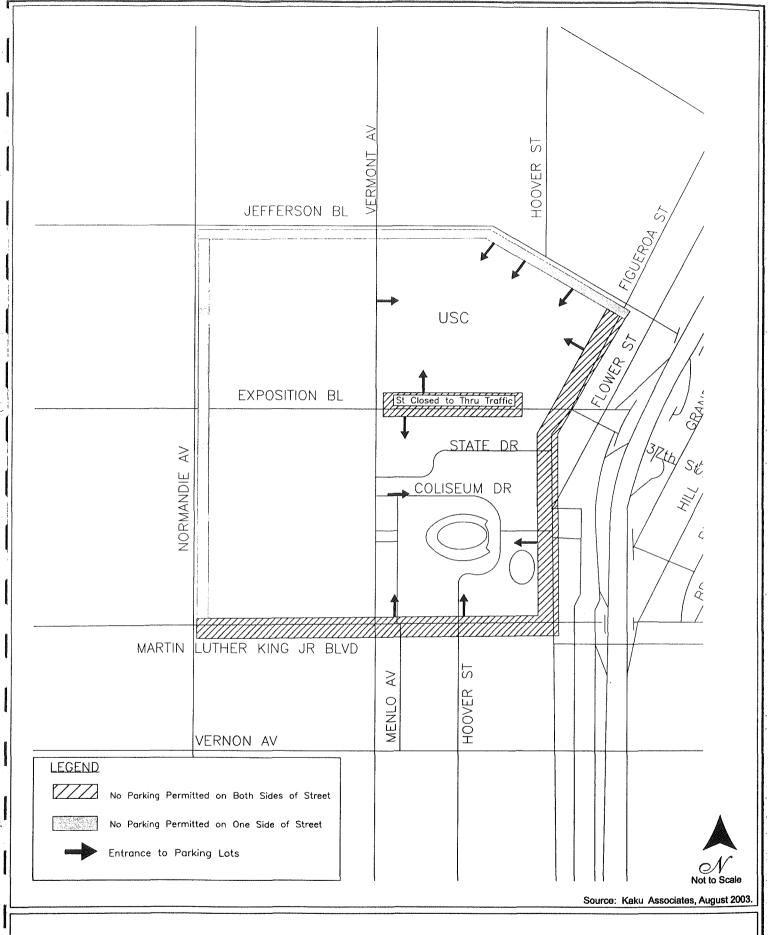
Figure V.I.1-9 Project Traffic Distribution

Figure V.I.1-10 illustrates parking entrances and restrictions that are applied during weekend game days for USC. It is assumed that these restrictions and entrances would apply for a weekday NFL football game and were taken into account when assigning project traffic to the street network. The resultant weekday project traffic volumes at the analyzed intersections are shown in Figure V.I.1-11.

#### Weekday Cumulative Plus Project Traffic Projections

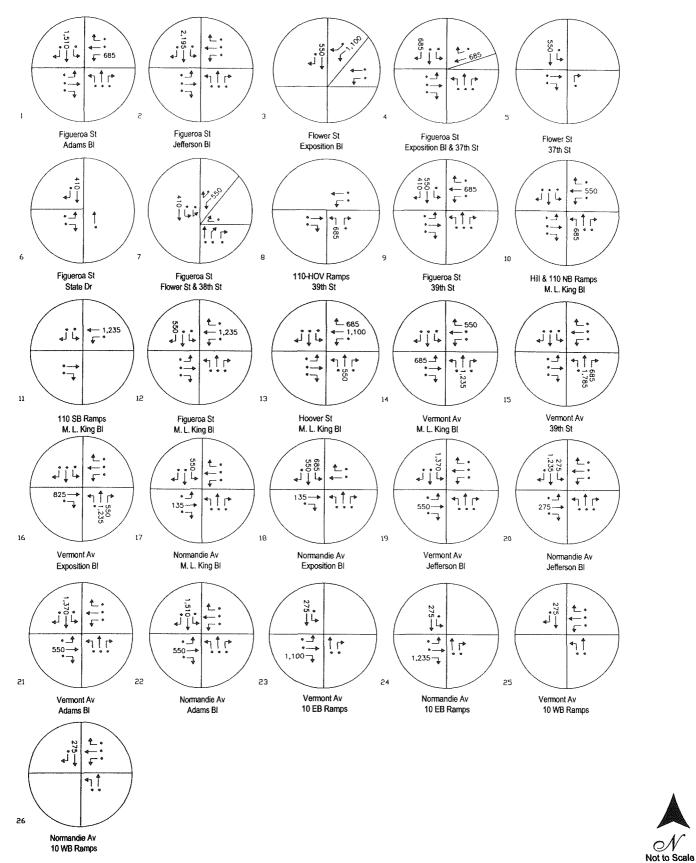
Project traffic volumes were added to the Cumulative Base traffic projections to develop the Cumulative Plus Project traffic forecasts. The Cumulative Plus Project traffic volumes, illustrated in Figure V.I.1-12, represent future conditions with project traffic.

### **ENVIRONMENTAL IMPACTS**

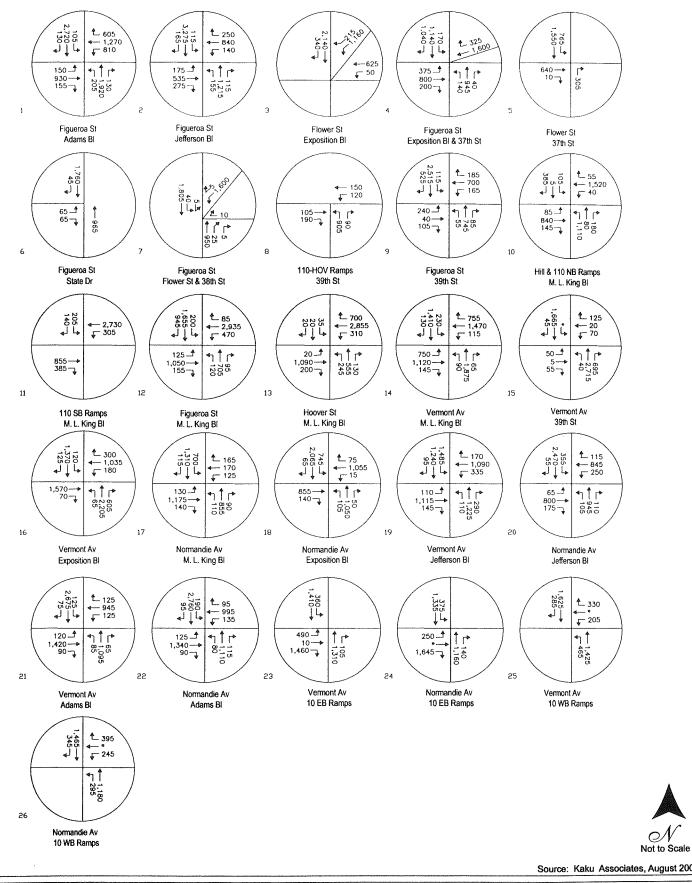

# Thresholds of Significance

# CEQA Thresholds of Significance

The California Environmental Quality Act (CEQA) defines a significant effect as being "a substantial or potentially substantial adverse change in any of the physical conditions within the area affected by the activity." Guidelines for implementing CEQA provisions have been adopted which allow each jurisdiction the latitude to define a "substantial or potentially substantial" adverse change (significant impact) on the environment.


LADOT has established criteria that are used to determine if a project has a significant traffic impact at an intersection. Using the LADOT standard, a project impact would be considered significant if the conditions listed in Table V.I.1-4 are met.

Using these criteria, a project would not have a significant impact at an intersection if, for example, it is operating at LOS C after the addition of project traffic and the incremental change in the V/C ratio is less than 0.040. If the intersection is operating at a LOS F after the addition of project traffic, however, and the incremental change in the V/C ratio is 0.010 or greater, the project would be considered to have a significant impact at this location.




CHRISTOPHER A. JOSEPH & ASSOCIATES Environmental Planning and Research

Figure V.I.1-10
Pre-Event Parking Entrances and
Restrictions



Source: Kaku Associates, August 2003.



Source: Kaku Associates, August 2003.



**CHRISTOPHER A. JOSEPH & ASSOCIATES** Environmental Planning and Research

Figure V.I.1-12 Cumulative Base Plus Project Weekday Traffic Volumes

intersections operate at LOS E (I-110 northbound ramps/Hill & Martin Luther King Jr. Boulevard and Normandie Avenue & I-10 eastbound ramps); and one intersection operates at LOF F (Vermont Ave. and Adams Ave.). Application of the significance criteria, previously described in this chapter, indicates that the Proposed Project would create significant traffic impacts at the following eight study intersections:

- Figueroa Street and Adams Boulevard
- I-110 NB Ramps/Hill Street and Martin Luther King Jr. Boulevard
- Vermont Avenue and Jefferson Boulevard
- Normandie Avenue and Jefferson Boulevard
- Vermont Avenue and Adams Boulevard
- Normandie Avenue and Adams Boulevard
- Normandie Avenue and 1-10 EB ramps
- Vermont Avenue and I-10 WB ramps

As mentioned previously, only three of the above eight intersections operate at LOS E or greater showing that Coliseum traffic for USC football games is well managed by the majority of the 26 intersections analyzed. These results take into account the LADOT traffic management plan implemented on game days to improve and facilitate traffic movement issues resulting from the increase in the number of vehicles on the surrounding street network.

#### Weekend Post-Event Scenario

Table V.I.1-6 shows the results for the post-event scenario for the 26 analyzed intersections. The table reflects the difference between the with- and without-project scenarios following a USC football game. The with-project scenario effectively takes traffic counts for the worst hour after the game (between 6:30 p.m. and 9:30 p.m.). The worst hour is defined as the time period when the traffic volumes are at the heaviest through the 26 intersections. The results show that 25 out of the 26 analyzed intersections

Table V.I.1-5
Pre-Event Intersection Level of Service Analysis—Weekend Conditions

|                                        | Time   | Without<br>Project<br>Conditions |     | Pre Event w/ Project Scenario |     | Project<br>Increase | Significan<br>t Project |
|----------------------------------------|--------|----------------------------------|-----|-------------------------------|-----|---------------------|-------------------------|
| Intersection                           | Period | V/C                              | LOS | V/C                           | LOS | in V/C              | Impact                  |
| Figueroa St. & Adams Bl.               | PM     | 0.112                            | А   | 0.834                         | D   | 0.722               | YES                     |
| Figueroa St. & Jefferson Bl.           | PM     | 0.411                            | Α   | 0.668                         | В   | 0.257               | NO                      |
| Flower St. & Exposition Bl.            | PM     | 0.326                            | Α   | 0.432                         | A   | 0.106               | NO                      |
| Figueroa St. & Exposition Bl.          | PM     | 0.798                            | C   | 0.744                         | C   | -0.054              | NO                      |
| Flower St. & 37 <sup>th</sup> St.      | PM     | 0.274                            | Α   | 0.316                         | A   | 0.042               | NO                      |
| Figueroa St. & State Dr.               | PM     | 0.174                            | Α   | 0.331                         | A   | 0.157               | NO                      |
| Figueroa St. & 38th St.                | PM     | 0.359                            | Α   | 0.477                         | A   | 0.118               | NO                      |
| I-110 HOV Ramps & 39th St.             | PM     | 0.286                            | Α   | 0.328                         | A   | 0.042               | NO                      |
| Figueroa St. & 39th St.                | PM     | 0.362                            | A   | 0.385                         | A   | 0.023               | NO                      |
| I-110 NB Ramps/Hill & M.L.King Jr. Bl. | PM     | 0.672                            | В   | 0.907                         | Е   | 0.235               | YES                     |
| I-110 SB Ramps & M.L.King Jr. Bl.      | PM     | 0.302                            | A   | 0.351                         | A   | 0.049               | NO                      |
| Figueroa St. & M.L.King Jr. Bl.        | PM     | 0.449                            | A   | 0.594                         | Α   | 0.145               | NO                      |
| Hoover St. & M.L.King Jr. Bl.          | PM     | 0.386                            | A   | 0.333                         | A   | -0.053              | NO                      |
| Vermont Av. & M.L.King Jr. Bl.         | PM     | 0.699                            | В   | 0.672                         | В   | -0.027              | NO                      |
| Vermont Av. & 39 <sup>th</sup> St.     | PM     | 0.494                            | A   | 0.551                         | A   | 0.057               | NO                      |
| Vermont Av. & Exposition Bl.           | PM     | 0.479                            | A   | 0.591                         | A   | 0.112               | NO                      |
| Normandie Av. & M.L.King Jr. Bl.       | PM     | 0.631                            | В   | 0.612                         | В   | -0.019              | NO                      |
| Normandie Av. & Exposition Bl.         | PM     | 0.579                            | A   | 0.642                         | В   | 0.063               | NO                      |
| Vermont Av. & Jefferson Bl.            | PM     | 0.739                            | С   | 0.894                         | D   | 0.155               | YES                     |
| Normandie Av. & Jefferson BI.          | PM     | 0.726                            | С   | 0.795                         | C   | 0.069               | YES                     |
| Vermont Av. & Adams Bl.                | PM     | 0.818                            | D   | 1.01                          | F   | 0.192               | YES                     |
| Normandie Av. & Adams Bl.              | PM     | 0.763                            | С   | 0.862                         | D   | 0.099               | YES                     |
| Vermont Av. & I-10 EB Ramps            | PM     | 0.762                            | С   | 0.797                         | С   | 0.035               | NO                      |
| Normandie Av. & I-10 EB Ramps          | PM     | 0.711                            | С   | 0.970                         | Е   | 0.259               | YES                     |
| Vermont Av. & I-10 WB Ramps            | PM     | 0.651                            | В   | 0.74                          | С   | 0.089               | YES                     |
| Normandie Av. & I-10 WB Ramps          | PM     | 0.738                            | С   | 0.723                         | C   | -0.015              | NO                      |

Source: Kaku Associates, Traffic Study for the Los Angeles Memorial Coliseum Renovation Project, August 2003.

operate at LOS D or better after the game. The intersection at Vermont Avenue and Adams Boulevard operates at LOS F. Application of the significance criteria, previously described in this chapter, indicates that the Proposed Project would create significant traffic impacts at the following six study intersections:

6545

- I-110 NB Ramps/Hill Street and Martin Luther King Jr. Boulevard
- Vermont Avenue and Jefferson Boulevard
- Normandie Avenue and Jefferson Boulevard
- Vermont Avenue and Adams Boulevard
- Normandie Avenue and Adams Boulevard
- Vermont Avenue and I-10 WB ramps

As mentioned previously, only one of the six intersections above operates at LOS F and the rest operate at LOS D or better. These results take into account the LADOT traffic management plan implemented on game days to facilitate traffic movement caused by the increase in the number of vehicles on the Coliseum's surrounding street network. The results show that the intersections operate satisfactorily considering the additional traffic generated by the Coliseum by a weekend game.

#### Weekday Conditions With Project

Weekday Cumulative Base Traffic Conditions

The Cumulative Base peak hour traffic volumes, illustrated in Figure V.I.1-8, were analyzed to determine the V/C ratio and corresponding LOS for each of the analyzed intersections under these base conditions. Table V.I.1-7 summarizes these results for the pre-event hour weekday night scenario. As indicated in Table V.I.1-7, 19 of the 26 analyzed intersections are projected to operate at LOS D or better during the pre-event peak hour. Two of the remaining intersections operate at LOS F and five operate at LOS E.

It should be noted that LADOT's Automated Traffic Surveillance and Control (ATSAC) system is operational at 24 out of the 26 analyzed intersections. As a result, in accordance with LADOT procedures, capacity values were increased by seven percent to reflect the benefit of ATSAC.

#### Project Traffic Impact Analysis

The cumulative plus project traffic values were analyzed to determine potential future operating conditions and traffic impacts with the addition of the project-generated traffic associated with a weekday NFL football game at the Coliseum. As stated previously the occurrence of a weekday NFL game would occur no more than one time during any given season, and would not likely occur each and every season. These results of the future weekday operating conditions are also displayed in Table V.I.1-7.

Table V.I.1-6
Post-Event Intersection Level of Service Analysis – Weekend Conditions

|                                        | Time   |       |     | ct Project<br>ions Scenario |     | Project<br>Increase | Significant<br>Project |
|----------------------------------------|--------|-------|-----|-----------------------------|-----|---------------------|------------------------|
| Intersection                           | Period | V/C   | LOS | V/C                         | LOS | in V/C              | Impact                 |
| Figueroa St. & Adams Bl.               | PM     | 0.112 | A   | 0.609                       | В   | 0.497               | NO                     |
| Figueroa St. & Jefferson Bl.           | PM     | 0.411 | A   | 0.669                       | В   | 0.258               | NO                     |
| Flower St. & Exposition Bl.            | PM     | 0.326 | A   | 0.441                       | A   | 0.115               | NO                     |
| Figueroa St. & Exposition Bl.          | PM     | 0.798 | С   | 0.617                       | В   | -0.181              | NO                     |
| Flower St. & 37 <sup>th</sup> St.      | PM     | 0.274 | Α   | 0.568                       | A   | 0.294               | NO                     |
| Figueroa St. & State Dr.               | PM     | 0.174 | A   | 0.236                       | Α   | 0.062               | NO                     |
| Figueroa St. & 38th St.                | PM     | 0.359 | A   | 0.279                       | Α   | -0.08               | NO                     |
| I-110 HOV Ramps & 39th St.             | PM     | 0.286 | Α   | 0.071                       | Α   | -0.215              | NO                     |
| Figueroa St. & 39 <sup>th</sup> St.    | PM     | 0.362 | A   | 0.199                       | Α   | -0.163              | NO                     |
| I-110 NB Ramps/Hill & M.L.King Jr. Bl. | PM     | 0.672 | В   | 0.733                       | С   | 0.061               | YES                    |
| I-110 SB Ramps & M.L.King Jr. Bl.      | PM     | 0.302 | Α   | 0.331                       | A   | 0.029               | NO                     |
| Figueroa St. & M.L.King Jr. Bl.        | PM     | 0.449 | Α   | 0.35                        | A   | -0.099              | NO                     |
| Hoover St. & M.L.King Jr. Bl.          | PM     | 0.386 | A   | 0.477                       | A   | 0.091               | NO                     |
| Vermont Av. & M.L.King Jr. Bl.         | PM     | 0.699 | В   | 0.606                       | В   | -0.093              | NO                     |
| Vermont Av. & 39th St.                 | PM     | 0.494 | A   | 0.525                       | Α   | 0.031               | NO                     |
| Vermont Av. & Exposition BI.           | PM     | 0.479 | A   | 0.518                       | A   | 0.039               | NO                     |
| Normandie Av. & M.L.King Jr. Bl.       | PM     | 0.631 | В   | 0.627                       | В   | -0.004              | NO                     |
| Normandie Av. & Exposition Bl.         | PM     | 0.579 | A   | 0.649                       | В   | 0.07                | NO                     |
| Vermont Av. & Jefferson Bl.            | PM     | 0.739 | С   | 0.844                       | D   | 0.105               | YES                    |
| Normandie Av. & Jefferson Bl.          | PM     | 0.726 | С   | 0.895                       | D   | 0.169               | YES                    |
| Vermont Av. & Adams Bl.                | PM     | 0.818 | D   | 1.014                       | F   | 0.196               | YES                    |
| Normandie Av. & Adams Bl.              | PM     | 0.763 | С   | 0.896                       | D   | 0.133               | YES                    |
| Vermont Av. & I-10 EB Ramps            | PM     | 0.762 | С   | 0.705                       | С   | -0.057              | NO                     |
| Normandie Av. & I-10 EB Ramps          | PM     | 0.711 | С   | 0.671                       | В   | -0.04               | NO                     |
| Vermont Av. & I-10 WB Ramps            | PM     | 0.651 | В   | 0.894                       | D   | 0.243               | YES                    |
| Normandie Av. & I-10 WB Ramps          | PM     | 0.738 | С   | 0.583                       | A   | -0.155              | NO                     |

Source: Kaku Associates, Traffic Study for the Los Angeles Memorial Coliseum Renovation Project, August, 2003.

Table V.I.1-7
Weekday Intersection Level of Service Analysis, Pre-Event Hour
Cumulative Base and Cumulative Plus Project Conditions

|                                                | Time        | Cumulative<br>Base |          | Cumulative<br>Base Plus<br>Project |           | Project<br>Increase | Significant<br>Project |
|------------------------------------------------|-------------|--------------------|----------|------------------------------------|-----------|---------------------|------------------------|
| Intersection                                   | Period      | V/C                | LOS      | V/C                                | LOS       | in V/C              | Impact                 |
| Figueroa St. & Adams Bl.                       | PM          | 0.991              | Е        | 1.873                              | F         | 0.882               | YES                    |
| Figueroa St. & Jefferson Bl.                   | PM          | 0.736              | С        | 1.268                              | F         | 0.532               | YES                    |
| Flower St. & Exposition Bl.                    | PM          | 0.520              | A        | 1.002                              | F         | 0.482               | YES                    |
| Figueroa St. & Exposition Bl.                  | PM          | 1.031              | F        | 1.432                              | F         | 0.401               | YES                    |
| Flower St. & 37 <sup>th</sup> St.              | PM          | 0.435              | A        | 0.566                              | A         | 0.131               | NO                     |
| Figueroa St. & State Dr.                       | PM          | 0.337              | A        | 0.406                              | Α         | 0.069               | NO                     |
| Figueroa St. & 38 <sup>th</sup> St.            | PM          | 0.771              | С        | 0.964                              | Е         | 0.193               | YES                    |
| I-110 HOV Ramps & 39th St.                     | PM          | 0.282              | A        | 0.739                              | С         | 0.457               | YES                    |
| Figueroa St. & 39th St.                        | PM          | 0.651              | В        | 1.321                              | F         | 0.670               | YES                    |
| I-110 NB Ramps/Hill & M.L.King Jr. Bl.         | PM          | 0.806              | D        | 1.175                              | F         | 0.369               | YES                    |
| I-110 SB Ramps & M.L.King Jr. Bl.              | PM          | 0.484              | Α        | 0.613                              | В         | 0.129               | NO                     |
| Figueroa St. & M.L.King Jr. Bl.                | PM          | 1.147              | F        | 1.525                              | F         | 0.378               | YES                    |
| Hoover St. & M.L.King Jr. Bl.                  | PM          | 0.599              | A        | 0.984                              | E         | 0.385               | YES                    |
| Vermont Av. & M.L.King Jr. Bl.                 | PM          | 0.969              | Е        | 1.827                              | F         | 0.858               | YES                    |
| Vermont Av. & 39 <sup>th</sup> St.             | PM          | 0.703              | С        | 1.242                              | F         | 0.539               | YES                    |
| Vermont Av. & Exposition Bl.                   | PM          | 0.877              | D        | 1.431                              | F         | 0.554               | YES                    |
| Normandie Av. & M.L.King Jr. Bl.               | PM          | 0.823              | D        | 1.086                              | F         | 0.263               | YES                    |
| Normandie Av. & Exposition Bl.                 | PM          | 0.797              | С        | 1.066                              | F         | 0.269               | YES                    |
| Vermont Av. & Jefferson Bl.                    | PM          | 0.924              | Е        | 2.078                              | F         | 1.154               | YES                    |
| Normandie Av. & Jefferson Bl.                  | PM          | 0.794              | С        | 1.277                              | F         | 0.483               | YES                    |
| Vermont Av. & Adams Bl.                        | PM          | 0.969              | Е        | 1.629                              | F         | 0.660               | YES                    |
| Normandie Av. & Adams Bl.                      | PM          | 0.999              | Е        | 1.643                              | F         | 0.644               | YES                    |
| Vermont Av. & I-10 EB Ramps                    | PM          | 0.873              | D        | 1.559                              | F         | 0.686               | YES                    |
| Normandie Av. & I-10 EB Ramps                  | PM          | 0.888              | D        | 1.755                              | F         | 0.867               | YES                    |
| Vermont Av. & I-10 WB Ramps                    | PM          | 0.816              | D        | 0.912                              | Е         | 0.096               | YES                    |
| Normandie Av. & I-10 WB Ramps                  | PM          | 0.780              | С        | 0.876                              | D         | 0.096               | YES                    |
| Source: Kaku Associates, Traffic Study for the | Los Angeles | Memoria            | Coliseun | ı Renovati                         | on Projec | t, August 2003      | •                      |

Los Angeles Memorial Coliseum Renovation Project
Draft Environmental Impact Report

As indicated in Table V.I.1-7, traffic generated by the Proposed Project would result in a worsening of the LOS at 22 of the 26 intersections. The results show that 21 of the intersections are now projected to operate at LOS E or F. Application of the significance criteria previously described in this chapter indicates that the Proposed Project would create significant traffic impacts at the following 23 study intersections:

- Figueroa Street and Adams Boulevard
- Figueroa Street and Jefferson Boulevard
- Flower Street and Exposition Boulevard
- Figueroa Street and Exposition Boulevard & 37th Street
- Figueroa Street and 38th Place/Flower Street
- I-110 HOV Ramps and 39<sup>th</sup> Street
- Figueroa Street and 39th Street/Coliseum Drive
- 1-110 Northbound Ramps/Hill Street and Martin Luther King Jr. Boulevard
- Figueroa Street and Martin Luther King Jr. Boulevard
- Hoover Street and Martin Luther King Jr. Boulevard
- Vermont Avenue and Martin Luther King Jr. Boulevard
- Vermont Avenue and 39<sup>th</sup> Street
- Vermont Avenue and Exposition Boulevard
- Normandie Avenue and Martin Luther King Jr. Boulevard
- Normandie Avenue and Exposition Boulevard
- Vermont Avenue and Jefferson Boulevard
- Normandie Avenue and Jefferson Boulevard
- Vermont Avenue and Adams Boulevard
- Normandie Avenue and Adams Boulevard
- Vermont Avenue and I-10 eastbound ramps
- Normandie Avenue and I-10 eastbound ramps
- Vermont Avenue and I-10 westbound ramps
- Normandie Avenue and I-10 westbound ramps

The approach to the assignment of vehicle trips to the Coliseum revolved around a mode split of five percent transit and an AVO of 2.70, which are conservative estimates. If the AVO or transit trips were to increase, then potential impacts would substantially decrease. As this type of event is scheduled to occur occasionally during the weekday evening peak hour, it was decided to take a slightly different

approach to project traffic mitigation. Costly physical mitigation measures would not be justified outside of the game day scenarios, as the intersections currently operate at satisfactory levels.

The different approach to project traffic mitigation, discussed in detail under the mitigation measures section of this chapter, involves an incident traffic management plan. This was considered a more prudent, flexible approach to solving the traffic problems in lieu of physical mitigation.

# **Congestion Management Program Impact Analysis**

# Weekday PM CMP Freeway Analysis

Based on the threshold criteria of the CMP, it was determined that two CMP monitoring locations needed to be included. In accordance with the CMP TIA requirements, the freeway monitoring station I-10 freeway at Budlong Avenue and the I-110 freeway monitoring station at Slauson Avenue meet the CMP TIA requirements for analysis. There are no arterial monitoring stations in close proximity to the Project Site.

Table V.I.1-8 presents the CMP analysis for the analyzed CMP freeway monitoring station. As shown in Table V.I.1-8 the Proposed Project would significantly impact both of the CMP monitoring stations on the I-10 and the I-110.

#### **CUMULATIVE IMPACTS**

The analysis of traffic impacts considers the effects of both background growth in the region as well as the project growth with respect to related projects in the area. Consequently, impacts of cumulative growth are already incorporated into the traffic model. In the absence of the Proposed Project, conditions at study intersections would decline in the level of service, with a result of LOS E or worse at three of the 26 intersections during the p.m. peak hour (Figueroa Street & Exposition Boulevard, Vermont Avenue & Adams Boulevard, and Normandie Avenue & Adams Boulevard). Therefore, cumulative impacts to traffic around the project area are expected to be significant at three of the 26 intersections analyzed. Mitigation measures for future projects which contribute to cumulative traffic growth at the study intersections shall be implemented by all related projects in coordination with LADOT.

The Exposition Line rail line is a rail transit service that is under the jurisdiction of the Los Angeles County Metropolitan Transportation Authority (LACMTA). The first section of light rail to Venice Boulevard/Robertson Boulevard has been approved for development. While full funding had not been assured, the earliest that the Exposition Line could be in operation is 2010. The planned route uses Flower Street in downtown Los Angeles, where it will share the track with the Metro Blue Line and connect with the full Los Angeles metro rail network. The Exposition Line will run by the Staples Center, the Convention Center, and Los Angeles Trade Tech College. It will proceed to

Table V.I.1-8

CMP Freeway Level of Service Analysis—Weekday PM Pre-Event Hour

| I-10 at Bud | long Avenue                                                                  | I-110 at Slauson Avenu                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|-------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| EB          | WB                                                                           | NB                                                                                                                                                          | SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|             | 3 200 300 300 300 300 300 300 300 300 30                                     |                                                                                                                                                             | 2000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 18,615      | 17,340                                                                       | 8,242                                                                                                                                                       | 11,914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 12,500      | 12,500                                                                       | 8,000                                                                                                                                                       | 8,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 1.49        | 1.39                                                                         | 1.03                                                                                                                                                        | 1.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| F(3)        | F(2)                                                                         | F(0)                                                                                                                                                        | F(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|             |                                                                              |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 19,546      | 18,207                                                                       | 8,654                                                                                                                                                       | 12,509                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 12,500      | 12,500                                                                       | 8,000                                                                                                                                                       | 8,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 1.56        | 1.46                                                                         | 1.08                                                                                                                                                        | 1.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| F(3)        | F(3)                                                                         | F(0)                                                                                                                                                        | F(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|             |                                                                              |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 21,193      | 18,207                                                                       | 9,615                                                                                                                                                       | 12,509                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 12,500      | 12,500                                                                       | 8,000                                                                                                                                                       | 8,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 1.70        | 1.46                                                                         | 1.20                                                                                                                                                        | 1.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| F(3)        | F(3)                                                                         | F(0)                                                                                                                                                        | F(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 0.13        | 0.00                                                                         | 0.12                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| YES         | NO                                                                           | YES                                                                                                                                                         | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|             | 18,615 12,500 1.49 F(3) 19,546 12,500 1.56 F(3) 21,193 12,500 1.70 F(3) 0.13 | 18,615 17,340 12,500 12,500 1.49 1.39 F(3) F(2)  19,546 18,207 12,500 12,500 1.56 1.46 F(3) F(3)  21,193 18,207 12,500 12,500 1.70 1.46 F(3) F(3) 0.13 0.00 | EB         WB         NB           18,615         17,340         8,242           12,500         12,500         8,000           1.49         1.39         1.03           F(3)         F(2)         F(0)           19,546         18,207         8,654           12,500         12,500         8,000           1.56         1.46         1.08           F(3)         F(3)         F(0)           21,193         18,207         9,615           12,500         12,500         8,000           1.70         1.46         1.20           F(3)         F(3)         F(0)           0.13         0.00         0.12 |  |

Notes:

Freeway mainline Levels of Service are based on the Demand to Capacity scale below:

LOS "A" = D/C Ratio of 0.000 - 0.350

LOS "B" = D/C Ratio of 0.351 - 0.540

LOS "C" = D/C Ratio of 0.541 - 0.770

LOS "D" = D/C Ratio of 0.771 - 0.930

LOS "E" = D/C Ratio of 0.931 - 1.000

LOS "F(0)" = D/C Ratio of 1.001 - 1.250

LOS "F(1)" = D/C Ratio of 1.251 - 1.350

LOS "F(2)" = D/C Ratio of 1.351 - 1.450

LOS "F(3)" = D/C Ratio > 1.450

Source: Kaku Associates, Traffic Study for the Los Angeles Memorial Coliseum Renovation Project, August 2003.

Exposition Park (Coliseum) and USC. The rail line may increase the transit mode share, thus somewhat relieving traffic congestion and parking demands in the area.

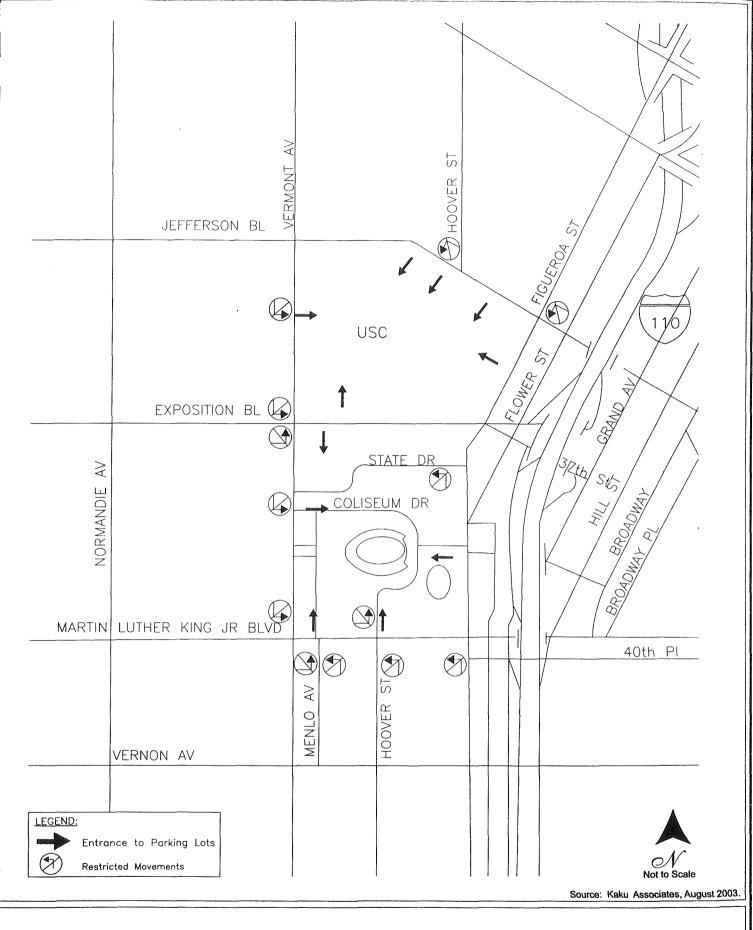
#### **MITIGATION MEASURES**

In order to mitigate the traffic and access impacts created by the Proposed Project, the Project Applicant will collaborate with LADOT, LAPD, California Department of Transportation, and

California Highway Patrol on implementation of a traffic management plan. The following are mitigation measures that shall be implemented in order to reduce potentially significant impacts to less than significant levels:

- 1. To facilitate movement of vehicles, the LAPD and LADOT staff shall have the authority to implement turn restrictions, parking prohibitions, lane closures, barriers/cones, and flexible signage. There shall be a temporary command post available on the site to control and monitor traffic conditions. The area shall be split up into zones, with an engineer assigned to each zone. These engineers would have the authority to react to situations and change restrictions if necessary.
- 2. Electronic ticketing shall replace parking guards at problem area lots and traffic signs on adjacent Coliseum streets to minimize parking lot back-up. In addition, season and regular ticket holders could be issued speed passes and assigned parking at specific lots.
- 3. Real time radio alerts and broadcasts via Highway Advisory Radio (HAR) shall be located where LADOT deems appropriate.
- 4. In conjunction with the aforementioned measures, Changeable Message Signs (CMS) shall be used to direct vehicles from the freeways and surface streets to the Coliseum/USC parking lots. At least eight or more signs would be needed for results to be noticeable and coordinated.
- 5. Project implementation shall include the development of a carpool incentive system to reduce the number of overall vehicle trips.
- 6. Alternate parking sites located away from the Coliseum shall be made available, as well as transportation to and from these parking areas and the Coliseum.
- 7. Existing turn prohibitions, as illustrated in Figure V.I.1-13, shall remain in place on game days.

#### LEVEL OF IMPACT AFTER MITIGATION


#### Intersections

For weekend Coliseum events, LADOT already applies traffic management measures to cope with the demand associated with the weekend USC games as reflected in the weekend results. As such the analysis demonstrates the level of significance with the implementation of all feasible mitigation measures.

Similarly, the Project weekday traffic analysis was modeled assuming the implementation of mitigation management techniques (i.e., turn restrictions and parking prohibitions and lane closures) for weekend events.

#### **CMP**

As mentioned in the previous chapter, the NFL football games at the Coliseum are projected to happen occasionally during the weekday p.m. peak hour. It would again be more appropriate to utilize an incident management plan that incorporates the I-10 and the I-110. The proposed management plans identified above cover the aspect of freeways in relation to the arterial streets. The plan advises the use of better education on freeway directions to and from games and it also addresses the possibility of game day signing. This can be achieved using CMS signs on freeways to alert drivers to incident spots or areas with less congestion. In summation, the freeway, along with the arterial streets, will be addressed in an integrated approach. The aim is to facilitate the movement of game day traffic and to relieve as much pressure as is feasible on the street network approaching the Coliseum. Nevertheless, CMP impacts would remain significant and unavoidable.



# V. ENVIRONMENTAL IMPACT ANALYSIS I. TRAFFIC, ACCESS AND PARKING 2. PARKING

#### **ENVIRONMENTAL SETTING**

There are 27 parking lots in the vicinity of the Project Site. Ten lots are within Exposition Park and provide parking for the museums and recreational areas as well as for the events at the Coliseum and the Sports Arena. A County of Los Angeles parking lot is located on the west side of Vermont Avenue, and two private parking areas are located on the south side of 40<sup>th</sup> Place. Four private parking lots, including one USC lot, are located on the east side of Figueroa Street, directly adjacent to Exposition Park, between Martin Luther King, Jr. Boulevard and Figueroa Street. The parking lot for the Department of Motor Vehicles is located east of the I-110 off of Exposition Boulevard, and the USC Parking Center is located north of the DMV's site on Jefferson Boulevard. Eight more parking areas are located to the north of Exposition Park, six of which are on the USC campus. The other two are located near the intersection of Jefferson Boulevard and Figueroa Street; one lot is located at the Shrine Auditorium, the other is private and is adjacent to the Shrine. Figure V.I.2-1 depicts the supply of off-street parking available for spectators at events in the Coliseum. The total number of existing parking spaces in the Coliseum, Exposition Park, and University Park (USC campus) is 19,820. On average, new NFL stadiums are requested to have approximately 18,000 parking spaces. However, many of these stadiums are located in areas where space is limited, and the average number of on-site parking spaces at these stadiums is only 7,200.3

#### ENVIRONMENTAL IMPACTS

#### Thresholds of Significance

The project would be considered to have a significant impact with regard to parking if the parking requirements of the Zoning Code are not met or if the anticipated parking demand, as provided through an appropriate analysis for the project, is not met by the supply of available on-site parking spaces. For purposes of this analysis, the provisions for providing parking for off site uses in accordance with pre-existing covenants and agreements shall be considered.

<sup>&</sup>lt;sup>3</sup> Supplemental Report, <u>Sports Marketing Issues Impacting Potential NFL Stadium Site Selection</u>, prepared for the City of Los Angeles Community Redevelopment Agency, prepared by The Sports Business Group, January 2003.

# **Project Impacts**

The Proposed Project does not include any major changes to existing parking facilities at the Coliseum, Exposition Park, USC, or the surrounding area. In the same way that the Proposed Project and its reduced seating capacity will reduce traffic congestion for sold-out events, the Proposed Project will also reduce parking demands. The basis for this statement is that the capacity for Coliseum football games is currently at 92,500 persons. The proposed maximum capacity for future events under the Proposed Project would be 78,000 persons, a reduction of approximately 14,500 persons.

Compared with USC football games and other events currently held at the Coliseum, the impact of the reduced seating capacity at the Coliseum would reduce demands for off-site parking, on-street parking in residential areas or in private lots. The reduction in parking demands would also reduce the amount of traffic congestion generated by people searching for parking when the preferred parking lots within Exposition Park are full. In addition to the existing parking availability around the Coliseum, a subterranean parking structure is currently under construction adjacent to the California Science Center (see location 4 on Figure V.I.2-1). This structure is anticipated to be completed by 2004 and will have a final capacity of 2,210 vehicles. On game days, 50 of the aforementioned 2,210 spaces will be reserved for Museum Foundation members. The addition of 2,160 parking spaces will further serve to ameliorate existing parking deficiencies for events with capacities at or near full capacity. Aside from this new structure, it is not anticipated that there would be any change in the operation policy of museum parking. Therefore, the Proposed Project would not cause an impact on museum parking different from the current situation. Table V.I.2-1 illustrates the net beneficial impact that Coliseum events will experience under the Proposed Project. The supply of existing parking at Exposition Park and USC would come closer to satisfying all parking demands for an NFL game than either a USC game or a concert, assuming all is made available for use by attendees.

The full complement of non-Coliseum controlled lots may not be available for weekday parking by game time, as these lots may not be completely empty on game days due to USC, museum, and surrounding land use utilization. However, it is anticipated that weekday events would generate a larger percentage of people who would carpool or use transit services from the nearby downtown area.

This analysis does not mean to indicate that, just as at present, spectators will not still choose to park in residential neighborhoods or in the small private lots around the Coliseum. Those people who, for economic reasons or convenient access/egress reasons, prefer to park in locations where parking is less expensive will continue to do so. Therefore, there will always be some parking intrusion into residential neighborhoods on the immediate periphery of Exposition Park unless regulations are imposed against on-street parking. It is very difficult to monitor all the non-USC/Coliseum parking, as people open up their yards and lawns and allow vehicles to park in them. Retail establishments may also choose to close their parking lots and allow only Coliseum bound vehicles to park there. Figure V.I.2-2 shows the potential areas where yard and lot parking exists in relation to the project site.

£.4.

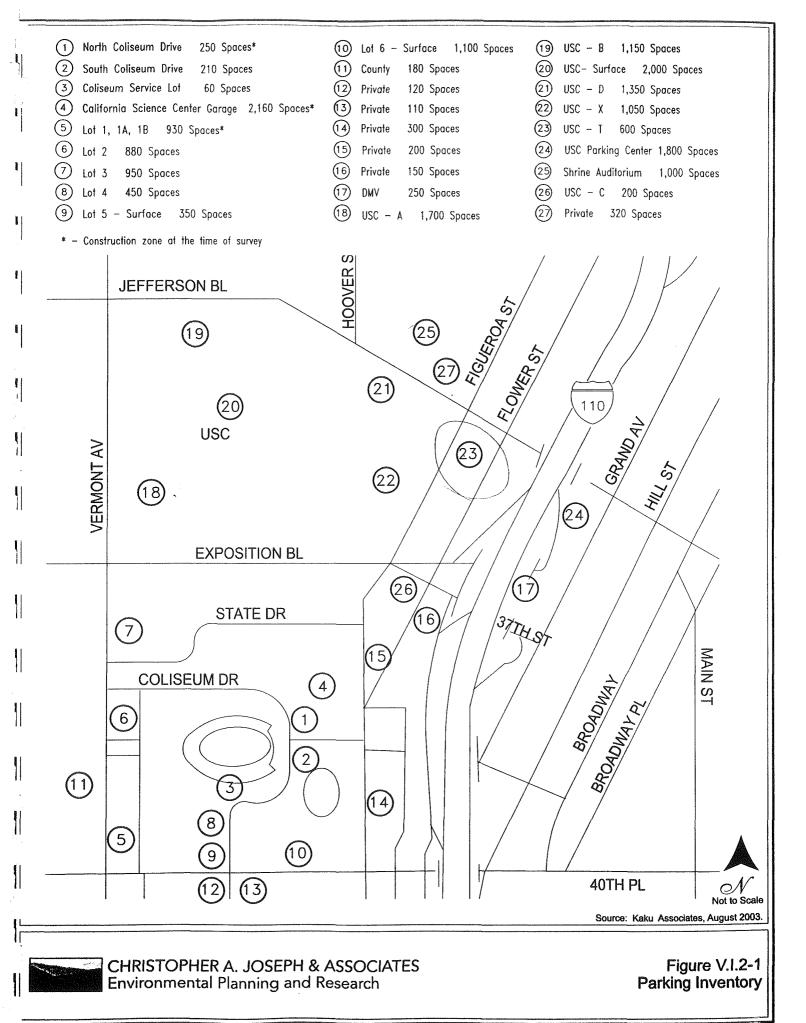


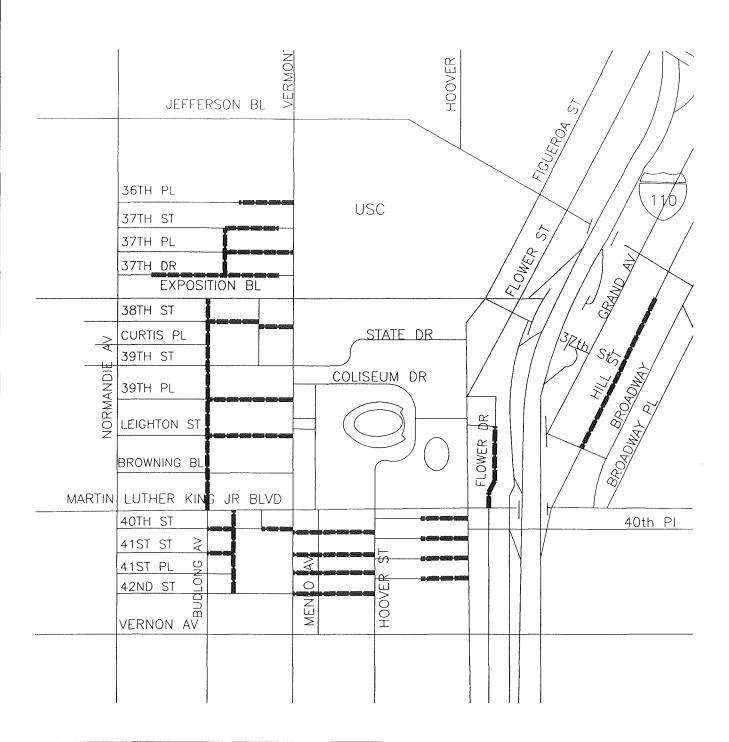

Table V.I.2-1
Parking Demand Summary

| Event               | Maximum<br>Attendance | Maximum Parking Demand (spaces) | Parking Supply<br>at Exposition<br>Park & USC <sup>a</sup> | Maximum<br>Overflow from<br>Exposition<br>Park & USC | Percentage of Demand Satisfied by Inventory |
|---------------------|-----------------------|---------------------------------|------------------------------------------------------------|------------------------------------------------------|---------------------------------------------|
| Existing Conditions | 92,500                | 27,407                          | 19,820ª                                                    | 7,587                                                | 72%                                         |
| Proposed Project    | 78,000                | 25,200                          | 21,980                                                     | 3,220                                                | 87%                                         |
| Net Change          | -14,500               | -2,207                          | +2,160                                                     | 4,367                                                | +15%                                        |

<sup>&</sup>lt;sup>a</sup> Parking supply based on the inventory depicted in Figure V.I.2-1.

Source: Christopher A. Joseph & Associates, 2003, and Kaku Associates, August 2003.

In addition to the parking supplied by the Coliseum, USC, and other Exposition Park facilities, many Coliseum-bound spectators may choose to utilize parking away from the stadium to avoid the traffic congestion. There are large reservoirs of parking available in downtown Los Angeles such as the multi-story garage at Venice Boulevard and Grand Avenue. On days when there is no game/event scheduled at the Staples Center or the Los Angeles Convention Center, there is a possibility that the vacant parking lots belonging to those two land uses could also be utilized to cope with the demand for football games at the Coliseum. Shuttle buses that have specific pick-up and drop-off locations could provide access to the stadium.


As the Proposed Project would reduce maximum capacity at the project site from existing conditions, impacts to parking are expected to be less than significant.

#### **CUMULATIVE IMPACTS**

The existing parking infrastructure meets the City's code for required parking for the project. In addition, the parking demand created by the proposed project can be adequately met by the parking supply provided on and around the Project Site. Therefore, the project would not contribute to a cumulative shortage of parking in the area. The cumulative impact of the Proposed Project, in conjunction with the related projects, namely related project Number 32 (See Section IV.C, Cumulative Projects), would result in a net beneficial impact with respect to parking availability in the project vicinity. As such, cumulative impacts would be less than significant.

#### **MITIGATION MEASURES**

No significant parking deficiency impacts are anticipated; therefore, no mitigation measures are required.



LEGEND:

YARD AND OFF-STREET PARKING



Source: Kaku Associates, August 2003.



CHRISTOPHER A. JOSEPH & ASSOCIATES Environmental Planning and Research

Figure V.I.2-2 Location for Yard and Off-Street Parking

# VI. GENERAL IMPACT CATEGORIES A. SUMMARY OF SIGNIFICANT UNAVOIDABLE IMPACTS

# AIR QUALITY

Short-term air quality impacts would result during the Proposed Project's 18-20 months of construction. As shown in Table VI-1, implementation of the prescribed mitigation measures would reduce the construction-related air pollutants for PM<sub>10</sub> emissions to below the level of significance. However, even with the inclusion of mitigation measures described above, the daily emission of pollutants from construction equipment would exceed threshold criteria established by the SCAQMD for ROG, CO, SO<sub>x</sub> and NO<sub>x</sub> emissions.

Implementation and compliance with the mitigation measures described above would reduce air quality emissions. For maximum-attendance Coliseum events, the amount of reduction achieved by the mitigation measures would not be sufficient to reduce impacts to acceptable levels.

Table VI-1

Daily Construction Emissions Without and With Mitigation<sup>a</sup>

| Source                                            | ROG   | NO <sub>x</sub> | СО     | SO <sub>2</sub> | PM16   |
|---------------------------------------------------|-------|-----------------|--------|-----------------|--------|
| Total Construction Emissions (Without Mitigation) | 56.71 | 638.31          | 348.54 | 5.88            | 214.21 |
| Total Construction Emissions (With Mitigation)    | 56.71 | 638.31          | 348.54 | 5.88            | 10.95  |
| SCAQMD Thresholds                                 | 550   | 75              | 100    | 150             | 150    |
| Significant Impact? (Yes/No)                      | NO    | YES             | YES    | NO              | NO     |

Based on a 22-month construction schedule with a total site disturbance of 19.5 acres.

Source: Christopher A. Joseph & Associates, 2003.

#### **CULTURAL AND HISTORIC RESOURCES**

The Proposed Project meets all of the Standards except for the removal of the seating at some locations. The removal of some of the existing seating, considered to be part of the historic fabric of the Coliseum, is a significant impact on the environment and cannot be feasibly mitigated. Much of the seating, as well as the form of the bowl, will remain and be clearly visible around the entire Coliseum

for the interior. The exterior of the Coliseum will be returned to its former appearance and the Peristyle will be restored enhanced with the removal of the large electronic scoreboards.

It should also be noted that the Coliseum is listed as a National Historic Landmark because of the events that have occurred there and that the stadium itself has been a backdrop to these events. Its historic use is largely why it has been designated a National and State landmark, and this rehabilitation will guarantee that historic use can continue into the future by making the Coliseum an economically viable facility for sporting events.

#### TRAFFIC AND ACCESS

In consultation with the City of Los Angeles Department of Transportation, the Project Traffic Study evaluated 26 intersections in the vicinity of the Coliseum. The study evaluated the Proposed Project's traffic impacts using the City's established significance criteria and applied to three separate scenarios (1) Weekend Pre-Event Peak Hour, (2) Weekend Post-vent Peak Hour, and (3) weeknight Pre-Event Week Hour. The weekend traffic scenarios were based on actual traffic counts taken at a weekend Coliseum event with an attendance of approximately 87,944 persons. The Proposed Project will reduce the maximum seating capacity of the Coliseum to approximately 78,000 persons, thus the impacts projected in this analysis represent a worst-case scenario. The results of the Traffic Impact Study are summarized as follows concluded that during the Weekend Pre-Event Peak Hour, eight of the 26 study intersections would be significantly impacted. These intersections include:

- Figueroa Street and Adams Boulevard
- I-110 NB Ramps/Hill Street and Martin Luther King Jr. Boulevard
- Vermont Avenue and Jefferson Boulevard
- Normandie Avenue and Jefferson Boulevard
- Vermont Avenue and Adams Boulevard
- Normandie Avenue and Adams Boulevard
- Normandie Avenue and 1-10 EB ramps
- Vermont Avenue and I-10 WB ramps

During the Weekend Post-Event Peak Hour, 6 of the 26 intersections would suffer significant impacts. These intersections include:

- I-110 NB Ramps/Hill Street and Martin Luther King Jr. Boulevard
- Vermont Avenue and Jefferson Boulevard
- Normandie Avenue and Jefferson Boulevard
- Vermont Avenue and Adams Boulevard
- Normandie Avenue and Adams Boulevard

# Vermont Avenue and I-10 WB ramps

The weeknight Coliseum event scenario was evaluated to consider the occurrence of a Monday or Thursday nigh NFL game. It should be prefaced, however, that the occurrence of a weeknight NFL game would occur at most only once in any given season. A weekday game would not likely occur each and every season. The Traffic Impact Study concluded that the weeknight event scenario would result in significant traffic impacts at 23 of the 26 study intersections, including:

- Figueroa Street and Adams Boulevard
- Figueroa Street and Jefferson Boulevard
- Flower Street and Exposition Boulevard
- Figueroa Street and Exposition Boulevard & 37th Street
- Figueroa Street and 38th Place/Flower Street
- I-110 HOV Ramps and 39th Street
- Figueroa Street and 39th Street/Coliseum Drive
- 1-110 Northbound Ramps/Hill Street and Martin Luther King Junior Boulevard
- Figueroa Street and Martin Luther King Junior Boulevard
- Hoover Street and Martin Luther King Junior Boulevard
- Vermont Avenue and Martin Luther King Junior Boulevard
- Vermont Avenue and 39th Street
- Vermont Avenue and Exposition Boulevard
- Normandie Avenue and Martin Luther King Junior Boulevard
- Normandie Avenue and Exposition Boulevard
- Vermont Avenue and Jefferson Boulevard
- Normandie Avenue and Jefferson Boulevard
- Vermont Avenue and Adams Boulevard
- Normandie Avenue and Adams Boulevard
- Vermont Avenue and I-10 eastbound ramps
- Normandie Avenue and I-10 eastbound ramps
- Vermont Avenue and I-10 westbound ramps
- Normandie Avenue and I-10 westbound ramps

In addition to the 26 study intersections discussed above, the Project Traffic Study evaluated the Project's impact with respect to the regional Congestion Management Plan (CMP). Based on the threshold criteria of the CMP, it was determined that the Proposed Project would impact both of the CMP monitoring stations: the I-10 freeway monitoring station at Budlong Avenue and the I-110 freeway monitoring station at Slauson Avenue. This impact would be significant and unavoidable.

#### Mitigation Measures

In order to mitigate the traffic and access impacts created by the Proposed Project, it was determined that the relative frequency of the project's impact does not justify physical roadway improvements. The Proposed Project would increase the Coliseum's existing event profile by adding up to 12 professional football games per year. The Proposed Project impacts the surrounding traffic and circulation patterns for approximately 2 hours per day on days when major events are scheduled: one hour before the event and one hour after the event. Currently the Coliseum hosts an average of 34 events per year. With the Proposed Project, the average number of events would likely reach 46 events per year. Nearly all events would occur during the weekends, with relatively few, if any impacting the weekday evening commute period. In consultation with the LADOT, it was therefore recommended that the Project Applicant collaborate with LADOT, LAPD, California Department of Transportation, and California Highway Patrol in implementing a comprehensive traffic management plan. Notwithstanding the implementation of an effective traffic management plan, project traffic impacts are anticipated to be significant and unavoidable during the hours preceding and following each major event.

1

# VI. GENERAL IMPACT CATEGORIES B. GROWTH-INDUCING IMPACTS

Section 15126.2(d) of the State CEQA Guidelines requires a discussion of the ways in which a proposed project would be growth-inducing. This discussion would include ways in which the project would foster economic or population growth, or the construction of additional housing, either directly or indirectly, in the surrounding environment. Section 15126.2(d) requires an EIR to:

"Discuss the ways in which the proposed project could foster economic or population growth or the construction of additional housing, either directly or indirectly, in the surrounding environment. Included in this are projects that would remove obstacles to population growth (a major expansion of a wastewater treatment plant might, for example, allow for more construction in service areas). Increases in the population may further tax existing community service facilities so consideration must be given to this impact. Also discuss the characteristic of some projects which may encourage and facilitate other activities that could significantly affect the environment, either individually or cumulatively. It must not be assumed growth in any area is beneficial, detrimental, or of little significance to the environment."

The Proposed Project is intended to bring professional football back to Los Angeles and make the 1920s-era Coliseum a premier venue for an NFL franchise. Such activity would foster long-term economic growth by adding new employees and customers to the Project Site, who could, in turn, also patronize local businesses and services in the area. Both short-term and long-term employment opportunities would be provided by the construction and operation of the Proposed Project. However, the Proposed Project does not include housing and therefore would not include (direct) permanent population growth. No significant unavoidable population or housing impacts would be created by the Proposed Project. In addition, as discussed below, the Proposed Project would not induce growth in an area that is not already developed with infrastructure to accommodate such growth.

The Proposed Project would redevelop a project site within a densely developed urban environment. Thus, if (indirect) growth were to occur, the Proposed Project would not induce growth in an area that is not already developed with infrastructure to accommodate such growth. Development of the Proposed Project would not require the construction of new infrastructure that would promote growth in an inappropriate location. Any infrastructure improvements would be localized in nature and would be implemented on an as-needed basis to upgrade outdated infrastructure and improve energy efficiency. It is anticipated that existing water mains, fire mains, and sewer utility lines could adequately service the Proposed Project. Thus, the Proposed Project would not induce substantial growth with respect to utility infrastructure.

# VI. GENERAL IMPACT CATEGORIES C. EFFECTS FOUND NOT TO BE SIGNIFICANT

As a part of the EIR scoping process, it was determined that development and operation of the Proposed Project would not result in potentially significant impacts to the environmental impact topics listed below. Section 15128 of the CEQA Guidelines states:

"An EIR shall contain a statement briefly indicating the reasons that various possible significant effects of a project were determined not to be significant and were therefore not discussed in detail in the EIR."

It has been determined that there is no evidence that the Proposed Project would cause significant environmental effects in the following areas and that no further environmental review of these issues is necessary for the reasons described below.

#### 1. Agricultural Resources

The Project Site is leased from the Sixth District Agricultural Association of the State of California and is currently developed with the Los Angeles Memorial Coliseum. There have been no agricultural uses on the Project Site since before 1921, when construction of the Coliseum began, and the Project Site has been developed as a stadium since 1923, and has hosted events since then. The Proposed Project would not involve any changes to the use of the Project Site, and the Coliseum would continue hosting the same type of events as it currently does. As no agricultural uses are located on the Project Site nor have been since prior to 1921, the Proposed Project would not be converting an agricultural use to a non-agricultural use, and would not impact potential future agricultural uses on the site. Therefore, the Proposed Project would not result in any potentially significant impacts to agricultural resources and no further analysis of this issue is warranted.

#### 2. Biological Resources

The Project Site is a developed parcel, with urban development surrounding it in a highly urbanized area and does not contain any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game (Fish and Game), or the U. S. Fish and Wildlife Service. In addition, there are no known locally designated natural communities on the site or in the project vicinity.

The Proposed Project would not result in the direct removal, filling or hydrological interruption of a federally protected wetland as defined by Section 404 of the Clean Water Act. Due to the highly urbanized surroundings, there are no wildlife corridors or native wildlife nursery sites in the project

vicinity. The Proposed Project would not interfere with the movement of any resident or migratory fish or wildlife species. Because there are no known locally designated natural communities on the Project Site or in the project vicinity, the Proposed Project would not conflict with the provisions of an adopted Habitat Conservation Plan, Natural Conservation Community Plan, or other approved local, regional, or state habitat conservation plan.

Vegetation within the Project Site consists primarily of various forms of landscaping including several native trees such as eucalyptus, deodar, yucca, agave, and palm trees. These species will not be affected by the development of the Proposed Project. No State or Federally protected plant species are currently known to exist on the immediate Project Site. The Proposed Project will not adversely impact biological resources on or around the Project Site.

#### 3. Hazards and Hazardous Materials

The Project Site has been developed as a stadium since 1923. The Proposed Project would not alter existing land use on the site, and would not use, store or transport significant amounts of hazardous materials. The Coliseum was retrofitted in 1994 following the Northridge earthquake. Nearly all asbestos-containing materials (ACMs) were removed at that time; however, if ACMs or lead are present in the structures, the materials must be removed by licensed contractors using control methods prescribed in SCAQMD Rule 1403. This is a potentially significant impact that can be mitigated to a less than significant level via mandatory compliance with SCAQMD Rule 1403, which would insure safe exposure for both abatement workers as well as the general public. Additionally, minor amounts of hazardous materials may be used including motor oil, grease, paints, solvents, pesticides, herbicides, and fertilizers. However, the use and disposal of such materials would be required to be in compliance with the State Health and Safety Code, the City of Los Angeles Municipal Code, and the Uniform Fire Code (UFC). Therefore, the Proposed Project would not result in any potentially significant impacts to hazardous materials.

#### 4. Mineral Resources

A portion of Exposition Park has been designated by the Los Angeles City Planning Department as an area containing significant mineral deposits. However, the area containing such deposits is located at a southeast portion of Exposition Park, which is not occupied by the Project Site. As the Proposed Project is not located on the designated land, and would not alter existing uses, no impacts to these identified mineral resources will occur. Additionally, the Project Site is not in an area of potential petroleum resources. Therefore, the Proposed Project would not result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state. The Proposed Project would not result in the loss of availability of a locally important mineral resource

recovery site, as no recovery site exists on the Project Site. The Proposed Project would not result in any potentially significant impacts to mineral resources and no further analysis of this issue is warranted.

#### 5. Population and Housing

The Proposed Project is a renovation of the existing Coliseum and would not alter the type of use on the Project Site. There are no residential properties on the Project Site and none are planned as part of the development of the Proposed Project. As the Proposed Project is not proposing any alterations to existing housing nor proposing the addition of new housing, implementation of the Proposed Project would not result in a permanent population increase nor would it displace any existing housing in the area.

Construction of the Proposed Project would result in an increase of employment opportunities in the construction field, which could potentially result in an increased permanent population and a demand for housing in the vicinity of the Project Site. However, the employment patterns of the construction workers in Southern California are such that construction workers would not likely, to any significant degree, to relocate their households as a consequence of the construction employment associated with the Proposed Project.

Implementation of the Proposed Project may also provide employment after project completion in the form of Coliseum operation personnel. However, since the Project Site is currently developed with the same use as the Proposed Project, increases in employment will be minor; more staff members may be added, and more working days and hours may be created by the addition of an NFL team. As the Proposed Project is not introducing a new use to the area, it would not have a significant impact on employment levels in the City of Los Angeles. It is also acknowledged that the addition of an NFL team would increase the population of the region. However, players and their families would not be expected to locate solely in the project area, and therefore would be creating a regional rather than local impact to the greater Los Angeles area. Without the Proposed Project, an NFL team can be still expected to relocate to somewhere in the Southern California area, creating this population impact regardless of the implementation of the Proposed Project. The exact location of the team, therefore, would not create a specific local impact or a regional impact of significance.

The additional employment opportunities created by the Proposed Project will not significantly affect housing in the area, as the area surrounding the project is developed and urban, and it is therefore expected that many of the Proposed Project's new employees will be drawn from the local labor force in the nearby communities. No additional housing would be needed in the area to serve the Proposed Project's employees and demands for housing will not be affected by the project. Therefore, the Proposed Project would not have a potentially significant impact on population and housing levels in the City of Los Angeles. No further analysis of this issue is warranted.

## VII. ALTERNATIVES TO THE PROPOSED PROJECT A. INTRODUCTION

#### INTRODUCTION

As stated in the State CEQA Guidelines (Public Resources Code, Section 21002.1(a)):

"the purpose of an environmental impact report is to identify the significant effects on the environment of a project, to identify alternatives to the project, and to indicate the manner in which those significant effects can be mitigated or avoided (emphasis added)."

Section 15126.6 of the State CEQA Guidelines requires that EIRs include a range of reasonable alternatives to the project, or to the location of the project, which would feasibly attain most of the basic objectives of the project but would avoid or substantially lessen any of the significant effects of the project, and evaluate the comparative merits of the alternatives. The discussion of alternatives, however, need not be exhaustive, but rather it must consider a reasonable range of potentially feasible alternatives that will foster informed decision-making and public participation. An EIR is not required to consider alternatives which are infeasible.

CEQA requires that the alternatives analysis include a No Project Alternative. The purpose of analyzing a No Project Alternative is to allow decision-makers to compare the impacts of approving the Proposed Project with the likely environmental consequences of not approving the Proposed Project (State CEQA Guidelines Section 15126.6(e)(1)). The No Project Alternative should be based on the reasonably foreseeable future if the project is not approved, based on current plans and consistent with available infrastructure and community services. Additionally, in accordance with the Guidelines, the No Project analysis shall discuss existing conditions at the time the Notice of Preparation is published, as well as what would be reasonably expected to occur in the foreseeable future if the project were not approved. The discussion of the No Project Alternative is provided in Section VII.B, below.

Based on the findings of the alternatives analysis, an environmentally superior alternative must be identified from among the alternatives evaluated. If the environmentally superior alternative is the No Project Alternative, the EIR shall also identify an environmentally superior alternative among the other alternatives (Guidelines Section 15126.6(e)(2)). The analysis of the environmentally superior alternative is provided in Section VII.E, below.

#### PROPOSED PROJECT OBJECTIVES

An important consideration in the analysis of alternatives to the Proposed Project is the degree to which such alternatives would achieve the objectives of the Proposed Project. To facilitate this comparison,

the objectives of the Proposed Project contained in Section III.B, Project Objectives, are re-stated below.

The overall objectives of the Proposed Project are:

- To renovate the Coliseum in conformance with the generally accepted standards of design for National Football League (NFL) stadiums, thus enabling the Coliseum Commission to acquire and maintain an NFL franchise in the City of Los Angeles.
- To extend the useful life of the Coliseum so as to assure that the stadium will continue to provide to the public a facility capable of hosting a wide variety of athletic, cultural, political, and community events.
- To renovate the Coliseum in conformance with the generally accepted standards of design for collegiate football, thus enabling the Coliseum Commission to continue its landlord/tenant relationship with the University of Southern California football team.
- To provide spectators and users of the Coliseum with the amenities and conveniences which are
  consistent with a state-of-the-art facility, including improved restrooms, concession, and press
  facilities; improved spectator viewing; luxury suites and club seating; improved locker and
  dressing facilities; additional circulation space; and better accessibility to seating, concessions,
  and restroom facilities.
- To assure that stadium operations generate enough revenue to enable the Coliseum Commission to preserve and maintain the Coliseum in a self-sufficient manner.
- To preserve, where feasible, the historic character of the Coliseum in a manner compatible with the other objectives of the Proposed Project.
- To finance the renovation of the Coliseum without expending money from the General Fund.

#### **ALTERNATIVES CONSIDERED**

In addition to the No Project Alternative, the range of alternatives was structured to (1) analyze alternatives which would meet the project objectives of creating the highest possible level of management, operation, and maintenance of the Coliseum as a world class, "state-of-the-art" public assembly facility of the first magnitude, and (2) provide a reasonable analysis of environmental impacts associated with the NFL relocating a franchise team to a site within the greater Los Angeles region, but not at the Coliseum. For purposes of this Alternatives analysis, the Alternatives evaluated in this EIR include:

2

- 1. No Project Alternative;
- 2. Alternative Design Without Roof Structure;
- 3. Evaluation of Alternative Site(s).

Alternative 2, the Alternative Design Without Roof Structure, considers a development alternative that is within the control of the Coliseum Commission. Alternative 3, Evaluation of Alternative Site(s), considers the environmental consequences of an alternative that is outside the control of the Coliseum Commission. The Alternative sites include the potential for the NFL to relocate a franchise team to the City of Pasadena (at the Rose Bowl) or the City of Carson (at a 157-acre site of a former landfill adjacent to the Home Depot Center), both of which have been publicly announced as potential development opportunities. While these alternative sites are outside the control of the Lead Agency, they were considered because they are representative of the Project's environmental consequences that are regional in nature (i.e., traffic and air quality, consumption of natural resources). In effect, the environmental consequences associated with either of these alternative sites would be in addition to those outlined below in the evaluation of the No Project Alternative. These alternatives are evaluated in greater detail in Sections VII.C and VII-D, respectively.

#### OTHER ALTERNATIVE SITES CONSIDERED BUT REJECTED

In a collaborative effort to evaluate potential locations for a new state-of-the-art NFL stadium to be built or remodeled to support an NFL team, the City of Los Angeles Community Redevelopment Agency (CRA) prepared an analysis to evaluate the feasibility of the best possible location to facilitate the NFL's goal of relocating a team to the Southern California region. Within this study, the CRA evaluated nine locations within the Los Angeles City limits as possible development sites as having goals and objectives consistent with the development of an NFL stadium. Of those nine locations, three potential sites were selected for further detailed analysis. These sites included Adelante Eastside Site, City Center Site and the Hoover Site, otherwise known as the Los Angeles Memorial Coliseum. (See Figure VII-1. A summary of the development potential for developing the Adelante Eastside Site and the City Center Site with a football stadium is provided below.

#### Adelante EastSide Site

The Adelante Eastside Site is a 46-acre site located on the north side of Cesar E. Chavez Avenue at Mission Road, east of the Los Angeles River and north of the San Bernardino Freeway (I-10) (See Figure VII-1). The site consists of approximately 57 parcels that are

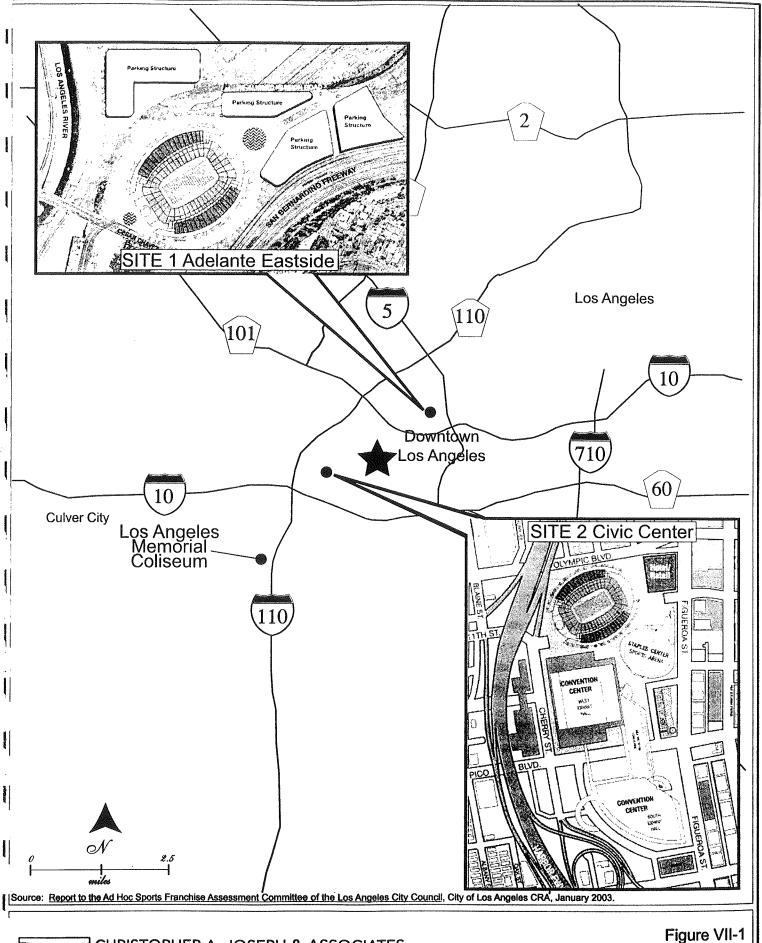
Report to the Ad Hoc Sports Franchise Assessment Committee of the Los Angeles City Council, submitted by the Community Redevelopment Agency of the City of Los Angeles, January 2003.

å

1

10

\*


currently used for a variety of industrial uses, primarily automobile wrecking and dismantling, several small office buildings, along with a portion of an adjacent railroad yard and truck-to-train transfer facility. Approximately 49 businesses operate on the site. The site is designated for industrial use in the Boyle Heights Community Plan and the Adelante Eastside Redevelopment Plan, and is zoned for industrial use.

The proposed site is accessible by existing regional transportation corridors and by both local streets and public transportation, including the Hollywood/Ventura (US-101), San Bernardino (I-10) and Golden State (I-5) Freeways. The site is also within one-half mile of Union Station, with access to the regional Metrolink commuter rail system, numerous regional bus lines and the MetroRail Red Line subway. The San Bernardino and Golden State Freeways physically separate the site from the residential communities of Boyle Heights to the south and Lincoln Heights to the northeast. The site offers the potential for numerous community benefits, including on-site employment opportunities and the ability to attract additional retail and supporting services to the area surrounding the site. From the City's perspective, the development of a stadium at this location could have substantial long-term benefits as it would encourage investment and reinvestment in upgrading nearby business and residential areas, thus contributing to an improved physical environment and an expanded tax base.

Redevelopment of the site with a stadium could also eliminate blighting conditions on the site itself and facilitate upgrading public improvements in the surrounding area and along key corridors linking the site to Downtown Los Angeles, Boyle Heights, Lincoln Heights and other nearby communities. Moreover, development of this site could contribute to facilitating revitalization of nearby portions of the Los Angeles River corridor with attractive recreational and open space uses compatible with a stadium.

There are 22 affected property owners, seven of whom own four or more parcels. There are no residential uses on the site. There are approximately 49 businesses on the site. The industrial uses may be difficult to relocate, especially those involved in automotive salvage, which may result in the need to buy them out. In addition, Mission Road would need to be relocated westward to consolidate the site. The relocation of Mission Road would, however, have the beneficial impact of substantially improving its now offset intersection with Cesar E. Chavez Avenue. In addition, the Environmental Impact Report for the Adelante Eastside Redevelopment Plan identified eleven contaminated parcels on this site. The contamination is believed to result from the industrial uses and remediation will be needed. Remediation could require nine to twelve months depending on the specific nature of the contamination.

The site can accommodate approximately 12,000 parking spaces, in structures that would be constructed around the stadium. It may be necessary to bridge one existing active railroad line.



CHRISTOPHER A. JOSEPH & ASSOCIATES Environmental Planning and Research

Figure VII-1
Alternative Sites Evaluated by the
City of Los Angeles, CRA

However, the high level of transit access may allow for the on-site parking to be reduced. In addition, there are several off-site locations where parking can be provided. Within three quarters of a mile are approximately 10,546 parking stalls, including those at USC/LA County Medical Center (3,240), White Memorial Hospital (2,446), the Metropolitan Transportation Authority Headquarters (2,407), Terminal Annex (1,703) and the Metropolitan Water District Building (750). With a comprehensive parking plan and shuttle system, these facilities could potentially provide a substantial portion of the desired parking, with a corresponding reduction in the cost of constructing on-site parking structures. In addition, existing school and university facilities in the vicinity may have the potential to provide additional off-site parking resources.

#### City Center Site

The City Center Site includes a 16.2-acre superblock bounded by the Harbor Freeway, Olympic Boulevard, Figueroa Street and Eleventh Street (See Figure VII-1).<sup>2</sup> This site consists of three parcels currently paved and used for off-street parking for the Staples Center Arena. The parcels contain approximately 3,160 parking spaces and are master-planned as part of the LA Arena Company's Los Angeles Sports and Entertainment District (LASED).

The site is accessible by major regional transportation systems, including the Harbor (CA-110), Santa Monica (I-10), Hollywood (US-101) and Golden State (I-5) Freeways; Metro Rail Blue and Red Lines; several LACMTA bus lines; and LADOT downtown DASH service. The major north-south streets serving the site include Figueroa Street, Flower Street, Hope Street and Grand Avenue. The major east-west streets are Ninth Street, Olympic Boulevard, Eleventh Street, Pico Boulevard, and Venice Boulevard.

The most prominent land uses in the area are Staples Center and the Los Angeles Convention Center, both of which are located to the south of this site. Other land uses in the vicinity include community-serving and regional commercial and hotel uses to the north and a mixture of predominantly low-density residential, commercial and light industrial uses to the east. Approximately 1,300 housing units are located within three blocks of the Project Site. The high-rise downtown core begins approximately two blocks north of the site.

Proposed uses included in the Los Angeles Sports and Entertainment District (LASED) Master Plan for the site include retail and entertainment space, a convention center headquarters hotel,

This is not the site that was identified by Anschutz Entertainment Group as a potential National Football League stadium in May 2002. That site was rejected because of its designated use as a key part of the emerging South Park residential district in the City Center Redevelopment Plan and the Central City Community Plan, the loss of potential housing sites and difficulty in achieving a "critical mass" without the ability to develop that site with mixed-use, predominantly residential development, and the disruption associated with the number of streets that would need to be closed or rerouted.

a theater, a plaza, expansion space for the Los Angeles Convention Center and parking for LASED. The site can be developed with a stadium and some amount of on-site parking, and could accommodate the proposed convention center headquarters hotel and a limited amount of retail and entertainment space. If the site is developed with a stadium, however, the remaining proposed uses for the parcels, including the proposed expansion of the Convention Center, would be displaced.

Positive attributes of the site include the established infrastructure – both physical and socioeconomic – already in place, which could readily serve a proposed stadium. Although some modifications may be needed to nearby freeway ramps, transportation and other infrastructural systems are already in place, and a substantial amount of parking exists in nearby office and other buildings. Major visitor and sports-related facilities (e.g., Convention Center, hotels, Staples Center) are located either adjacent to or within walking distance of the site. Established restaurants and other businesses are already in the neighborhood, ready to serve the spectators expected at the proposed stadium. Other areas of interest (e.g., Little Tokyo and Chinatown) that could serve the stadium are in close proximity and can be easily reached by either automobile or public transportation.

The most serious site attribute, however, is the site's designation for development of a substantial portion of the proposed Los Angeles Sports and Entertainment District (LASED). The District also includes other surface parking lots assembled by CRA/LA currently used for surface parking for the Staples Center Arena. The total LASED development, which has received its entitlements from the City, includes a long-sought Convention Center headquarters hotel (which could still be accommodated on the block), a second downtown hotel, an expansion site for the Los Angeles Convention and Exhibition Center, 800 units of housing, a 7,000-seat theater, and a substantial amount of retail and entertainment-related space, to complement the existing Convention Center and Staples Center and to provide a high-quality, pedestrian-oriented link between the Convention Center/Staples Center campus and the rest of Downtown Los Angeles.

The anticipated economic benefits of this proposed development were extensively spelled out in the approval process for the LASED entitlements, and there is general agreement that development of the LASED program will generate substantial economic and community benefits. While the use of a portion of the site for a stadium could allow the development of the Convention Center headquarters hotel and a portion of the retail-entertainment complex, the remaining components of the LASED development would not be accommodated. This would be a serious trade-off for a stadium, which, as noted elsewhere in the CRA's Report to the Ad Hoc Sports Franchise Assessment Committee, could be located effectively in either the Adelante-Eastside or Hoover Redevelopment Projects on a highly competitive basis. Thus, while the City Center Redevelopment Plan does have goals that could support the placement of

a National Football League stadium there, and while there are marketing advantages to a downtown location, a site within the City Center Redevelopment Project is seriously problematic.

#### **Environmental Considerations**

In developing a reasonable range of project alternatives, CEQA directs lead agencies to focus on alternatives that are capable of avoiding or substantially lessening any significant effects of the project. Developing a new stadium at either of these alternative sites would clearly be more intensive than renovating an existing venue such as the Coliseum. While these sites were considered in the CRA Report to the Ad Hoc Sports Franchise Assessment Committee, they were not considered as potential alternative sites within the scope of this EIR because the potential for the sites to result in increased significant environmental impacts would exceed those generated by renovating the Coliseum.

With regard to construction impacts, development of either the Civic Center or Adelante Site would necessitate building a new stadium from the ground up. This would consume a greater amount of natural resources and land than renovating the Coliseum for the same purpose. Additionally, development of a stadium at both locations would displace existing land uses and/or conflict with planned land uses. Both locations would need to be developed with the appropriate infrastructure, including parking structures, which would generate additional construction-related impacts. Air pollution and increased noise are two notable environmental impacts that would be obviously increased as compared to the Proposed Project.

From an operational standpoint, developing a new stadium at either of the alternative locations would not preclude future renovation, improvements or use of the Coliseum. More importantly, the Coliseum would continue to operate as a major venue whether or not either of these sites are developed with a new stadium. Operational-related environmental impacts would increase two-fold on a regional basis as the operation of two major sports venues would increase the number of major events in the region (e.g., traffic congestion, parking, air quality pollution, and event-related noise). In addition, these alternative sites would not be capable of meeting any of the project's stated objectives relative to improving the outdated and deteriorating Coliseum. As such, both of these alternative sites were rejected from further consideration.

## VII. ALTERNATIVES TO THE PROPOSED PROJECT B. NO PROJECT

As required by CEQA, this Section analyzes a "No Project" Alternative. Under the No Project Alternative, the proposed renovation and seating alterations within the Coliseum would not be implemented. The No Project Alternative assumes the continuation of existing conditions and would include continuation of the Coliseum's landlord/tenant relationship with the University of Southern California (USC) football team, in addition to the Coliseum's continued utilization for a wide variety of public assembly and sporting events.

While the No Project Alternative would not include a renovation of the Coliseum of the magnitude described for the Proposed Project, the No Project Alternative would include minor repair and improvements to concessions to maintain the Coliseum in good condition. Many elements of the Coliseum are in need of notable repairs, which would likely be made with or without a complete redesign of the Coliseum's structure. Such minor improvements may include but would not be limited to upgraded restrooms and concession facilities and other associated infrastructure. The No Project Alternative would not include any modification to the existing seating bowl within the interior of the Coliseum. It would also not include any structural modifications to the Coliseum's exterior façade. The current seating capacity of 92,500 seats would remain unchanged.

Demolition of the existing outbuildings would not occur. These existing facilities would continue to remain operational, with minor repairs or renovations occurring on an as-needed-basis only. This alternative would not include any additional development on the Proposed Project Site. The existing landscaped grounds and perimeter fence will remain unaltered.

Future events at the Coliseum under this Alternative would remain unchanged as compared to existing conditions. The Coliseum currently hosts, on average, 34 major events per year. Such events include USC football games, political events, international soccer matches, music concerts and other cultural events. These activities would continue to be operated at the Coliseum for the foreseeable future. This alternative does not assume that the NFL will relocate to the Coliseum, as it has been expressed that the Coliseum, as it currently stands, does not meet the NFL's needs for a modern, state-of-the-art sports facility.

The NFL has verbally stated its intent to bring a football team franchise back to the Los Angeles market. However, the location of a host stadium is still uncertain. Without the proper renovations to the Coliseum as proposed, the Coliseum would be precluded from providing a modern state-of-the-art sports venue that the NFL is seeking. Under the No Project Alternative the NFL would be compelled to find an alternative stadium to host an NFL franchise team, build a new stadium outside of the Los Angeles City limits, or construct a stadium on undeveloped land. As such, the environmental consequences of developing a new

NFL stadium at the alternative sites within the region should be considered in conjunction with the No Project Alternative.

#### **Aesthetics**

#### Visual Impacts

Visual impacts to the Coliseum and surrounding area would not change under the No Project Alternative. No improvements or physical modifications would occur and the Coliseum would remain in its current condition. Views of the site and surrounding area are depicted in Views 1 through 8 as presented in Figures, V.A-1-2 through V.A-1-4, respectively. These views would remain unaltered. The No Project Alternative would have no impact on these views, as it would leave the site in its present form.

#### Light and Glare

The Coliseum is a fully functional sports and entertainment venue and is already equipped with adequate field-lighting infrastructure. The Coliseum structure includes eight floodlight towers located on and extending above the perimeter of the Coliseum's rim. These field lighting fixtures would remain operational and unmodified under this Alternative. No additional sources of light or glare would be placed within or around the Project Site. This alternative would, however, preclude the beneficial lighting impacts that would occur under the Proposed Project. The Proposed Project would replace the existing fixtures with more directional lighting fixtures, placed beneath the proposed tensile fabric roof. As such, the Proposed Project would reduce the amount of spill over light and glare that is currently created by the Coliseum. This environmental benefit would not occur under the No Project Alternative. While implementation of the No Project Alternative would generate less than significant lighting impacts (as no changes from existing conditions would occur), the net adverse impact from light and glare would be greater than the Proposed Project.

#### Air Quality

Under the No Project Alternative, no construction activities would occur. Therefore, no construction-related air quality emissions would be generated.

Regional emissions associated with the operation of the Coliseum under this Alternative would be identical to those described under the Environmental Setting in Section V.B, Air Quality. The continuation of up to 34 annual major events with a maximum seating capacity of 92,500 persons would continue to generate the same level of vehicle emissions that currently occur. As shown in Table V.B-3 on page V.B-8, the Coliseum currently generates emissions in excess of the daily SCAQMD thresholds for all criteria pollutants except for sulfur oxides. These emissions would continue to be generated up to 34 days per year, when major events are scheduled at the Coliseum. It should be noted that these emissions are greater than those projected under the Proposed Project, as the project proposes to reduce

Ť

the maximum number of seats available for any one event. Air quality impacts under this Alternative would be considered significant and greater than the Proposed Project.

#### Geology/Seismic Hazards

The Project Site is located in a seismically active region and is prone to experiencing moderate to major earthquakes (magnitude 6.0 or greater). After Southern California's damaging earthquake in January, 1994, \$93 million was required to repair the Coliseum to meet adequate safety standards. With the recent (1994) seismic retrofitting of the Coliseum complete, no other unique hazardous geotechnical issues are present on-site or in the immediate surrounding area that would create increased geotechnical hazards beyond those inherent to the surrounding Southern California region. However, in the event that a major earthquake struck the Southern California region during an event at the Coliseum, the exposure to seismic hazards under this Alternative could potentially affect a venue with a capacity of up to 92,500 persons. As compared to the Proposed Project, which reduces the Coliseum's seating capacity to 78,000 persons for one or two occasions and 68,000 for all other events, the No Project Alternative would potentially expose a greater number of people to regionally inherent seismic risk. While such impacts are considered less than significant, exposure to potential seismic hazards would be increased under this Alternative as compared to the Proposed Project.

#### Land Use

The Coliseum would not experience any change in land use under the No Project Alternative. Land uses surrounding Exposition Park generally consist of commercial/retail uses, surface parking lots, and multi-family residential uses. Existing Project Site uses are compatible with the site's OS-1XL zoning designation. Therefore, land use impacts would be less than significant under both the No Project Alternative and the Proposed Project.

#### **Energy Conservation**

From 1999-2002, the Project Site has, on average, had a total average annual consumption of 10,484 cubic feet (cf) of natural gas and 2,152,973 Kilowatts (Kwh) of electricity (See Section V.H.1). Continuation of existing operations under the No Project Alternative would not generate any additional demand for natural gas or electrical resources. Impacts upon natural gas and electricity would therefore be less than significant and reduced as compared to the Proposed Project.

#### **Public Services**

#### Fire

Under the No Project Alternative, Fire and Emergency services would continue to be served by LAFD fire stations No. 14, 15, and 46. Since the No Project Alternative would not alter the number or nature

of events currently hosted by the Coliseum, and would not change the level of service and demands at the Coliseum, impacts upon fire services would be less significant.

#### Police

The No Project Alternative would result in the continuation of existing conditions on the Project Site, which would not warrant a change in the demand for police services. The No Project Alternative would not alter the number or nature of events currently hosted by the Coliseum. Therefore, the current level of service and demand for police protection would remain unchanged. Impacts on police services would be less than significant.

#### **Public Utilities**

#### Water Conservation

The continuation of existing operations under the No Project Alternative would not generate any new demands for water resources. Water service is adequately provided to both the Project Site and the surrounding locale by the City of Los Angeles's Department of Water and Power (DWP). Existing water lines serving the Project Site include a 16-inch main under Figueroa Street, a 12-inch main under Martin Luther King Jr. Blvd., and a four-inch main under Menlo Avenue. No new demands for water services or supplies would be created under the No Project Alternative. Impacts upon water services would be less than significant and less than the Proposed Project.

#### Sanitary Sewers

The continuation of the existing operations under the No Project Alternative would not generate any new demand for wastewater facilities. The Hyperion Treatment Plant (HTP), located directly west of the Los Angeles International Airport in Playa Del Rey, has adequate treatment capacity for all wastewater flows generated by the Project Site. Impacts upon wastewater services would therefore be less than significant and less than the Proposed Project.

#### Solid Waste

The continuation of the existing operations under the No Project Alternative would not generate any new demands for solid waste facilities. No construction or demolition debris would be generated. During an average year of operation, the Coliseum currently generates approximately 92,500 pounds, or approximately 42 tons of solid waste per event, which is hauled away by a private company. Based on an average of 34 major events per year, this equates to approximately 1,430 tons of solid waste on an annual basis. Solid waste generation of this magnitude would continue to occur under the No Project Alternative. Since no renovation would occur and no new spectators would be generated, the

No Project Alternative impact upon solid waste facilities would be less than significant and less than the Proposed Project.

### COMPARATIVE MERITS OF THE ALTERNATIVE'S ABILITY TO MEET THE PROJECT OBJECTIVES AND REDUCE ENVIRONMENTAL IMPACTS

The No Project Alternative would not meet any of the project's goals or objectives as outlined previously in this Section. Continuation of major events at the Coliseum with no structural or design improvements would not increase the severity of environmental impacts over the existing operations. However, as compared to the impacts that would occur under the Proposed Project, this Alternative would have a greater potential for adverse environmental impacts with regard to aesthetics (light and glare), air quality, noise, traffic and parking, and seismic hazards. Impacts for the remaining environmental issues would not differ substantially as compared to the Proposed Project.

Most importantly, however, the No Project Alternative would not meet the Coliseum Commission's objective to enable the 1920s-era stadium to become a premiere state-of-the-art venue for a NFL franchise. The Proposed Project was conceptually designed to enhance the Historic Landmarks' presence and importance both nationally and in the Los Angeles region, which would attract an NFL franchise and generate sufficient revenue to enable the Coliseum Commission to preserve and maintain the Coliseum independently of public funds. While this Alternative would not modify any portion of the Coliseum's architecture, it would result in the ongoing underutilization and deterioration of an historic landmark. As the Coliseum is currently eighty years old, having its last maintenance and renovation efforts occurring nearly ten years ago, improvements and upgrades are necessary to increase the useful life of the Coliseum to ensure its ability to provide a safe public facility capable of hosting major regional events. As such, the net effect of the No Project Alternative could not be viewed as a beneficial impact from an historic preservation point of view.

If a No Project Alternative is selected as the preferred project and the renovation improvements are not made, the NFL franchise will likely relocate a franchise team to another venue, potentially outside the City of Los Angeles. The development of another venue that would compete for events with the Coliseum could result in diminished revenues for the Coliseum needed to maintain the historic structure. Failing to cover its ongoing upkeep from event revenues will require allocation of public funds for the obligated ongoing maintenance costs that an historic designation requires. In turn, this Alternative would likely result in either the construction of a new stadium on undeveloped land or in an extensive refurbishing of another stadium such as the Rose Bowl or Carson to host the NFL, both of which would cause more severe impacts on the environment compared to the Proposed Project. The impacts of these scenarios are addressed in Section VII.D, Alternative Sites.

For the reasons stated above, the No Project Alternative is not an environmentally superior alternative.

# VII. ALTERNATIVES TO THE PROPOSED PROJECT C. ALTERNATIVE DESIGN (WITHOUT ROOF)

The Alternative Design (Without Roof) would include renovating the Coliseum as currently proposed, but without the tensile fabric canopy over the north and south seating areas. The elimination of this feature would primarily result in a change in the proposed public address (PA) and sound system as well as the proposed lighting plan. Currently, the proposed sound and lighting systems are designed to take advantage of the overhanging roof feature to provide directional sound and light and minimize spillover light and noise pollution. With the elimination of the roof feature, the proposed lighting plan will need to be redesigned to place light poles on top of the Coliseum's rim, in a manner similar to the existing lighting plan. Similarly, the proposed acoustic and PA systems would need to be redesigned to place speakers throughout the Coliseum. All other aspects of the Proposed Project, including the proposed structural improvements and seating plan, would remain unchanged from the current proposal.

#### **Aesthetics (Visual Impacts)**

This alternative would change the exterior appearance of the proposed Coliseum design as it would eliminate the roof element. Structurally, the roof element would be replaced with four or more light pole towers, as they are currently positioned around the rim of the Coliseum. The elimination of the roof element would also change the proposed signage plan as the project proposes to include a signage element on the top side of the roof fabric. The aerial view of the stadium would provide an unobstructed view of the stadium, including all seating areas. The impact of this change is subjective, but could be perceived as an improvement over the proposed design.

#### Aesthetics (Light and Glare)

As stated previously, the Alternative Design Without Roof alternative would necessitate the placement of light poles on and around the Coliseum's rim in a manner similar to the existing conditions. The effects of this design would be similar to those of the existing conditions, with spillover lighting being cast onto adjacent neighborhoods. The beneficial impact of the Proposed Project would not be realized and the roof design of the Proposed Project would effectively shield light from illuminating areas outside of the Coliseum's bowl. As compared to the Proposed Project, this Alternative would have greater adverse impacts associated with spillover lighting.

#### Air Quality

This Alternative would not affect the project's construction or operational-related air quality impacts. As such, impacts associated with air quality would be less than significant and the same as the Proposed Project.

#### Geology/Seismic Hazards

Development of this Alternative would not affect the geologic or seismic impact of the Proposed Project. The foundation and footing design would be the same with or without the roof element. As such, geologic and seismic impacts would be less than significant and the same as the Proposed Project.

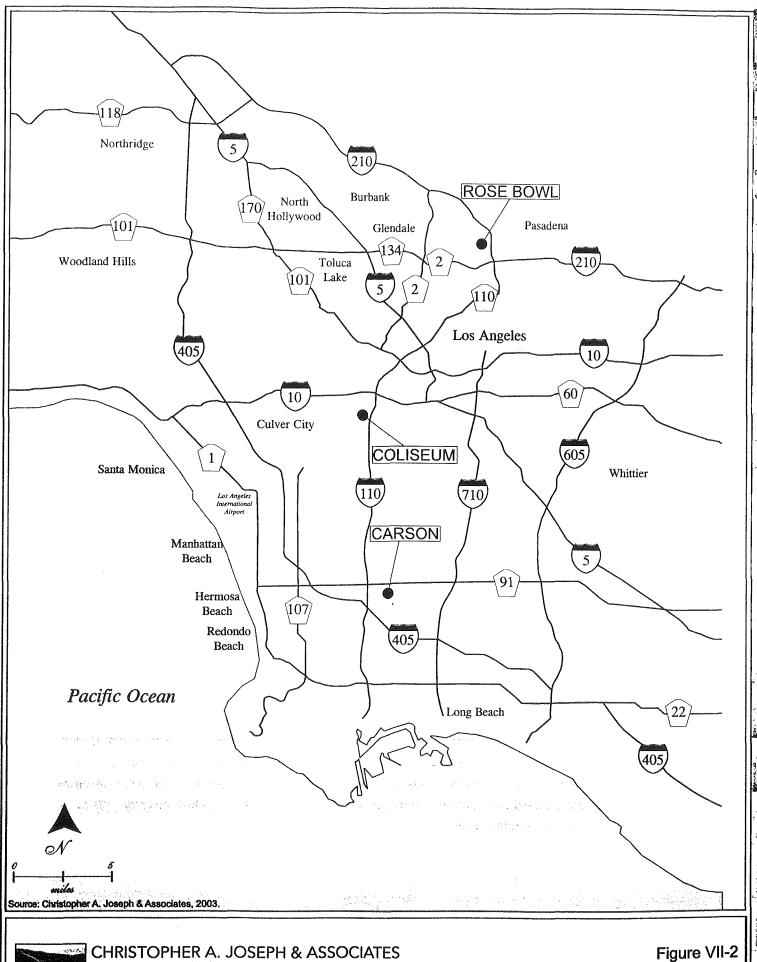
#### Land Use

Development of this Alternative would not affect the land use consistency impacts of the Proposed Project. The project is exempt from local Zoning Codes and would not be subject to any local zoning regulations with regard to height. In terms of land use compatibility, this Alternative would result in greater adverse impacts than the Proposed Project with regards to spill over lighting and noise impacts. As discussed in each respective Section of this EIR, the proposed roof element would effectively block spillover lighting impacts and attenuate noise from encroaching into the surrounding community. These effects would continue to be created in the same manner as created by current operations.

#### Noise

As stated above, this Alternative would result in the need to redesign the proposed sound system. Currently, the Proposed Project design entails positioning several hundred small speakers throughout the Coliseum, including on the roof structure. With the elimination of this element from the proposed design the speakers will need to be positioned in alternative areas along the Coliseum's rim or on posts throughout the stadium. In addition to the aesthetic impact associated with speakers being placed in more visible places, the acoustics of the Coliseum would generate spill-over noise in a manner consistent with the existing conditions. Currently there is no roof element to shield and attenuate noise from inside the Coliseum. The noise impacts would be generally the same as under existing conditions and would be greater as compared to the Proposed Project.

#### Public Utilities (Energy Conservation, Water Conservation, Sewers and Solid Waste)


This Alternative would not alter any of the public utility services associated with the Proposed Project. As such, impacts associated with energy and water conservation, sanitary sewers, and solid waste would be less than significant and the same as the Proposed Project.

#### **Public Services (Police and Fire)**

This Alternative would not alter the Proposed Project's demands on public services. As such, impacts associated with fire and police services would be less than significant and the same as the Proposed Project.

#### Traffic and Parking

As stated above, this Alternative would result in the renovation of the Coliseum as defined under the Proposed Project, with the one exception that the roof element would be eliminated. This change would not affect either traffic congestion or parking demands of the Proposed Project. Therefore the impacts of this Alternative would be the same as the Proposed Project.



CHRISTOPHER A. JOSEPH & ASSOCIATES Environmental Planning and Research

Alternative Sites (City of Carson/City of Pasadena)

#### Rose Bowl Site

The Rose Bowl Site is challenged with many of the same issues as the Coliseum. Similar to the Coliseum, the Rose Bowl is designated as an historic resource. As such, any redevelopment at the Rose Bowl has the potential to result in an adverse impact on the Rose Bowl's historic designation that must be evaluated in a project-specific EIR. Consequently, from an historic perspective, each project would be relatively the same with respect to the level of impact upon historic resources. However, for purposes of this EIR, this alternative would be equivalent to the No Project Alternative with respect to impacting an historical resource. While the Rose Bowl Alternative would also involve the reuse of an existing historic landmark and major sports and entertainment venue, the impacts of renovating the Rose Bowl will need to be evaluated in further detail in a separate EIR under the direction of the lead agency with jurisdiction over that resource. In terms of impacts upon the Coliseum, this alternative would involve no construction activities at the Coliseum; thus no new adverse impacts to the Coliseum would be created.

In terms of construction, the Rose Bowl would be remodeled in a similar fashion as the Proposed Coliseum. Both projects would renovate an existing structure. The impacts associated with the construction phase would be relatively comparable under either the Proposed Project or the Rose Bowl Alternative.

Impacts associated with the operational aspects of the Rose Bowl Alternative would be generally similar to the Proposed Project. Depending on the proposed seating capacity of the Rose Bowl redevelopment, the Alterative site would have the potential to generate traffic congestion and parking demands similar in nature to what is already experienced for special events. As such, the operational impacts for the Rose Bowl Alternative would be substantially similar to the Proposed Project.

# VII. ALTERNATIVES TO THE PROPOSED PROJECT E. ENVIRONMENTALLY SUPERIOR ALTERNATIVE

Among the range of alternatives evaluated in this EIR, the No Project Alternative would represent the alternative with the least environmental impact. A matrix displaying the major characteristics and significant environmental effects of each project in relation to the Proposed Project is provided in Table VII.E-1.

As indicated in the impact matrix in Table VII.E-1, the No project Alternative would result in reduced environmental impacts with regards to Aesthetics/Visual Impacts, and Cultural Resources. The No Porject Alternative would still result in significant unavoidable impacts with respect to Air Quality and Traffic. Impacts would be relatively the same as the Proposed Project for the remaining issue areas.

The Alternative Design (Without Roof) Alternative would result in reduced environmental impacts with regards to Aesthetics/Visual Impacts. The Alternative Deign Alternative would still result in significant unavoidable impacts with respect to Air Quality, Cultural Resources and Traffic. Impacts would be increased with respect to Noise and Light and Glare impacts. Impacts would be relatively the same as the Proposed Project for the remaining issue areas.

The level of environmental impacts that would be created by either of the Alternative Sites is impossible to determine without a detailed analysis of the each respective locale. An evaluation of the specific circumstances surrounding the environmental conditions for each location is needed in order to accurately determine the level of significance for each environmental issue area.

Table VI.E.-1
Project Impacts and Alternatives Analysis Matrix

| Environmental Issues                      | Project Without<br>Mitigation | Project<br>With Mitigation | No Project<br>Alternative | Alternative Design (Without Roof) | Alternative Sites |           |
|-------------------------------------------|-------------------------------|----------------------------|---------------------------|-----------------------------------|-------------------|-----------|
|                                           |                               |                            |                           |                                   | Carson            | Rose Bowl |
| A.1. Aesthetics / Visual Impacts          | LS                            | LS*                        | LS (-)                    | LS (-)                            |                   |           |
| A.1. Aesthetics / Light and Glare         | LS                            | LS*                        | LS (+)                    | LS (+)                            |                   |           |
| B. Air Quality                            | S                             | SU                         | SU (-)                    | SU (=)                            | S (+)             | S (=)     |
| C. Cultural and Historic Resources        | S                             | SU (-)                     | LS                        | SU (=)                            | LS (-)            | LS (-)    |
| D. Geology / Seismic Hazards              | LS                            | LS (-)                     | LS (+)                    | LS (=)                            | LS (=)            | LS (=)    |
| E. Land Use                               | LS                            | LS (-)                     | LS                        | LS (=)                            |                   |           |
| F. Noise                                  | LS                            | LS (-)                     | LS (+)                    | LS (+)                            | LS (+)            | LS (=)    |
| G.1. Public Services / Fire Protection    | LS                            | LS (-)                     | LS                        | LS (=)                            | NA                | LS (-)    |
| G.2. Public Services / Police Protection  | S                             | LS (-)                     | LS                        | LS (=)                            |                   |           |
| H.1 Public Utilities /Energy Conservation | LS                            | LS (-)                     | LS                        | LS (=)                            |                   |           |
| H.2 Public Utilities / Water Conservation | S                             | LS                         | LS                        | LS (=)                            |                   |           |
| H.3 Public Utilities / Sewers             | LS                            | LS (-)                     | LS (+)                    | LS (=)                            |                   |           |
| H.4 Public Utilities / Solid Waste        | LS                            | LS (-)                     | LS (+)                    | LS (=)                            | LS+               | LS+       |
| I.1 Traffic & Access                      | S                             | SU                         | SU (+)                    | SU (=)                            | S                 | S         |
| I.2. Parking                              | LS                            | LS (-)                     | LS                        | LS (=)                            |                   | LS (=)    |

#### Notes:

LS = Less than Significant Impact.

LS\* = Less than Significant Impact and No Mitigation Required.

S = Significant Impact.

SU = Significant Unavoidable Impact.

- (+) = Impacts would be increased as compared to the Proposed Project.
- (-) = Impacts would be reduced as compared to the Proposed Project.
- (+/-) = Impacts would be mixed. While some of the project's negative impacts would be reduced, potential negative impacts would be created or net beneficial impacts would be compromised.
- -- = There is not enough information about developing these sites to render a conclusion.

Los Angeles Memorial Coliseum Renovation Project
Draft Environmental Impact Report

Section VII.E. Environmentally Superior Alternative SCH# 1990011065

## VIII. ORGANIZATIONS AND INDIVIDUALS CONTRIBUTING TO THE PREPARATION OF THIS DOCUMENT

#### LEAD AGENCY

Los Angeles Memorial Coliseum Commission 3939 S. Figueroa Street Los Angeles, California, 90037

Patrick T. Lynch, General Manager
Charlie Isgar, Director of Development and Special Projects
Ronald Lederkramer, Assistant General Manager, Director of Finance and Administration
Margaret Farnum, Chief Administrative Officer

#### PROJECT ARCHITECT

NBBJ 13335 Maxella Avenue Marina Del Rey, CA 90292 (310) 448-9600

Ronald F. Turner, AIA, Principal James B. Morton, AIA, Principal Jonathan Emmett, Associate

#### EIR CONSULTANT

Christopher A. Joseph & Associates 11849 W Olympic Boulevard, Suite 101 Los Angeles, California 90064

Chris Joseph, President
Shane Parker, Principal, Project Manager
Jennifer Johnson, Manager of Special Projects
Leah Dierkes, Assistant Environmental Planner/Graphics Specialist

Lainie Herrera, Assistant Environmental Planner Rebecca Shokrian, Research Assistant Heidi McWhorter, Research Assistant Jeff Daems, Word Processor

#### TRAFFIC CONSULTANT

Kaku Associates 1453 Third Street, Suite 400 Santa Moinca, California 90401 (310) 458-9116

Dick Kaku, President
Paul Taylor, Vice President
John Muggridge, Transportation Engineer

#### HISTORIC RESOURCES CONSULTANT

Architectural Resources Group Pier 9, The Embarcadero San Francisco, California 94111 (415) 421-1680

Bruce Judd, Principal

#### PUBLIC AGENCIES CONSULTED

#### State of California

Governor's Office of Planning and Research, State Clearinghouse

Scott Morgan, Project Analyst

#### **Regional Agencies**

California Department of Transportation, District 7, Office of Regional Planning

Stephen Buswell, IGR/CEQA Program Manager

Southern California Association of Governments

Jeffrey M. Smith, Senior Regional Planner, Intergovernmental Review

#### **Local Agencies**

Department of Public Works of the City of Los Angeles
Adel H. Hagekhalil, Division Manager

Department of Transportation of the City of Los Angeles
Allyn D. Rifkin, Principal Transportation Engineer

Department of Water and Power of the City of Los Angeles
Laurent McReynolds, Engineer in Charge, Water Operating Division
Edward Karapetian, Manager of Environmental and Governmental Affairs
Charles C. Holloway, Supervisor, Environmental Assessment

Fire Department of the City of Los Angeles
Alfred B. Hernandez, Assistant Fire Marshal, Bureau of Fire Prevention and Public Safety
Alan Masumoto, Hydrant Unit

Los Angeles Office of the Board of Public Works
Karen Coca

Police Department of the City of Los Angeles

Garrett W. Simmon, Commanding Officer, Planning and Research Division William M. Rathburn, Former Deputy Chief, Operations – South Bureau Sergeant Chris Berglund, Special Events Coordinator, Operations – South Bureau Officer Judy Redmayne, Operations – South Bureau

#### PRIVATE ORGANIZATIONS

Los Angeles Conservancy
Linda Dishman, Director

Ken Bernstein, Director of Preservation Issues

Southern California Gas Company, South Coastal Division

J. M. Sharp, Distribution Planning Supervisor



# STATE OF CALIFORNIA Governor's Office of Planning and Research State Clearinghouse



1 HUC

#### Notice of Preparation

May 23, 2003

RECEIVED MAY 3 0 2003

L.A. CULISEUM COMMISSIUM

To:

Reviewing Agencies

Re:

Los Angeles Memorial Coliseum Renovation

SCH# 1990011065

Attached for your review and comment is the Notice of Preparation (NOP) for the Los Angeles Memorial Coliseum Renovation draft Environmental Impact Report (BIR).

Responsible agencies must transmit their comments on the scope and content of the NOP, focusing on specific information related to their own statutory responsibility, within 30 days of receipt of the NOP from the Lead Agency. This is a courtesy notice provided by the State Clearinghouse with a reminder for you to comment in a timely manner. We encourage other agencies to also respond to this notice and express their concerns early in the environmental review process.

Please direct your comments to:

Shane Parker
Los Augeles Memorial Coliseum Commission
3911 South Figueroa Street
Los Angeles, CA 90037

with a copy to the State Clearinghouse in the Office of Planning and Research. Please refer to the SCH number noted above in all correspondence concerning this project.

If you have any questions about the environmental document review purcess, please call the State Clearinghouse at (916) 445-0613.

Sincerely.

Scott Morgan

Hroject Analyst, State Clearinghouse

Attachments cc: Lead Agency

### Document Details Report State Clearinghouse Data Base

SCH# 1990011065

Project Title Los Angeles Memorial Coliseum Renovation

Lead Agency Los Angeles, City of

Type NOP Notice of Preparation

Description The project consists of renovating and redeveloping the Los Angeles Memorial Collseum, including

rehabilitation of portions of the 27.4-acre site surrounding and containing the Coliseum structure. The project will reduce the existing seating capacity from 92,500 seats to 68,000 for professional NFL

football games and up to 78,000 seats to accommodate collegiate football games (USC).

**Lead Agency Contact** 

Name Shane Parker

Agency Los Angeles Memorial Coliseum Commission

Phone 310-473-1600 ext 20

email

emaii

Address 3911 South Figueroa Street

City Los Angeles

State CA Zip 90037

Base

Fax

**THUC** 

**Project Location** 

County Los Angeles

City Los Angeles, City of

Region

Cross Streets S. Figueroa and Martin Luther King Jr. Boulevard

Parcel No. 5037-028-907 (portion)

Township Range Section

Proximity to:

Highways 10 and 110

Airports Railways

Waterways

Schools LAUSD

Land Use OX-1XL/Publicly Owned Space

Project Issues Aesthetic/Visual; Air Quality; Archaeologic-Historic; Geologic/Seismic; Noise; Public Services;

Recreation/Parks; Sewer Capacity; Soil Erosion/Compaction/Grading; Solid Waste; Traffic/Circulation;

Water Quality; Growth Inducing; Landuse; Cumulative Effects

Reviewing Agencies Resources Agency; Department of Conservation; Office of Historic Preservation; Department of Parks and Recreation; Department of Fish and Game, Region 5; Native American Heritage Commission;

Office of Emergency Services; Caltrans, District 7; California Highway Patrol; Caltrans, Division of Transportation Planning; Air Resources Board, Major Industrial Projects; Department of Toxic

Substances Control; Regional Water Quality Control Board, Region 4

Date Received 05/23/2003

Start of Review 05/23/2003

End of Review 08/23/2003

Note: Blanks in data fields result from insufficient information provided by lead agency.

| IAAL DIPRIDAMANI FIST                                                          |                                                                               | vousity.                                                                 | 1-0-)                                                                      |                                                                                        |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Resources Agency                                                               | Fish and Game                                                                 | Colorado River Board<br>Gerald R. Zimmerman                              | Dept. of Transportation 10 Tom Durnas District 10                          | State Water Resources Control Board Student Intern, 401 Water Quality                  |
| Resources Agency Nadell Gayou  Dept. of Boating & Waterways                    | Dept. of Fish & Game<br>Scott Filmt<br>Environmental Services Division        | Takoe Regional Planning Agency (TRPA) Lyn Bamatt                         | Dept. of Transportation 11 Bill Figgs District 11                          | Certification Unit Division of Water Quality  State Water Resources Control            |
| Suzi Batzler  California Coastal  Commission                                   | Dept. of Fish & Game 1 Donald Koch Region 1                                   | Office of Emergency Services<br>John Rowden, Manager                     | Dept. of Transportation 12 Bob Joseph District 12                          | Board Mike Falkenstein Division of Water Rights                                        |
| Elizabeth A. Fuchs Dapt. of Conservation Roseanne Taylor                       | Dapt. of Fish & Game 2 Banky Curtis Region 2                                  | Daita Protection Commission Debby Eddy                                   | Business, Trans & Housing                                                  | Dept. of Toxic Substances Control CEQA Tracking Center  Regional Water Quality Control |
| Dept. of Forestry & Fire Protection Allen Robertson                            | Dept. of Fish & Game 3<br>Robert Floarks<br>Region 3                          | Santa Monica Mountains Conservancy                                       | Housing & Community Development Cathy Creswell Housing Policy Division     | Board (RWQCB)                                                                          |
| Office of Historic Preservation Hans Krautzberg                                | Dept. of Fish & Game 4<br>William Laudermilk<br>Region 4                      | Paul Edelman  Dept. of Transportation                                    | Caltrans - Division of Aeronautics Sandy Hesnard Caltfornia Highway Patrol | Cathleen Hudson North Coast Region (1)                                                 |
| Dapt of Parks & Recreation  B. Noah Tighman  Environmental Stewardship Section | Dept. of Fish & Game 5 Don Chadwick Region 5, Habitat Conservation Program    | Dept. of Transportation 1 Mike Eagan District 1                          | Lt. Julie Page Office of Special Projects Dept. of Transportation          | Environmental Document Coordinator San Francisco Bay Region (2)                        |
| Recismation Board Lori Buford                                                  | Dept. of Fish & Game 6 Gabrina Gatchel Region 6, Hebitat Conservation         | Dept. of Transportation 2 Don Anderson District 2                        | Ron Halgeson Caltrans - Planning Dept. of Ganeral Services Robert Sleppy   | HWQCB 3 Central Coast Region (3) RWQCB 4                                               |
| Dev't. Comm. Steve McAdam                                                      | Program  Dept. of Fish & Game 6 VM  Tammy Allen  Region 6, Inyo/Mono, Habital | Dapt. of Transportation 3 Jeff Pulverman District 3                      | Environmental Services Section  Air Resources Board                        | Los Angeles Region (4)  RWQCB 5S                                                       |
| Dept. of Water Resources Rasources Agency Nadell Gayou                         | Conservation Program  Dept. of Fish & Game NI  Tom Napoli  Marine Region      | Dept. of Transportation 4 Tim Sable District 4 Dept. of Transportation 6 | Airport Projects Jim Lerner  Transportation Projects Kurt Karperos         | Central Valley Ragion (5)  RWQCB 5F  Central Valley Ragion (5)  Fresno Branch Office   |
| Health & Welfare                                                               | Independent Commissions                                                       | David Murray District 5 Dept. of Transportation 6                        | industrial Projects Mike Tollstrup                                         | RWQCB 5R Central Valley Region (5) Redding Branch Office                               |
| Health & Welfare Wayne Humberd Dept. of Health/Drinking Water                  | California Energy Commission Environmental Office  Native American Heritage   | Dept. of Transportation 7                                                | California Integrated Waste Managament Board Sue O'Leary                   | RWQCB 6 Lahonian Region (6) RWQCB 6V                                                   |
| Food & Agriculture                                                             | Comm. Debble Treadway Public Diffiles Commission                              | Stephen J. Buswell District 7  Dept. of Transportation 8                 | State Water Resources Control  Soard  Jim Hockenberry                      | Lahontan Region (8) Victorville Branch Office RWQCB 7                                  |
| Food & Agriculture Steve Shafter Dept. of Food and Agriculture                 | Ken Lawis  State Lande Commission Jean Sarino                                 | Linda Grimes, District 8  Dept. of Transportation 9                      | Division of Financial Assistance                                           | Colorado Rivar Basin Region (7)  - RWQCB 8  Santa Ana Region (8)                       |
|                                                                                | Governor's Office of Planning & Research State Clearinghouse Planner          | Gayla Rosander<br>District 9                                             |                                                                            | RWQCB 9 San Diego Region (9)                                                           |

DEPARTMENT OF TRANSPORTATION

DISTRICT 7, REGIONAL PLANNING

IGR/CEQA BRANCH 120 S. SPRING STREET

LOS ANGELES, CA 90012

PHONE (213) 897-4429

FAX (213) 897-1337

JUN 0 3 2012

L.A. COLISEUM COMMIN JOIN

May 30, 2003



Flox your power! Be energy efficient!

32

فسن

IGR/CEQA cs/030571 NOP Exposition Park Proposed Renovation of the Los Angeles Memorial Coliseum 3911 S. Figueroa St. Vic. LA-110-20.13 SCH#

Ms. Margaret Farmum
Chief Administrative Officer
Los Angeles Memorial Coliseum Commission
3911 S. Figueroa St.
Los Angeles, CA 90037

#### Dear Ms. Famum:

Thank you for including the California Department of Transportation in the environmental review process for the above-mentioned project. Based on the information received, we have the following comments:

A traffic study will be needed to evaluate the project's impact on the State transportation system including impacts to the mainline I-110 (Harbor Freeway) and all affected freeway on/off ramps. The traffic study should include, but not be limited to:

- 1) Assumptions used to develop trip generation/distribution percentages and assignments.
- 2) An analysis of ADT, AM and PM peak hour volumes for both the existing and future (year 2025) conditions. This should also include level-of-service calculations using the HCM 2000 methodology. The analysis should include the following:
- existing traffic volumes
   project and cumulative traffic volumes
   future traffic volumes projections for year 2025
   existing level-of-service (LOS) calculations
   project and cumulative level-of-service (LOS) calculations
- Any mitigation measures proposed to alleviate traffic impact should include, but not be limited to the following:
- G financing
- scheduling considerations
- implementation responsibilities
- (1) monitoring plan
- 4) The Equitable Share responsibility for traffic mitigation measures should be calculated as determined by the percentage increase in projected peak period trips resulting in operational impacts to the Harbor Freeway. The City should refer to Appendix "B" Methodology for Calculating Equitable Mitigation Measures found in our Caltrans Guide for the Preparation of Traffic Impact Studies. The Guide can be found on the internet at:

http://www.dot.ca.gov/hq/traffops/developserv/operationalsystems/reports/tisguide.pdf

Ms. Margaret Farnum May 30, 2003 Page Two

The proposed project will need to conform with the National Pollution Discharge Elimination System (NPDES) requirements relating to construction activities and Post-Construction Storm Water Management. To the maximum extent practicable, Best Management Practices will need to be implemented to address storm water runoff from new development. The responsible water quality control agencies will need to review storm water runoff facilities and drainage plans.

We would appreciate advance copies of the DEIR and traffic study to facilitate internal Departmental review. Copies should be sent to the undersigned:

Stephen Buswell, IGR/CEQA Program Manager California Department of Transportation District 7, Office of Regional Planning 120 South Spring Street Los Angeles, CA 90012

If you have any questions regarding our comments, refer to our internal IGR/CEQA Record # cs/030571, and please do not hesitate to contact me at (213) 897-4429.

Sincerely,

STEPHEN BUSWELL IGR/CEQA Branch Chief

cc: Mr. Scott Morgan, State Clearinghouse

THERN CALIFORNIA



#### **ASSOCIATION** of GOVERNMENTS

Main Office

818 West Seventh Street

12th Floor

Los Angeles, California

90017-3435

1 (213) 236-1800 f (213) 236-1825

www.scag.ca.gov

Officers: President: Mayor Bey Perry, Reen \* First Vice Persident: Supervisor Charles Smith, Orange Crusty \* Second Vice President: Councilmember Ran Ru herre, Terrecula enmediate Past President: Connectionember Hal Bernson, Lon Angeles

County: Hank Kaiper, Imperial Shields, Brawley

Los America County: Ywiner Prathwatte Burke Lan Angeles County . Zev Varradavsky, Los Angeles Canaty . Melante Andrews, Compton . Harry Roldwin, San Gabriel . Paul Benvien, Cerebus \* Hai Bernson, Los Angeles \* Gene Dansels, Paramoune \* Miles Dispenza, Palandale \* Denvice, Perenrounc \* Mice Dispenza, Prinnedace - Judy Duning, Inglewood - Ruth Galzarine, Luc Angeles \* Reic Carcetti, Loc Angeles \* Wennly Grenie, Los Angeles - Frank Gorulé, Cudajus garnes Hahn, Los Angeles - Banice Hahm, Los Angeles \* Nate Holden, Los Angeles \* Sandez Los Angeles - Nate Holden, Los Angeles \* Sandez Los Angeles - Nate Holden, Los Angeles \* Sandez Los Angeles - Nate Holden, Los Angeles \* Sandez Los Angeles - Nate Holden, Los Angeles \* Sandez Los Angeles - Nate Holden, Los Angeles \* Sandez Los Angeles - Nate Holden, Los Angeles \* Sandez Los Angeles - Nate Holden Los Angeles \* Sandez Los Angeles - Nate Holden Los Angeles \* Sandez Los Angeles \* Nate Holden Los Angeles \* Sandez Los Angeles \* Nate Holden Los Angeles \* Sandez Robert Los Angeles Rober Jacobs, & Segrander - Torn Labourge, Los Angeles o Bounte Lowenthal, Long Beach • Keth McCarshy, Downey • Lewellyn Miller, Cherchann • Clashy Mitcikowski, Los Angeles • Paul Nowalks, Rarnines • Pam O'Comper, Sonta Idranira \* Nick Pacheco, Los Angelos \* Alex Padille, Len Angelos \* Bernard Parks, Les Angelos In Perry Lot Absoles . Beatrice Prov. Plan Rivera · Sel Reyes, Los Angeles · Dick Standiust, Arms · Rum Sykes, Walton · Paul Tulture, Alhambra · Méney Tyler, Jr., Readenz · Timba Reyes Hranga, Long Beach · Dennix Weshimm. elan Gendale • Demois P. Zinc, Los Apreles

age County Charles South, Othinge County • Rom Raira, Lon Alamicos • Ari Brown, Parria Park • Lon Russ, Tiacin • Richard Chares, Anahatas • Debbie Cook, Funcingen Beach • Cathrya Deltoning, Lagurua Nigorei • Richard Digwa, Labo Koneg • Aka Dobee, La Patrin • Ro-Petry, Bros • Their Ridgeway, Newport Beach

Silverside County: Rob States, Riverside County \* Ron Loveridge, Niverdair • Irdi Miller, Corona • Greg Pents, Cultedral City • Ron Roberts, ould . Charles Winte, Morrow Water

San Bornardino Country: Faul Diane, San Bernardine Country - Bill Alexander, Resultes Cucamorusa · Lowronce Dale, Baracous · Lee Ann Guecia, Grand Revener + State Longville, San Bernandton · Gary Ovist, Oricario · Debrerat

"usaya Judy Mikola, Vesatura Comsay " , Sirai Valley • Carl Movelcome, San A "YORK TRUSTING, Proct Processesse

ncy Transportation CA

Members County Transportation Countrieses: Bill Davis, Siral Velley

June 6, 2003

Ms. Margaret Famum Chief Administrative Officer Los Angeles Memorial Coliseum Commission 3911 S. Figueroa Street Los Angeles, CA 90037

RE: SCAG Clearinghouse No. I 20030295 Proposed Renovation of the Los Angeles Memoriai Coliseum

Dear Ms. Famum:

Thank you for submitting the Proposed Renovation of the Los Angeles Memorial Coliseum for review and comment. As areawide clearinghouse for regionally significant projects, SCAG reviews the consistency of local plans, projects and programs with regional plans. This activity is based on SCAG's responsibilities as a regional planning organization pursuant to state and federal laws and regulations. Guidance provided by these reviews is intended to assist local agencies and project sponsors to take actions that contribute to the attainment of regional goals and policies.

We have reviewed the Proposed Renovation of the Los Angeles Memorial Coliseum, and have determined that the proposed Project is not regionally significant per SCAG Intergovernmental Review (IGR) Criteria and California Environmental Quality Act (CEQA) Guidelines (Section 15206). Therefore, the proposed Project does not warrant comments at this time. Should there be a change in the scope of the proposed Project, we would appreciate the opportunity to review and comment at that time.

A description of the proposed Project was published in SCAG's May 16-31, 2003 Intergovernmental Review Clearinghouse Report for public review and comment.

The project title and SCAG Clearinghouse number should be used in all correspondence with SCAG concerning this Project. Correspondence should be sent to the attention of the Cleaninghouse Coordinator. If you have any questions, please contact me at (213) 236-1867. Thank you.

property and the second second

to the first received are to out to a larger that I

in the second second of the second

406

THE PROOF WAR SHE BY BUILDING B

Sincerely,

REYM SMITH, AICP

Senior Regional Planner Intergovernmental Review

### CITY OF LOS ANGELES

WAYNE K. TANDA GENERAL MANAGER



DEPARTMENT OF TRANSPORTATION

21 N. FIQUEROAST, SUITE BOO LOS ANGPLES, CA BOO12 (213) 6B0-1177 FAX (213) 500-1188

39:1 S. Figueroa St

June 20, 2003

Margaret Farnum Chief Administrative Officer Los Angeles Memorial Coliseum Commission 3911 South Figueroa Street Los Angeles, CA 90037

#### NOTICE OF PREPARATION OF A DRAFT ENVIRONMENTAL IMPACT REPORT FOR THE RENOVATION OF THE LOS ANGELES MEMORIAL COLISEUM

The Los Angeles Department of Transportation (LADOT) has reviewed the Notice of Preparation (NOP) for the Draft Environmental Impact Report (DEIR) for the Los Angeles Memorial Coliseum Renovation Project. The proposed project is to renovate the existing Memorial Coliseum stadium in Los Angeles and rehabilitate portions of the 27.4 acre project site. The proposed renovations would reduce the existing scatting capacity from 92,500 to approximately 68,000 for National Football League games and to approximately 78,000 for collegiate football games. In addition, the project will construct 175 new luxury suites and a club level with 15,000 premier seats.

#### HIGHWAY DEDICATION AND STREET WIDENING REQUIREMENTS

The Transportation Element of the City of Los Angeles General Plan adopted by the City Council and Section 12.37 of the Los Angeles Municipal Code (LAMC) require that the developer adhere to the highway dedication and street widening requirements of the General Plan. The developer must check with the Bureau of Engineering (BOE) Land Development Group to determine the highway dedication or street widening requirements in order to improve and construct the streets along the project frontage in accordance with standards adopted by the City.

Margaret Farnum

-2-

June 20, 2003

#### ASSESSMENT OF TRAFFIC IMPACT

A traffic study is being prepared to analyze the potential impacts of the project. LADOT has been working with traffic consultant Kaku Associates on the traffic study and scope of work required for the study.

If you have any questions, please contact Wes Pringle of my staff at (213) 580-5206.

Sincerely,

Allyn D. Ritkin

Principal Transportation Engineer

cc: Co

Council District 8

Central District, LADOT

Land Development Group, BOE

Letters/caliseum\_ronovation NOP.wpd

### Department of Water and Power



JAMES K. HAHN Mayor

Commission
KENNETH T. LOMBARD, President
DOMINICK W. RUBALCAVA, Vice President
ANNIE E. CHO
SID C. STOLPER
LELAND WONG
JOHN C. BURMAHLN, Secretary

DAVID H. WIGGS, General Manager FRANK SALAS, Chief Administrative Officer RECEIVED
JUN 2 6 2003
L.A. COLISEUM COMMISSION

June 18, 2003

Ms. Margaret Farnum
Chief Administrative Officer
Los Angeles Memorial
Coliseum Commission
3911 South Figueroa Street
Los Angeles, CA 90037

Dear Ms. Farnum:

Subject: Proposed Renovation of the Los Angeles Memorial Coliseum

Review of Notice of Preparation of a Draft Environmental Impact Report

The Los Angeles Department of Water and Power (LADWP) has reviewed a Notice of Preparation (NOP) dated May 22, 2003 for the proposed project. For reference, the Los Angeles Memorial Coliseum is within the boundaries of the Exposition Park Master Plan which is located about two miles southwest of downtown Los Angeles.

The proposed project involves the renovation of the Los Angeles Memorial Coliseum, including the rehabilitation of portions of the 27.4-acre project site surrounding and containing the Coliseum structure itself. Proposed renovations would reduce the fixed seating capacity for professional and college football games from the existing of 92,500 to about 68,000.

We are providing information for consideration and incorporation into the planning, design, and development efforts for the proposed project. Regarding water needs for the proposed project, this letter does not constitute a response to a water supply assessment due to recent state legislative activity (i.e., SB 901, SB 610, and SB 221) for development projects to determine the availability of long-term water supply. Our understanding is that a water supply assessment by the water supply agency needs to be requested and completed prior to issuing a draft Negative Declaration or draft EIR: Before investing resources in preparation of a water supply assessment, we recommend that you contact LADWP (Mr. Alvin Bautista, [213] 367-0800 or by e-mail at Alvin.Bautista@water.ladwp.com) and provide specific project details as requested to help staff make a determination on whether or not the proposed project meets the criteria for compliance with this legislation.

Water and Power Conservation ... a way of life



Ms. Margaret Farnum Page 2 June 18, 2003

If proposed project parameters (e.g., development details such as type, square footage, etc., anticipated water demand by 2020, population increase, etc.) are such that they are subject to state law requiring a water availability assessment, a separate request must be made in writing to:

Mr. Gerald A. Gewe Assistant General Manager - Water Los Angeles Department of Water and Power 111 North Hope Street, Room 1455 Los Angeles, CA 90012

The following is LADWP information regarding meeting the projected water and power infrastructure needs for the proposed project:

#### Water Needs

Once a determination of the proposed project fire demands has been made, LADWP will assess the need for additional facilities, if any.

As the project proceeds further in the design phase, we recommend the project applicant or designated Project Management Engineer to confer with a single point-of-contact at LADWP (Mr. Hugo Torres, [213] 367-1178 or by e-mail at Hugo.Torres@water.ladwp.com) to make arrangements for water supply service needs.

#### **Power Needs**

LADWP, under the Los Angeles City Charter, has an obligation to serve its customers within the City of Los Angeles.

As the project proceeds further in the planning and design phase, we recommend the project applicant or designated Project Management Engineer to confer with a single point-of-contact at LADWP (Mr. James M. Laschober, [213] 367-3469 or by e-mail at James.Laschober@ladwp.com) for dealing with power services and infrastructure needs.

4

#### **LADWP Programs to Assist Customer Water and Power Needs**

LADWP has a number of programs that are intended to serve existing and prospective customer water and power needs. Since the proposed project is in the planning and design phase, it may be a good idea to review these programs to consider the feasibility of incorporating measures in the design, project development, and operations of the proposed facilities. The benefit of these programs is cost savings to the customer while at the same time being environmentally friendly. Existing and prospective customers of

Ms. Margaret Farnum Page 3 June 18, 2003

at the same time being environmentally friendly. Existing and prospective customers of LADWP are encouraged to join us in this effort by taking part in our "Green Power for a Green LA" program. Call 800 GREEN LA (800-473-3652), or visit www.GreenLA.com as well as www.LADWP.com to learn more about the various programs available.

Green Power for a Green LA Program. LADWP is committed to replacing electricity generated from fossil fuel-burning power plants with energy generated from renewable resources such as the sun, wind, water, biomass, and geothermal. Mr. John Giese is the Green Power Program Manager and can be reached at (213) 367-0434 or by e-mail at John.Giese@ladwp.com.

Trees for a Green LA. As part of its ongoing commitment to environmental initiatives that reduce energy use, improve air quality, and beautify local communities, LADWP is sponsoring the *Trees for a Green LA* program. One of the main goals of the program is to add an estimated 200,000 shade trees to the Los Angeles urban environment starting in March 2002. The program is intended to provide trees to LADWP residential customers. Additional elements of the program that are planned include: trees for 1) public spaces, 2) new construction/development, and 3) replacement under power lines. Ms. Leilani Johnson is the Program Manager and can be reached at (213) 367-3023 or by e-mail at Leilani.Johnson@ladwp.com.

efficiency Solutions. LADWP suggests consideration and incorporation of energy efficient design measures for building new commercial and/or remodeling existing facilities. Implementation of applicable measures would exceed Title 24 energy efficiency requirements. LADWP continues to offer a number of energy efficiency programs and cash incentives to reduce peak electrical demand and energy costs. Mr. Donald Cunningham is the Director of Energy Efficiency Solutions and can be reached at (213) 367-1375 or by e-mail at Don.Cunningham@ladwp.com.

Solar Energy. In an effort to decrease dependency on traditional, polluting energy sources, LADWP is promoting solar power to make this energy alternative more affordable. Mr. Thomas Honles is the Solar Energy Program Manager and can be reached at (213) 367-3151 or by e-mail at Thomas.Honles@ladwp.com.

Electric Transportation. LADWP is promoting this program by providing our customers with information and assistance that greatly simplifies the process of buying electric vehicles and installing a charger(s). Mr. Scott Briasco is the Electric Transportation Program Manager and can be reached at (213) 367-0239 or by e-mail at Scott.Briasco@ladwp.com.

Water Conservation. LADWP is always looking for means to assist its customers to use water resources more efficiently and welcomes the opportunity to work with new developments to identify water conservation opportunities. Mr. Thomas Gackstetter is

Ms. Margaret Farnum Page 4 June 18, 2003

the Water Conservation Program Manager and can be reached at (213) 367-0936 or by e-mail at Thomas.Gackstetter@water.ladwp.com.

#### Water and Energy Conservation

Based on the proposed project, some of the enclosed energy and water conservation measures may apply and should be considered for inclusion in the proposed project. If there are any questions concerning the recommended conservation measures, please contact our Customer Outreach, or for more details on various water conservation methods available, contact the Water Conservation Office at (800) 544-4498.

Consideration of these conservation measures, including possible use of recycled materials and recycling area requirements for new developments (see Ordinance No. 171687), early on in the design of the proposed project would facilitate incorporation into project implementation based on economic, technical, environmental and marketing objectives.

Please include LADWP in your mailing list and address it to the undersigned in Room 1044. We look forward to reviewing your environmental document for the proposed project. If there are any additional questions, please contact Mr. Val Amezquita of my staff at (213) 367-0429.

Sincerely,

CHARLES C. HOLLOWAY

Charles C. Holloway

Supervisor

**Environmental Assessment** 

VA:gc

**Enclosures** 

c: Mr. Alvin Bautista

Mr. Hugo Torres

Mr. James Laschober

Mr. John Giese

Ms. Leilani Johnson

Mr. Don Cunningham

Mr. Thomas Honles

Mr. Scott Briasco

Mr. Thomas Gackstetter

Mr. Val Amezquita

#### LADWP WATER & ENERGY CONSERVATION MEASURES

# IMPACT OF THE PROPOSED PROJECT ON THE WATER SYSTEM AND METHODS OF CONSERVING WATER LOS ANGELES DEPARTMENT OF WATER AND POWER

#### **IMPACT ON THE WATER SYSTEM**

If the estimated water requirements for the proposed project can be served by existing water mains in the adjacent street(s), water service will be provided routinely in accordance with the Los Angeles Department of Water and Power's (LADWP) Rules and Regulations. If the estimated water requirements are greater than the available capacity of the existing distribution facilities, special arrangements must be made with the LADWP to enlarge the supply line(s). Supply main enlargement will cause short-term impacts on the environment due to construction activities.

In terms of the City's overall water supply condition, the water requirement for any project that is consistent with the City's General Plan has been taken into account in the planned growth in water demand. Together with local groundwater sources, the City operates the Los Angeles-Owens River Aqueduct and purchases water from the Metropolitan Water District of Southern California. These three sources, along with recycled water, will supply the City's water needs for many years to come.

Statewide drought conditions in the mid-1970s and late 1980s dramatically illustrated the need for water conservation in periods of water shortage. However, water should be conserved in Southern California even in years of normal climate because efficient use of water allows increased water storage for use in dry years as well as making water available for beneficial environmental uses. In addition, electrical energy is required to treat and deliver all water supplies to the City and the rest of Southern California. Conserving water contributes to statewide energy conservation efforts. Practicing water conservation also results in decreased customer operating costs.

#### WATER CONSERVATION

LADWP assists residential, commercial, and industrial customers in their efforts to conserve water. Recommendations listed below are examples of measures that conserve water in both new and existing construction:

1. The landscape irrigation system should be designed, installed and tested to provide uniform irrigation coverage for each zone. Sprinkler head patterns should be adjusted to minimize over spray onto walkways and streets. Each zone (sprinkler valve) should water plants having similar watering needs (do not mix shrubs, flowers and turf in the same watering zone).

- 2. Automatic irrigation timers should be set to water landscaping during early morning or late evening hours to reduce water losses from evaporation. Adjust irrigation run times for all zones seasonally, reducing watering times and frequency in the cooler months (fall, winter, spring). Adjust sprinkler timer run times to avoid water runoff, especially when irrigating sloped property.
- 3. Selection of drought-tolerant, low water consuming plant varieties should be used to reduce irrigation water consumption. For a list of these plant varieties, refer to Sunset Magazine, October 1988, "The Unthirsty 100," pp. 74-83, or consult a landscape architect.

1

- 4. The availability of recycled water should be investigated as a source to irrigate large landscaped areas.
- 5. Ultra-low-flush water closets, ultra-low-flush urinals, and water-saving showerheads must be installed in both new construction and when remodeling. Low flow faucet aerators should be installed on all sink faucets.
- 6. Significant opportunities for water savings exist in air conditioning systems that utilize evaporative cooling (i.e. employ cooling towers). LADWP should be contacted for specific information on appropriate measures.
- 7. Recirculating or point-of-use hot water systems can reduce water waste in long piping systems where water must be run for considerable periods before heated water reaches the outlet.
- 8. Water conserving clothes washers and dishwashers are now available from many manufacturers. Water savings also represent energy savings, in that the water saved by these appliances is typically heated.

More detailed information regarding these and other water conservation measures can be obtained from LADWP's Water Conservation Office by calling (800) 544-4498.

#### COMMERCIAL ENERGY EFFICIENCY MEASURES

During the design process, the applicant should consult with the Los Angeles Department of Water and Power, Efficiency Solutions Business Group, regarding possible energy efficiency measures. The Efficiency Solutions Business Group encourages customers to consider design alternatives and information to maximize the efficiency of the building envelope, heating, ventilation, and air conditioning, building lighting, water heating, and building mechanical systems. The applicant shall incorporate measures to meet or, if possible, exceed minimum efficiency standards for Title XXIV of the California Code of Regulations. In addition to energy efficiency technical assistance, the Department may offer financial incentives for energy designs that exceed requirements of Title XXIV for energy efficiency.

- Built-in appliances, refrigerators, and space-conditioning equipment should exceed the minimum efficiency levels mandated in the California Code of Regulations.
- 2. Install high-efficiency air conditioning controlled by a computerized energymanagement system in the office and retail spaces which provides the following:
  - A variable air-volume system which results in minimum energy consumption and avoids hot water energy consumption for terminal reheat;
  - A 100-percent outdoor air-economizer cycle to obtain free cooling in appropriate climate zones during dry climatic periods;
  - Sequentially staged operation of air-conditioning equipment in accordance with building demands; and
  - The isolation of air conditioning to any selected floor or floors.
  - Consider the applicability of the use of thermal energy storage to handle cooling loads.
- 3. Cascade ventilation air from high-priority areas before being exhausted, thereby, decreasing the volume of ventilation air required. For example, air could be cascaded from occupied space to corridors and then to mechanical spaces before being exhausted.
- 4. Recycle lighting system heat for space heating during cool weather. Exhaust lighting-system heat from the buildings, via ceiling plenums, to reduce cooling loads in warm weather.
- 5. Install low and medium static-pressure terminal units and ductwork to reduce energy consumption by air-distribution systems.

- 6. Ensure that buildings are well-sealed to prevent outside air from infiltrating and increasing interior space-conditioning loads. Where applicable, design building entrances with vestibules to restrict infiltration of unconditioned air and exhausting of conditioned air.
- 7. A performance check of the installed space-conditioning system should be completed by the developer/installer prior to issuance of the certificate of occupancy to ensure that energy-efficiency measures incorporated into the project operate as designed.
- 8. Finish exterior walls with light-colored materials and high-emissivity characteristics to reduce cooling loads. Finish interior walls with light-colored materials to reflect more light and, thus, increase lighting efficiency.
- 9. Use a white reflective material for roofing meeting California standards for reflectivity and emissivity to reject heat.
- 10. Install thermal insulation in walls and *ceilings* which exceeds requirements established by the California Code of Regulations.
- 11. Design window systems to reduce thermal gain and loss, thus, reducing cooling loads during warm weather and heating loads during cool weather.
- 12. Install heat-rejecting window treatments, such as films, blinds, draperies, or others on appropriate exposures.
- 13. Install fluorescent and high-intensity-discharge (HID) lamps, which give the highest light output per watt of electricity consumed, wherever possible including all street and parking lot lighting to reduce electricity consumption. Use reflectors to direct maximum levels of light to work surfaces.
- 14. Install photo sensitive controls and dimmable electronic ballasts to maximize the use of natural daylight available and reduce artificial lighting load.
- 15. Install occupant-controlled light switches and thermostats to permit individual adjustment of lighting, heating, and cooling to avoid unnecessary energy consumption.
- 16. Install time-controlled interior and exterior public area lighting limited to that necessary for safety and security.
- Control mechanical systems (HVAC and lighting) in the building with timing systems to prevent accidental or inappropriate conditioning or lighting of unoccupied space.

- 18. Incorporate windowless walls or passive solar inset of windows into the project for appropriate exposures.
- 19. Design project to focus pedestrian activity within sheltered outdoor areas.

For additional information concerning these conservation measures, please contact Mr. Adan Reinosa, Outreach Customer Manager, Business Planning, at (213) 361-1742.

W&P ConsrvinMeasures v.082802

## Department of Water and Power

JAMES K. HAHN

Mayor

Commission
KENNETH T. LOMBARD, President
DOMINICK W. RUBALCAVA, Vice President

ANNIE E. CHO SID C. STOLPER LELAND WONG

JOHN C. BURMAHLN, Secretary

DAVID H. WIGGS, General Manager FRANK SALAS, Chief Administrative Officer

July 24, 2003

Christopher A. Joseph & Associates Environmental Planning and Research 11849 West Olympic Boulevard, Suite 101 Los Angeles, CA 90064

Attention Ms. Leah Dierkes

Ladies and Gentlemen:

Subject: Request for Water Service Information

Los Angeles Memorial Coliseum Project

This is in response to your letter, dated June 09, 2003, requesting information regarding the Los Angeles Department of Water and Power's (LADWP) water distribution facilities in the vicinity of the proposed renovation of the Los Angeles Memorial Coliseum, bounded by Exposition Boulevard to the north, Figueroa Street on the east, Martin Luther King Jr. Boulevard on the south, and Vermont Avenue on the west.

1) Where does LADWP receive its supply from?

LADWP receives water from the Los Angeles Aqueduct, local groundwater, Metropolitan Water District, and recycled water.

2) Describe the size/capacity of existing water mains near the project site.

Please see the attached water service maps for the size and location of the existing water lines.

3) Are there any groundwater pumping wells on-site or in the immediate project vicinity?

At this time there are no existing groundwater pumping wells on-site or in the immediate project vicinity.

Water and Power Conservation ... a way of life



4) Are there any existing water service problems/deficiencies in the project area?

At this time, no deficiencies exist in the system in the location of the project, however from the vicinity map, it appears that some of the project area may not have existing water mains.

5) Can the existing water distribution system near the project site accommodate the increased water demand form the project site? If not, do you know to what extent the water mains in the project area would have to be upgraded?

The Project's water consumption (quantity, size, and type of the needed services) is determined by the Developer's engineering staff based on the Los Angeles Department of Building and Safety and applicable building code requirements. The onsite (sprinkler system and private fire hydrants) and offsite (public fire hydrants) fire-flow demands are determined based on the Los Angeles Fire Department (LAFD) and the applicable building code requirements.

Once a determination of the Project's domestic and fire demands has been made, LADWP will assess the need for additional facilities. Should the requirements remain the same as the present site, infrastructure improvements may not be necessary.

6) Do you know if the water pressure (psi) and supply (gpm) in the project area are adequate to meet the Los Angeles Fire Department's fire flow and residual water pressure requirements?

Once the onsite fire-flow demands for the Project are determined, the Developer will need to request a Service Advisory Request (SAR) from LADWP. This SAR will determine whether the pressures in the area are sufficient. If they are not, upgrades to the facilities will be necessary to meet the pressure.

7) Would there be a temporary disruption in water service in the project area when "hooking-up" the new project? If so, do you k now a pproximately how long the disruption would last?

Should the Project require main upgrades in the area due to an increase in demand, a disruption in service may occur. Proper notification will take place if disruption is necessary. If, however, the Project only requires additional water services, it is not anticipated that any significant disruptions will occur.

8) Do you have any recommendations that might ensure that the proposed project would not result in any "significant" water distribution and/or supply impacts?

See attached copy of water conservation measures.

Should you have any questions, please contact me at (213) 367-1211.

Sincerely,

Heidi H.K. Hiraoka, P.E.

Hid Hk Hiraoka

Engineer of Central Design District

Water Distribution Engineering

HHKH:fa/tdt

**Enclosures** 

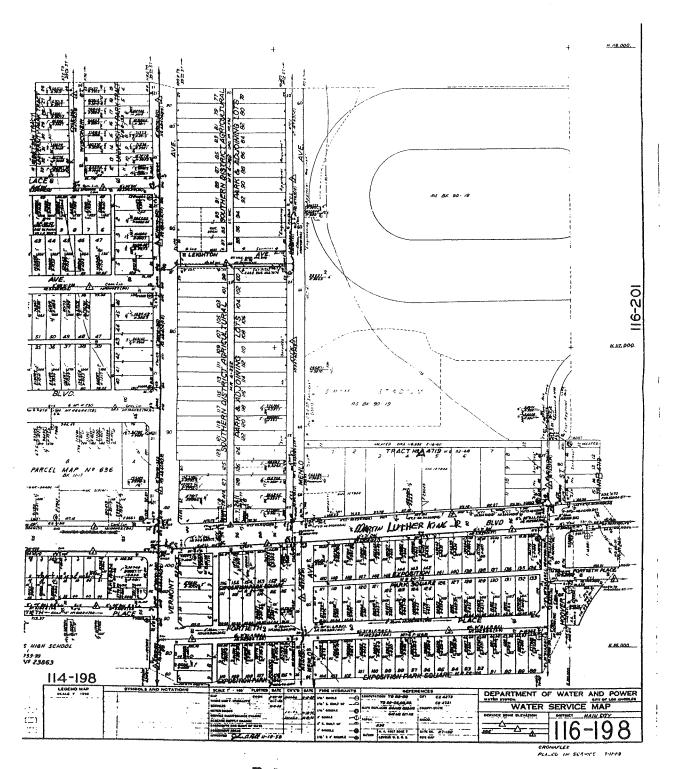
# IMPACT OF THE PROPOSED PROJECT ON THE WATER SYSTEM AND METHODS OF CONSERVING WATER LOS ANGELES DEPARTMENT OF WATER AND POWER

#### IMPACT ON THE WATER SYSTEM

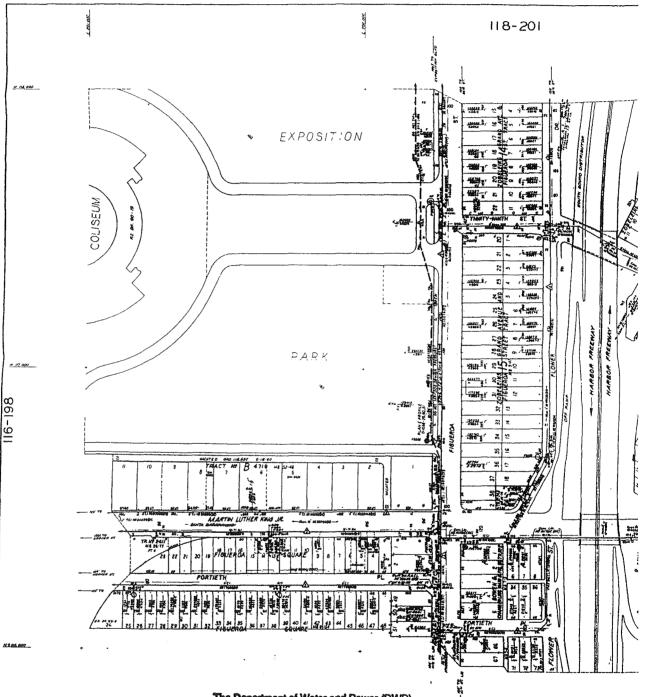
If the estimated water requirements for the proposed project can be served by existing water mains in the adjacent street(s), water service will be provided routinely in accordance with the Department's Rules and Regulations. If the estimated water requirements are greater than the available capacity of the existing distribution facilities, special arrangements must be made with the Department to enlarge the supply line(s). Supply main enlargement will cause short-term impacts on the environment due to construction activities.

In terms of the City's overall water supply condition, the water requirement for any project, which is consistent with the City's General Plan has been taken into account in the planned growth of the Water Services Organization. Together with local groundwater sources, the City operates the Los Angeles-Owens River Aqueduct and is a member of the Metropolitan Water District of Southern California (MWD). These three sources will supply the City's water needs for many years to come.

Statewide drought conditions in the mid-1970s and late 1980s dramatically illustrated the need for water conservation in periods of water shortage. However, water should be conserved in Southern California even in years of normal climate because electrical energy is required to deliver supplemental MWD water supplies to the City and the rest of Southern California. Conserving water will minimize purchases from MWD and contribute to the national need for energy conservation.


#### WATER CONSERVATION

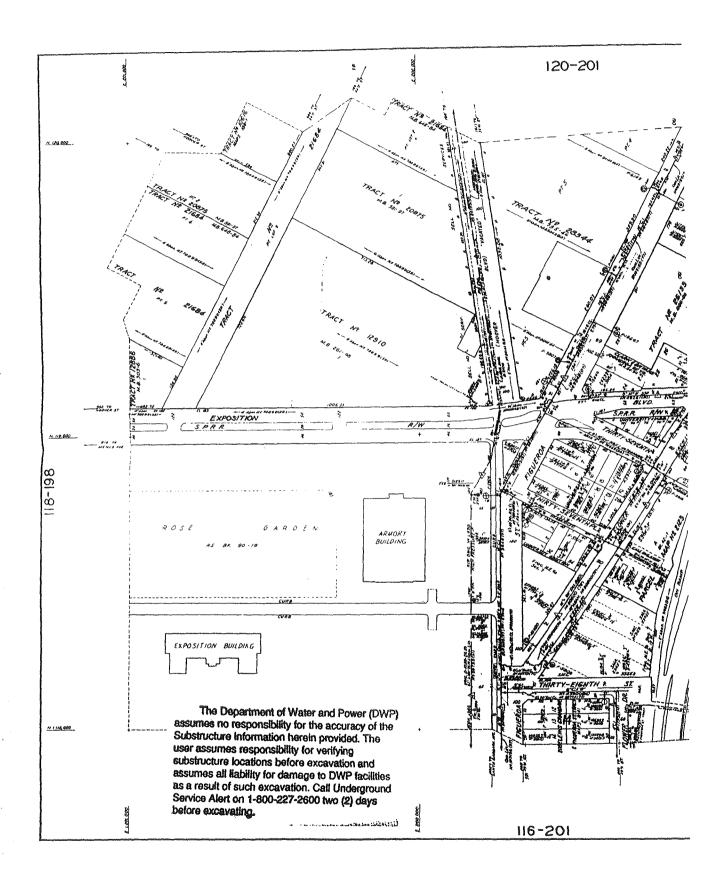
The Water Services Organization will assist residential, commercial, and industrial customers in their efforts to conserve water. Recommendations listed below are examples of steps, which would conserve water in both new and old construction:

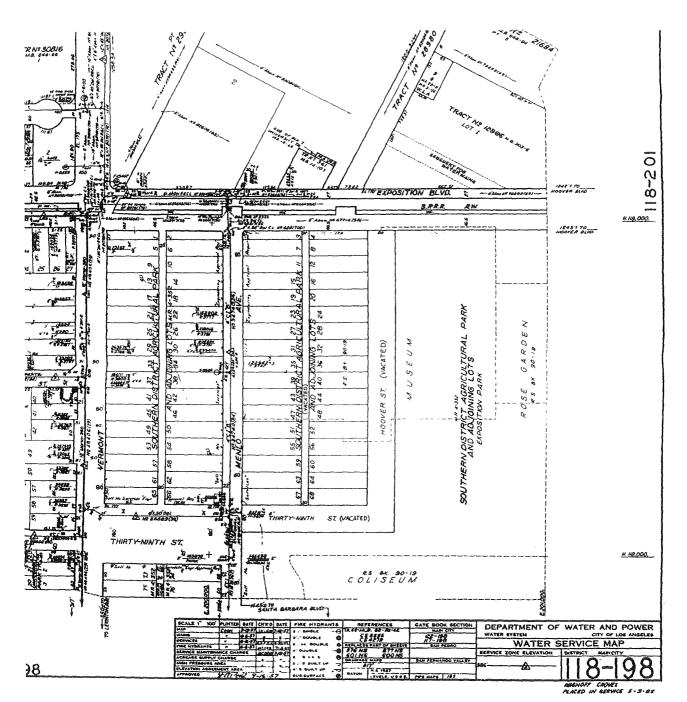

- 1. Automatic sprinkler systems should be set to irrigate landscaping during early morning hours or during the evening to reduce water losses from evaporation. However, care must be taken to reset sprinklers to water less often in cooler months and during the rainfall season so that water is not wasted by excessive landscape irrigation.
- 2. Reclaimed water should be investigated as a source to irrigate large landscaped areas.

- 3. Selection of drought-tolerant, low water consuming plant varieties should be used to reduce irrigation water consumption. For a list of these plant varieties, refer to Sunset Magazine, October 1976, "Good Looking Unthirsty," pp. 78-851, or consult a landscape architect.
- 4. Recirculating hot water systems can reduce water waste in long piping systems where water must be run for considerable periods before hot water is received at the outlet.
- 5. Lower-volume water dosets and water-saving shower heads must be installed in new construction and when remodeling.
- 6. Plumbing fixtures should be selected which reduce potential water loss from leakage due to excessive wear of washers.
  - In addition, the provisions contained in the Water Conservation Ordinance of April 1988 must be adhered to.

More detailed information regarding these and other water conservation measures can be obtained from the Department's Water Conservation Office by calling (213) 367-094




The Department of Water and Power (DWP) assumes no responsibility for the accuracy of the Substructure information herein provided. The user assumes responsibility for verifying substructure locations before excavation and assumes all liability for damage to DWP facilities as a result of such excavation. Call Underground Service Alert on 1-800-227-2600 two (2) days before excavating.




The Department of Water and Power (DWP) assumes no responsibility for the accuracy of the Substructure information herein provided. The user assumes responsibility for verifying substructure locations before excavation and assumes all liability for damage to DWP facilities as a result of such excavation. Call Underground Service Alert on 1-800-227-2600 two (2) days before excavating.

116-201

ECALE I





The Department of Water and Power (DWP) assumes no responsibility for the accuracy of the Substructure information herein provided. The user assumes responsibility for verifying substructure locations before excavation and assumes all liability for damage to DWP facilities as a result of such excavation. Call Underground Service Alert on 1-800-227-2600 two (2) days before excavating.

#### LOS ANGELES POLICE DEPARTMENT

WILLIAM J. BRATTON Chief of Police



P.O. Box 30158 Los Angeles, Calif. 90030 Telephone: (213) 485-4101 TDD: (877) 275-5273 Ref #: 1.1.2

July 8, 2003

Ms. Leah Dierkes Christopher A. Joseph & Associates Assistant Environmental Planner 11849 West Olympic Boulevard, Suite 101 Los Angeles, California 90064

Dear Ms. Dierkes:

#### PROJECT TITLE: LOS ANGELES MEMORIAL COLISEUM 2003

The proposed project involves the Los Angeles Police Department's (LAPD) Southwest Area. I have enclosed Area population, average crime rate per thousand persons, predominant crimes, response time to emergency calls for service, and Area personnel statistics and information. The Department's response time is based on information received from the Area in which the project is located, LAPD's Information Technology Division, and input from Community Relations Section, Crime Prevention Unit (CPU) personnel.

A project of this size would have a significant impact on police services in Southwest Area. The CPU is available to advise you regarding crime prevention features appropriate to the design of the property involved in the project. The LAPD strongly recommends that developers contact CPU personnel to discuss these features.

Upon completion of the involved project, you are encouraged to provide the Southwest Area commanding officer with a diagram of each portion of the property. The diagram should include access routes and any additional information that might facilitate police response.

Questions regarding this response should be referred to Sergeant John Amendola, Community Relations Section, at (213) 485-4101.

Very truly yours,

WILLIAM J. BRATTON

Chief of Police

PRED BOOKER, Lieutenant

Officer in Charge

Community Relations Section Office of the Chief of Police

**Enclosures** 

#### SOUTHWEST AREA

The Los Angeles Memorial Coliseum project is located in Southwest Area, in Reporting District (RD) 378. The Southwest Area covers 12.37 square miles and the station is located at 1546 W. Martin Luther King Boulevard, Los Angeles, California 90062, (213) 485-2582.

The service boundaries of Southwest Area are as follows: Santa Monica Freeway (10) to the north; Los Angeles City boundary, 52<sup>nd</sup> Street and Vernon Avenue to the south; Los Angeles City boundary to the west; and the Harbor Freeway to the east.

The boundaries for RD 378 are as follows: Exposition Boulevard to the north, Vermont Avenue to the west, Martin Luther King Boulevard to the south, and Figueroa Street to the east.

The average response time to emergency calls for service in Southwest Area during 2002 was 11.1 minutes. The Citywide average during 2002 was 10.2 minutes. There are approximately 327 sworn officers and 26 civilian support staff deployed over three watches at Southwest Area.

There were 79 crimes per 1000 persons in Southwest in 2002. Individual RD crime statistics, population, and crimes per 1000 persons are listed on the attached RD information sheets. The predominant crimes in Southwest Area are aggravated assault, other theft and burglary from vehicle.

Prepared by: Community Relations Section Crime Prevention Unit

#### SOUTHWEST AREA

The Los Angeles Memorial Coliseum project is located in Southwest Area, in Reporting District (RD) 378. The Southwest Area covers 12.37 square miles and the station is located at 1546 W. Martin Luther King Boulevard, Los Angeles, California 90062, (213) 485-2582.

The service boundaries of Southwest Area are as follows: Santa Monica Freeway (10) to the north; Los Angeles City boundary,  $52^{nd}$  Street and Vernon Avenue to the south; Los Angeles City boundary to the west; and the Harbor Freeway to the east.

The boundaries for RD 378 are as follows: Exposition Boulevard to the north, Vermont Avenue to the west, Martin Luther King Boulevard to the south, and Figueroa Street to the east.

The average response time to emergency calls for service in Southwest Area during 2002 was 11.1 minutes. The Citywide average during 2002 was 10.2 minutes. There are approximately 327 sworn officers and 26 civilian support staff deployed over three watches at Southwest Area.

There were 79 crimes per 1000 persons in Southwest in 2002. Individual RD crime statistics, population, and crimes per 1000 persons are listed on the attached RD information sheets. The predominant crimes in Southwest Area are aggravated assault, other theft and burglary from vehicle.

Prepared by: Community Relations Section Crime Prevention Unit

### CITY OF LOS ANGELES

**CALIFORNIA** 



JAMES K. HAHN MAYOR

July 29, 2003

DEPARTMENT OF PUBLIC WORKS

BUREAU OF SANITATION

JUDITH A. WILSON DIRECTOR

RAYMOND J. KEARNEY JAMES F. LANGLEY JOSEPH E. MUNDINE ENRIQUE C. ZALDIVAR ASSISTANTORIECTORS

433 SOUTH SPRING ST., SUITE 400 LOS ANGELES. CA 90013 TEL: (213) 473-7999 FAX: (213) 473-6100 TTY: (213) 473-7978

ila.

Leah Dierkes, Assistant Environmental Planner Christopher A. Joseph and Associates 11849 W. Olympic Blvd. Los Angeles, CA 90064

Dear Ms. Dierkes:

BOARD OF

**PUBLIC WORKS** 

VALERIE LYNNÉ SHAW

**ELLEN STEIN** 

VICE POSSIDENT

RONALD LOW ADRIANA RUBALCAVA

JANICE WOOD

**AMISSIONERS** 

#### Los Angeles Memorial Coliseum Project EIR – Request for Wastewater Information

This is in response to your June 9, 2003 letter of request for wastewater information for the Draft Environmental Impact Report. Bureau of Sanitation, Wastewater Engineering Services Division, is providing the following comments on the proposed project after conducting a preliminary evaluation of potential impacts on the wastewater services that were conducted for the proposed site.

Review of the projected flow, the corresponding flow generation factor, wye-maps showing existing sewer lines to the proposed site, and sewer lines capacity indicates the following:

The Projected Wastewater Discharges for the Proposed Project:

| Type Description                        | Average Daily Flow   | Amount of Unit per | Average Daily Flow |
|-----------------------------------------|----------------------|--------------------|--------------------|
|                                         | per Type Description | Use                | (GPD)              |
|                                         | (GPD/UNIT)           |                    |                    |
| Auditorium                              | 4/Seat               | 78,000             | 312,000            |
| (Coliseum)                              |                      |                    |                    |
| Luxury suites                           | 18/seat              | 175X20 seats       | 63,000             |
| Premier seats                           | 4/seat               | 15,000             | 60,000             |
| 500000000000000000000000000000000000000 |                      |                    |                    |

- The City of Los Angeles provides sewer conveyance infrastructure and wastewater treatment services to the proposed project site. The Bureau of Engineering designs and constructs new wastewater facilities. The operational and maintenance elements of the wastewater system are the responsibility of the Bureau of Sanitation, which operates all wastewater collection, treatment and disposal facilities.
- The City's wastewater services area consists of two district drainage areas: the Hyperion Service Area, Hyperion Treatment Plant, the plant full capacity is at 450 million gallon per day. Currently the plant treats an average of 350 million gallon per day. The Hyperion service area covers approximately 515 square miles and services the majority of the Los Angeles population. In addition, the service area includes several non-City agencies that contract with the City for wastewater service. The second service area is the Terminal Island Service Area (TISA). The TISA is approximately 20 square miles and services the Los Angeles Harbor area.

3

JUL JU ZUUJ IJ-JU

· UZ

Leah Dierkes, Assistant Environmental Planner July 29, 2003 Page 2 of 2

• The sewer infrastructure in the vicinity of the proposed project includes existing eight-inch, teninch, twelve-inch and eighteen-inch size lines. Some of these sewer pipes feed into an existing 44inch sewer pipe in Exposition Boulevard and some of these sewer pipes feed into an existing 75inch sewer pipe that flows south in Rodeo Road. All these pipes are located within the boundary of the proposed project. Ultimately, this sewage flow will be conveyed to the HTP.

The proposed renovation of the Los Angeles Memorial Coliseum has less than significant impact on the City of Los Angeles sewer lines.

If you have any questions, please call Belal Tamimi of my staff at (323) 342-6254.

Sincerely.

Adel Hagekhalil, Division Manager

Wastewater Engineering Services Division

Bureau of Sanitation

BOARD OF FIRE COMMISSIONERS

JAY H. GRODIN PRESIDENT

CORINA ALARCON VICE PRESIDENT

ROLAND L. COLEMAN LOUISE L. FRANKEL TYRONE FREEMAN

BLANCA GOMEZ-REVELLES EXECUTIVE ASSISTANT II

CITY OF LOS ANGELES



JAMES K. HAHN MAYOR

200 NORTH MAIN STREET LOS ANGELES, CA 90012 WILLIAM R. BAMATTRE FIRE CHIEF

DEPARTMENT OF FIRE

(213) 485-6003 FAX: (213) 485-8247

http://www.lastd.org

3

3

July 1, 2003

Christopher A. Joseph & Associate 11849 W. Olympic Blvd., Suite 101 Los Angeles, CA 90064

Attn: Leah Dierkes

#### (LOS ANGELES MEMORIAL COLISEUM)

#### PROJECT LOCATION

3711 S. Figueroa

#### PROJECT DESCRIPTION

The proposed project is the renovation of the Los Angeles Memorial Coliseum, including the rehabilitation of portions of the 27.4-acre project site surrounding and containing the Coliseum structure itself. Proposed renovations to the Coliseum would reduce the fixed seating capacity for professional and college football games from the existing level of 92.500 to approximately 68.000 for National Football League games and approximately 78,000 for collegiate football games. (The difference allows USC to "fill" the stadium for the one or two games a year for which they anticipate larger crowds.) In addition to reducing the seating capacity, the project would include 175 luxury suites and a club level of 15,000 premier seats. Upon completion of the proposed renovations, it is currently anticipated that the Coliseum would continue to host the same number and type of events as under existing and historical conditions. One of the stated primary goals of the project is to renovate the Coliseum in conformance with the generally accepted standards of design for National Football League (NFL) stadiums, thus enabling the Coliseum Commission to acquire and maintain an NFL franchise in the City of Los Angeles. The proposed renovation will retain and restore as much of the existing Coliseum façade, bowl geometry and seating areas as physically and practically

Leah Dierkes July 1, 2003 Page 2

possible, within constraints of operational, programmatic and historic restoration guidelines.

The following comments are furnished in response to your request for this Department to review the proposed development:

#### A. Fire Flow

The adequacy of fire protection for a given area is based on required fireflow, response distance from existing fire stations, and this Department's judgment for needs in the area. In general, the required fire-flow is closely related to land use. The quantity of water necessary for fire protection varies with the type of development, life hazard, occupancy, and the degree of fire hazard.

Fire-flow requirements vary from 2,000 gallons per minute (G.P.M.) in low Density Residential areas to 12,000 G.P.M. in high-density commercial or industrial areas. A minimum residual water pressure of 20 pounds per square inch (P.S.I.) is to remain in the water system, with the required gallons per minute flowing. The required fire-flow for this project has been set at no change for G.P.M. from existing fire hydrants.

#### B. Response Distance

(F) The Fire Department has existing fire stations at the following locations for initial response into the area of the proposed development:

Fire Station No. 15
915 S. Jefferson Avenue
Los Angeles, CA 90012
Task Force Truck and Engine Company
Paramedic Rescue Ambulance
EMT Rescue Ambulan
Staff – 14
Miles – .6

Fire Station No. 46
4370 S. Hoover Street
Los Angeles, CA 90037
Single Engine Company
Paramedic Rescue Ambulance
Paramedic Supervisor
Battalion 3 Headquarters

Staff – 8 Miles – 1.2

Fire Station No. 14
3401 S. Central Avenue
Los Angeles, CA 90011
Task Force Truck and Engine Company
Paramedic Rescue Ambulance
EMT Rescue Ambulance
Staff – 14
Miles – 1.8

The above distances were computed to 3711 S. Figueroa.

#### C. Firefighting Access, Apparatus, and Personnel.

Based on these criteria (response distance from existing fire stations), fire protection would be considered adequate.

Submit plot plans indicating access road and turning area for Fire Department approval.

During demolition, the Fire Department access will remain clear and unobstructed.

Fire lane width shall not be less than 20 feet. When a fire lane must accommodate the operation of Fire Department aerial ladder apparatus or where fire hydrants are installed, those portions shall not be less than 28 feet in width.

Where access for a given development requires accommodation of Fire Department apparatus, minimum outside radius of the paved surface shall be 35 feet. An additional six feet of clear space must be maintained beyond the outside radius to a vertical point 13 feet 6 inches above the paved surface of the roadway.

No building or portion of a building shall be constructed more than 150 feet from the edge of a roadway of an improved street, access road, or designated fire lane.

Adequate public and private fire hydrants shall be required.

Leah Dierkes July 1, 2003 Page 4

#### CONCLUSION

The proposed project shall comply with all applicable State and local codes and ordinances, and the guidelines found in the Fire Protection and Fire Prevention Plan, as well as the Safety Plan, both of which are elements of the General Plan of the City of Los Angeles C.P.C. 19708.

For additional information, please contact Inspector Mike Theule of the Construction Services Unit at (213) 485-5964.

WILLIAM R. BAMATTRE Fire Chief

Alfred B. Hernandez, Assistant) Fire Marshal Bureau of Fire Prevention and Public Safety

ABH:MT:gm c:LA Memorial Collseum



June 23, 2003

Ms. Margaret Farmum
Chief Administrative Officer
Los Angeles Memorial Coliseum Commission
3911 S. Figueroa St.
Los Angeles, CA 90017

Dear Ms. Farnum:

I am writing on bohalf of the Los Angeles Conservancy to provide comments on the Notice of Preparation of a Draft Unvironmental Impact Report (DEIR) on the proposed renovation of the Los Angeles Memorial Coliscum.

As you know, the Conservancy, now the largest local historic preservation organization in the country, with over 7,800 member households, has had a long involvement with the Coliseum. The Conservancy worked closely with the Coliseum's former managers on renovation plans for the Raiders, both in the early '90s and after the 1994 Northridge earthquake, and then worked during 1999 with the competing ownership teams to help shape a "New Coliseum" project that would ultimately moet historic preservation standards. From this work, we believe that it is possible to achieve a Coliseum project that creates a state-of-the-art football venue while also retaining the stadium's important historic elements.

The Conservancy understands that bringing the Coliseum into the 21st century involves updating its technology, improving sight lines, enhancing patron amenities, and making the site itself a fun and exciting family venue. We believe that these upgrades may be achieved while also retaining the key attributes that have made the Coliseum a beloved, recognizable landmark of Los Angoles. These include the famous east entrance peristyle (the visual symbol of the Coliseum), the grandour of the stadium's exterior, and the retention of the visibility of key interior elements, including the stadium's defining bowl shape and classical scating arrangement.

Because the current proposal likely does not meet the Secretary of Interior's Standards for Rehabilitation, the DBIR should identify significant mitigation measures that will minimize the significant adverse impact on a cultural resource. It should also analyze a range of alternatives that would avoid this impact, examining more carefully design modifications that would comply with the Standards. While some of these modifications may deviate somewhat from typical NFL programmatic requirements, the feasibility analysis of these alternatives should also take into account the potential financial benefits from Federal Rehabilitation Tax Credits if compliance with the Standards is achieved.

The Conservancy looks forward to continuing to work with the Coliseum Commission in the coming months as this proposal and the Draft EIR move forward.

Suncerely

Ken Hernstein

Director of Prescryation Issues

# APPENDIX B AIR QUALITY ANALYSIS WORKSHEETS

# 2000 AIR QUALITY SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT

| No.   Date     No.   Date      |      |                             |         |                 | Ca     | bon Mor | noxide |        |              |       |        | Ozone  |          |      |      |      | Nitro                     | ogen Dioxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · · |      | Su                     | ılfur Dioxide |                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------|---------|-----------------|--------|---------|--------|--------|--------------|-------|--------|--------|----------|------|------|------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------|------------------------|---------------|--------------------------|
| No.   Conc.   State    |      | 2000                        |         |                 |        | N       | ,      |        |              |       |        |        | No       |      |      |      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      | ****                   |               | Average<br>Compared      |
| South-Research Area   Station   No.   Debut   Show   Sho   | 4    |                             |         |                 | Conc.  | Conc.   |        |        | Days         | Conc. | Conc.  | High   |          |      |      |      | Conc.                     | Standard b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | State                                 |      | Conc.                  | Conc.         | to Federal<br>Standard d |
| No.   Location   No.   Data   1-hour   Shour   Shour   Shour   Shour   Shour   Nour    | Soun | ca/Receptor Area            | Station | , .             |        |         |        |        |              | - F   |        |        |          |      |      |      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |                        |               |                          |
| Los Angeles County                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | · ·                         | No.     | Data            | 1-hour | 8-hour  | 8-hour | 8-hour |              |       |        | hour   | hour     | hour | hour | Data | 1-hour                    | mag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1-hour                                | Data | 1-hourc)               | 24-hourc)     | ppm                      |
| Contract I A County                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Los  | Angeles County              |         |                 |        | -       |        |        |              |       |        |        |          |      |      | -    | Maria Caracana (Caracana) | The state of the s |                                       | -    | Calandary William Inc. |               |                          |
| 2. Northwest Coastal LA County                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1    |                             | 087     | 365             | 7      | 6.0     | 0      | 0      | 365          | 0.14  | 0.105  | 0.086  | 1        | 4    | 8    | 353  | 0.16                      | 0.0404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                     | 305* | 0.08*                  | 0.010*        | 0.0009°                  |
| 3 Southwest Coastal LA County 074 365 9 7.0 0 0 359 0.10 0.075 0.065 0 0 1 384 0.13 0.0275 0 365 0.07 0.017 0.006  West San Fernando Valley 069 365 8 6.1 0 0 365 0.12 0.080 0.089 0 0 0 6 385 0.11 0.0285 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2    | Northwest Coastal LA County |         |                 | 6      |         | Ď      | -      |              |       |        |        | 'n       | ň    | _    |      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                     | 5    |                        |               |                          |
| ## Supplies   March San Fernando Valley   072   383   10   5.8   0   0   365   0.12   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080   0.080    | 3    |                             |         |                 | -      |         | ŏ      | -      |              |       |        |        | ñ        | -    | _    |      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                     | 1    |                        |               |                          |
| Formardo Valley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4    |                             |         |                 |        |         | ŏ      | -      |              |       |        |        | •        | -    | •    |      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                     |      |                        |               | 0.0017                   |
| East San Fernando Valley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6    |                             |         |                 |        |         | 1      |        |              |       |        |        | ñ        | -    |      |      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                     | 1    |                        |               |                          |
| See Stan Gabriel Valley   088   357   9   7.4   0   0   362   0.16   0.134   0.106   7   14   19   355   0.17   0.0286   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7    | East San Fernando Valley    | 069     | 365             | 8      | 6.1     | 0      |        |              | 0.15  |        | 0.098  |          | 11   |      |      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 357  | 0.01                   |               | 0.0001                   |
| 9 East San Gabriel Valley 1 060 365 5 4.9 0 0 0 365 0.17 0.141 0.109 11 16 32 365 0.15 0.0366 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8    | West San Gabriel Valley     | 088     | 357             | 9      | 7.4     | 0      | 0      | 362          | 0.16  | 0.134  | 0.106  |          |      |      |      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                     |      |                        |               |                          |
| 10 Pomona-Wilainut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8    | East San Gabriel Valley 1   | 060     | 365             | 5      | 4.9     | 0      | 0      | 365          | 0.17  | 0.141  | 0.109  | 11       | 16   | 32   |      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ō                                     |      |                        |               |                          |
| 11 South San Gabriel Valley 085 365 7 53 0 0 365 0.14 0.114 0.086 2 4 11 385 0.14 0.0366 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -    |                             |         |                 | 4      | 3.1     | 0      | 0      | 358          | 0.17  | 0.148  | 0.113  | 11       | 22   | 39   | 349  | 0.13                      | 0.0290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                     |      |                        |               |                          |
| 12 South Central LA County 1 084 385 13 10.0 2 6 355 0.09 0.064 0.051 0 0 0 380 0.14 0.0386 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                             | 075     |                 | 7      |         | . 0    | 0      | 363          | 0.15  | 0.124  | 0.089  | 3        | . 5  | 18   | 358  | 0.14                      | 0.0435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                     |      |                        |               |                          |
| 12 South Central LA County 2 801 222* 13* 9.5* 1* 3* 9.5* 1* 3* 322* 0.12* 0.095* 0.085* 0* 4* 4* 4* 221* 0.11* 0.0225* 0*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11   | South San Gabriel Valley    | 085     |                 | 7      | 5.3     | 0      | 0      | 365          | 0.14  | 0.114  | 0.086  | 2        | 4    | 11   | 365  | 0.14                      | 0.0366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                     |      |                        |               |                          |
| 33 Santa Clarita Valley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                             | 084     |                 | 13     | 10.0    | 2      | 6      | 365          | 0.09  | 0.064  | 0.051  | 0        | 0    | 0    | 360  | 0.14                      | 0.0386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                     |      |                        |               |                          |
| Orange County 16 North Crange County 3177 364 14 6.1 0 0 364 0.14 0.103 0.085 1 4 8 8 269* 0.12* 0.0304* 0*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                             |         |                 |        |         |        |        |              |       |        |        | 0*       |      |      | 221° | 0.11*                     | 0.0292*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.                                    | 1    |                        |               |                          |
| 16 North Crange County 3177 364 14 6.1 0 0 0 364 0.14 0.103 0.085 1 4 8 269° 0.12° 0.0304° 0°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -    |                             | 089     | 345             | 6      | 4.9     | 0      | 0      | 360          | 0.13  | 0.111  | 0.099  | 11       | 16   | 31   | 360  | 0.10                      | 0.0246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                     |      |                        |               |                          |
| 77 Central Orange County 3176 360 8 6.8 0 0 0 364 0.13 0.101 0.075 1 1 9 364 0.13 0.0300 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                             |         |                 |        |         |        |        |              |       |        |        |          |      |      |      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |                        |               |                          |
| 18 North Coastal Orange County 3195   339°   8°   6.3°   0°   0°   365   0.10   0.087   0.087   1   1   1   362   0.11   0.0205   0   363   0.02   0.008   0.000    19 Saddleback Valley 1   3186   244°   5°   2.3°   0°   0°   244°   0.13°   0.110°   0.068°   1°   2°   3°   2   2°   2°   2°   2°   2°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                             |         |                 |        |         |        |        |              | 0.14  | 0.103  |        | 1        | 4    | 8    | 269° | 0.12*                     | 0.0304°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0°                                    |      |                        |               | -                        |
| 19 Saddleback Valley 1 3186 244* 5* 2.3* 0* 0* 0* 244* 0.13* 0.110* 0.066* 1* 2* 3*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                             |         |                 |        |         | •      |        |              |       |        |        |          | 1    |      |      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 1    |                        |               |                          |
| 19   Saddlebeck Valley 2   3812   305°   4°   3.3°   0°   0°   305°   0.15°   0.129°   0.099°   2°   8°   25°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                             |         |                 |        |         | •      |        |              |       |        |        |          |      | •    | 362  | 0.11                      | 0.0205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                     | 363  | 0.02                   | 0.008         | 0.0005                   |
| Riverside County   22   Norco/Corona   4155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                             |         |                 |        |         |        |        |              |       |        |        |          |      |      | -    |                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |      |                        |               |                          |
| 22 Norco/Corona 4155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -    |                             | 3812    | 305°            | 4°     | 3.3*    | . 0*   | 0*     | 305°         | 0.15* | 0.129* | 0.089* | 2*       | 8*   | 25°  |      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |                        |               |                          |
| 23 Metropolitan Riverside County 1 4144 365 5 4.3 0 0 0 365 0.14 0.113 0.106 3 29 41 298* 0.10* 0.0236* 0* 329* 0.11* 0.041* 0.000  24 Metropolitan Riverside County 2 4146 365 9 4.3 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                             |         |                 |        |         |        |        |              |       |        |        |          |      |      |      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 1    |                        |               |                          |
| 23 Metropolitan Riverside County 2 4146 365 9 4.3 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                             |         | _               |        |         |        |        | -            |       |        |        |          |      |      | -    | -                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 1    |                        |               | _                        |
| 24 Pents Valley 4149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                             |         |                 | •      |         | -      | •      |              |       |        | 0.106  | 3        | 29   | 41   | 298* | 0.10*                     | 0.0236*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0*                                    | 329* | 0.11*                  | 0.041*        | 0.0008°                  |
| 25 Lake Elsinore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                             |         |                 | -      |         | _      | -      | 1            |       |        |        |          |      |      | -    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 1    |                        |               |                          |
| 29 Banning Airport 4164 363 0.14 0.111 0.103 4 39 52 365 0.21 0.0237 0 30 Coachella Valley 1** 4137 353 3 1.6 0 0 355 0.12 0.105 0.096 0 33 40 337 0.07 0.0178 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _    |                             |         |                 |        |         |        |        |              |       |        |        |          |      |      |      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |                        |               |                          |
| 30 Coachella Valley 1** 4137 353 3 1.6 0 0 355 0.12 0.105 0.096 0 33 40 337 0.07 0.0178 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                             |         | 1               | 4      | 2.0     | U      |        |              |       |        |        |          |      |      |      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                     | *-   |                        |               |                          |
| 30 Coschella Valley 2** 4157 87* 3* 2.1* 0* 0* 354 0.11 0.096 0.089 0 9 43 87* 0.06* 0.0099* 0*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                             |         |                 | -      | 4.0     | _      |        |              |       |        |        | -        |      |      |      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                     | 1    |                        |               | -                        |
| San Bernardino County  32 Northwest San Bernardino Valley 5175 348 4 2.6 0 0 365 0.18 0.159 0.118 10 19 43 357 0.15 0.0380 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                             |         |                 |        |         | -      |        |              |       |        |        | -        |      |      |      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 1    |                        |               |                          |
| 32 Northwest San Bernardino Valley 5175 348 4 2.6 0 0 365 0.18 0.159 0.118 10 19 43 357 0.15 0.0380 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -    |                             | 4131    | <del>  °′</del> |        | 2.1     |        | U      | 354          | U.11  | 0.096  | 0.089  | <u> </u> | 9    | 43   | 8/-  | 0.06                      | 0.0099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U*                                    |      | ***                    |               |                          |
| 33 Southwest San Bernardino Valley 5817 365 0.17 0.139 0.101 7 16 36 365 0.12 0.0364 0 274* 0.02* 0.010* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*           |      |                             | 6476    | 240             |        |         | _      | •      | 000          | 0.40  | 0.450  | 0.440  | 40       |      |      |      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                     | }    |                        |               |                          |
| 34 Central San Bernardino Valley 1 5197 365 0.17 0.139 0.101 7 16 36 365 0.12 0.0364 0 274* 0.02* 0.010* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*           |      |                             |         | 348             | 4      | 2.0     | Ų      | -      | 1            |       |        | ****   |          | 19   |      | 1    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                     | 1    |                        |               | -                        |
| 34 Central San Bernardino Valley 2 5203 304° 5° 4.3° 0° 0° 365 0.15 0.125 0.111 7 27 48 365 0.10 0.0325 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                             |         | -               |        |         | _      |        | 1            |       |        |        |          | 16   |      | i    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 1    |                        |               | 0.0040*                  |
| 35 East San Bernardino Valley 5204 365 0.15 0.133 0.113 11 51 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                             |         | ł               | <br>5° | A 3°    | O°     |        |              |       |        |        | •        |      |      |      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                     | 1    | 0.02                   | 0.010         | 0.0018                   |
| 37 Central San Bernardino Mountains 5181 354 0.18 0.149 0.123 17 73 85 38 Eastl San Bernardino Mountains 5818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                             |         |                 | _      |         |        | -      |              |       |        |        |          |      |      |      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                     | 1    |                        | -             |                          |
| 38 Easti San Bernardino Mountains 5818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                             |         | _               | _      | -       |        |        |              |       |        |        |          |      |      | l    | _                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 1    |                        |               |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38   |                             |         |                 |        |         |        |        | 1            |       |        |        |          |      |      | 1    | -                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 1    |                        |               |                          |
| INVESTED BETWEEN IN THE TAX THE TO SEE THE HOUSE DISCUSSION OF THE PARTY OF THE PAR |      | District Maximum            |         | <del> </del>    | 14     | 10.0    | 2      | 6      | <del> </del> | 0.18  | 0.159  | 0.123  | 17       | 73   | 85   | -    | 0.21                      | 0.0435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                     |      | 0.17                   | 0.041         | 0.0018                   |

ppm - Parts Per Million parts of air, by volume.

AAM = Annual Arithmetic Mean

-- - Pollutant not monitored.

\*Less than 12 full months of data. May not be representative.

"Satton Sea Air Basin.

The other federal standards (3-hour average > 0.50 ppm, and 24-hour average > 0.14 ppm) were not exceeded either.



South Coast Air Quality Management District 21865 East Copley Drive Diamond Bar, CA 91765-4182 http://www.aqmd.gov

The map showing the locations of source/receptor areas can be accessed via the Internet at http://www.aqmd.gov/smog/areamap.html. Locations of source/receptor areas are shown on the "South Coast Air Quality Management District Air Monitoring Areas" map available free of charge from SCAQMD Public Information.

a) - The federal 1-hour standard (1-hour average CO > 35 ppm) and state 1-hour standard (1-hour average CO > 20 ppm) were not exceeded.

b) - The federal standard is annual arithmetic mean NO<sub>2</sub> greater than 0.0534 ppm. No location exceeded this standard.

c) - The state standards are 1-hour average > 0.25 ppm and 24-hour average > 0.045 ppm. No location exceeded state standards.

d) - The federal standard is annual arithmetic mean SO<sub>2</sub> > 0.03 ppm. No location exceeded this standard.

# 2001 AIR QUALITY SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT

|                                                                   |                           |                  | Susp               | ended Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | iculates PM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 e)                         |                     | Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | spended P                  | articulates f                                          | PM2.5 <sup>f)</sup>          | Pa          | rticulates T      | SP <sup>g)</sup>         | Lea               | ıd g)                        | Si            | ulfate <sup>g)</sup>                         |
|-------------------------------------------------------------------|---------------------------|------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------|------------------------------|-------------|-------------------|--------------------------|-------------------|------------------------------|---------------|----------------------------------------------|
| 2001                                                              |                           | No.<br>Days      | Max.<br>Conc.      | No. (%) Exce<br>Stan<br>Federal<br>> 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ann<br>Avera<br>AAM          |                     | No.<br>Days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No.<br>Max.<br>Conc.<br>in | (%) Sample<br>Exceeding<br>Standard<br>Federal<br>> 65 | Annual<br>Averages i)<br>AAM | No.<br>Days | Max.<br>Conc.     | Annual<br>Average<br>AAM | Max.<br>Monthly   | Max.<br>Quarterly<br>Average | Max.<br>Conc. | o. (%) Samples Exceeding Standard State ≥ 25 |
| Source/Receptor Area                                              | Station                   | of               | µg/m³              | µg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | µg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Conc.                        | Conc.               | of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | µg/m³                      | µg/m <sup>3</sup>                                      | Conc.                        | of          | μg/m <sup>3</sup> | Conc.                    | Conc. j)          | Conc. j)                     | µg/m³         | µg/m³                                        |
| No. Location                                                      | No.                       | Data             | 24-hour            | 24-hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24-hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | μg/m <sup>3</sup>            | µg/m <sup>3</sup>   | Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24-hour                    | 24-hour                                                | μg/m <sup>3</sup>            | Data        | 24-hour           | μg/m <sup>3</sup>        | µg/m <sup>3</sup> | μg/m <sup>3</sup>            | 24-hour       | 24-hour                                      |
| LOS ANGELES COUNTY                                                | West of the second states |                  | TOTAL COMP.        | ACCUSATION OF THE PARTY OF THE | Observation of the state of the |                              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                        |                              | -           |                   |                          |                   |                              |               |                                              |
| 1 Central LA                                                      | 087                       | 61               | 97                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20(33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44.2                         | 40.3                | 334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73.4                       | 4(1.2)                                                 | 22.9                         | 61          | 131               | 75.4                     | 0.06              | 0.05                         | 15.9          | Ω                                            |
| 2 Northwest Coastal LA County                                     | 091                       |                  |                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                        |                              | 60          | 81                | 46.5                     |                   |                              | 15.6          | Ö                                            |
| 3 Southwest Coastal LA County                                     | 094                       | 58               | 75                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37.1                         | 34.4                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                                        |                              | 61          | 118               | 71.4                     | 0.04              | 0.04                         | 20.6          | 0                                            |
| 4 South Coastal LA County                                         | 072                       | 59               | 91                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37.4                         | 34.8                | 317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 72.9                       | 1(0.3)                                                 | 21.4                         | 68          | 113               | 67.2                     | 0.05              | 0.04                         | 15.9          | 0                                            |
| 6 West San Fernando Valley                                        | 074                       | -                |                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                     | 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 71.1                       | 1(0.9)                                                 | 18.5                         |             |                   |                          |                   |                              | -             |                                              |
| 7 East San Fernando Valley<br>8 West San Gabriel Valley           | 069<br>088                | 61               | 86                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40.9                         | 36.9                | 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 94.7                       | 4(3.4)                                                 | 24.9                         | -           |                   | 40.6                     | -                 | -                            |               |                                              |
| 9 East San Gabriel Valley 1                                       | 060                       | <br>58           | 106                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22(38)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45.3                         | 39.9                | 110<br>308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 78.1<br>79.7               | 1(0.9)<br>4(1.3)                                       | 20.9<br>21.8                 | 60<br>59    | 88<br>178         | 49.6<br>93.9             | -                 |                              | 13.4<br>14.1  | 0                                            |
| 9 East San Gabriel Valley 2                                       | 591                       |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22(30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 43.3                         |                     | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            | 4(1.3)                                                 |                              | 39          | 1/0               | 93.8                     |                   | <u> </u>                     |               |                                              |
| 10 Pomona/Walnut Valley                                           | 075                       | _                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              | _                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                          |                                                        |                              |             | _                 |                          |                   |                              |               |                                              |
| 11 South San Gabriel Valley                                       | 085                       | -                | _                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***                          |                     | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 77.3                       | 3(3.2)                                                 | 26.1                         | 59          | 146               | 76.9                     | 0.07              | 0.05                         | 14.5          | 0                                            |
| 12 South Central LA County                                        | 084                       | -                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                     | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73.1                       | 3(2.6)                                                 | 24.5                         | 58          | 385               | 90.2                     | 0.23              | 0.12                         | 15.4          | Ō                                            |
| 13 Santa Clarita Valley                                           | 0901)                     | 61               | 62                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32.0                         | 28.5                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                        |                              | -           |                   |                          |                   |                              | -             |                                              |
| ORANGE COUNTY                                                     |                           |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | THE WATER CO.                                          |                              |             |                   |                          |                   |                              |               |                                              |
| 16 North Orange County                                            | 3177                      | -                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                          |                                                        |                              | -           |                   |                          |                   |                              |               |                                              |
| 17 Central Orange County                                          | 3176                      | 46°              | 93*                | 0*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9(20)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36.0*                        | 33.7°               | 252*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70.8*                      | 1(0.4)*                                                | 22.4*                        |             |                   |                          |                   |                              |               |                                              |
| 18 North Coastal Orange County                                    | 3195                      |                  |                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                        |                              |             |                   |                          |                   |                              | -             |                                              |
| 19 Saddleback Valley                                              | 3812                      | 57               | 60                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.4                         | 24.0                | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 53.4                       | 0                                                      | 15.8                         | -           |                   | **                       |                   |                              |               |                                              |
| RIVERSIDE COUNTY 22 Norco/Corona                                  | 4455                      |                  | 400                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40(00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44.0                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                        |                              |             |                   |                          |                   |                              |               |                                              |
| 23 Metropolitan Riverside County 1                                | 4155<br>4144              | 54<br>117        | 109<br>136         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18(33)<br>78(67)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44.8<br>63.1                 | 39.3<br>54.3        | 325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 98.0                       | 19(5.8)                                                | <br>31.1                     | 57          | 296               | 123.7                    | 0.04              | 0.03                         | 10.7          | 0                                            |
| 23 Metropolitan Riverside County 2                                | 4146                      | ]''              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70(01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 03.1                         | J4.3<br>            | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74.9                       | 5(4.7)                                                 | 28.3                         | 61          | 182               | 86.8                     | 0.04              | 0.03                         | 9.2           | 0                                            |
| 24 Perris Valley                                                  | 4149                      | 60               | 86                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16(27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40.8                         | 36.0                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                        |                              | -           | -                 |                          |                   |                              |               | -                                            |
| 25 Lake Elsinore                                                  | 4158                      | -                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                        |                              | T           |                   |                          |                   |                              | _             |                                              |
| 29 Banning Airport                                                | 4164                      | 54               | 219                | 1(1.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35.1                         | 26.7                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                        |                              | -           |                   |                          |                   |                              | _             |                                              |
| 30 Coachella Valley 1**                                           | 4137                      | 49*              | 53k)               | 0k)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1(2) <sup>k</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26.7 <sup>k</sup> )          | 23.9k)              | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44.7                       | 0                                                      | 10.8                         | -           |                   |                          | )                 |                              | _             | -                                            |
| 30 Coachella Valley 2**                                           | 4157                      | 112 <sup>k</sup> | 149 <sup>k</sup> ) | 0k)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50(45)k)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50.2 <sup>k)</sup>           | 44.3 <sup>k</sup> ) | 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33.5                       | 0                                                      | 12.2                         | -           | _                 |                          |                   |                              | -             |                                              |
| SAN BERNARDINO COUNTY                                             |                           |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second second second |                     | THE PROPERTY OF THE PARTY OF TH |                            | *****                                                  |                              | 1           |                   |                          |                   |                              |               | 2010                                         |
| 32 Northwest San Bernardino Valley                                | 5175                      | -                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                        | _                            | 58          | 171               | 69.7                     | 0.05              | 0.04                         | 10.7          | 0                                            |
| 33 Southwest San Bernardino Valley                                | 5817                      | 64               | 166                | 1(1.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27(42)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52.4                         | 46.2                | 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 71.2                       | 2(1.8)                                                 | 26.2                         | -           | -                 |                          | -                 | _                            | -             |                                              |
| 34 Central San Bernardino Valley 1                                | 5197                      | 60               | 106                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 34(57)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50.5                         | 43.8                | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74.8                       | 4(3.5)                                                 | 24.8                         | 60          | 237               | 102.1                    |                   |                              | 10.7          | 0                                            |
| 34 Central San Bernardino Valley 2                                | 5203                      | 60               | 106                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31(52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52.0                         | 45.2                | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 78.5                       | 5(4.5)                                                 | 26.2                         | 55          | 224               | 101.3                    | 0.05              | 0.04                         | 11.5          | 0                                            |
| 35 East San Bernardino Valley 37 Central San Bernardino Mountains | 5204<br>5181              | 49*              | 102*               | 0*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22(45)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46.6*                        | 39.6*               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                        |                              | -           |                   |                          | -                 |                              |               | _                                            |
| 38 East San Bernardino Mountains                                  | 5818                      |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                     | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34.6                       | 0                                                      | 10.9                         | -           |                   | **                       |                   | -                            | -             |                                              |
| DISTRICT MAXIMUM                                                  |                           |                  | 219                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63.1                         | 54,3                | i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 98.0                       | 19                                                     | 31.1                         | -           | 385               | 123.7                    | 0.23              | 0.12                         | 20.6          | 0                                            |
| DISTRICT WHATHOW                                                  |                           |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | THE RESERVE OF THE PERSON NAMED IN COLUMN 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.00.1                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                        | Della de metera de           |             |                   | 120.1                    | 1.2.2             | V. 14                        |               |                                              |

μg/m³ - Micrograms per cubic meter of air.

AAM - Annual Arithmetic Mean

AGM - Annual Geometric Mean

-- - Pollutant not monitored.

\*- Less than 12 full months of data. May not be representative.

- e) PM10 samples were collected every 6 days (every 3 days at Station Numbers 4144 and 4157) using the size-selective inlet high volume sampler with quartz filter media.
- f) PM2.5 samples were collected every 3 days at all sites except for the following sites: Station Numbers 060, 072, 087, 3176, and 4144 where samples were taken every day, and Station Number 5818 where samples were taken every 6 days.
- g) Total suspended particulates, lead, and sulfate were determined from samples collected every 6 days by the high volume sampler method, on glass fiber filter media.
- h) Federal PM10 standard is AAM > 50 μg/m³; and state standard is AGM > 30 μg/m³.
- i) Federal PM2.5 standard is AAM > 15 µg/m<sup>3</sup>.
- j) Federal lead standard is quarterly average > 1.5 μg/m³; and state standard is monthly average ≥ 1.5 μg/m³. No location exceeded lead standards. Special monitoring immediately downwind of stationary sources of lead was carried out at four locations in 2000. The maximum monthly average concentration was 0.57 μg/m³, and the maximum quarterly average concentration was 0.49 μg/m³, both recorded in Area 1, Central Los Angeles.
- k) The data for the samples coffected on high-wind-days (245 μg/m³ on 6/3/01, 180 μg/m³ on 6/12/01, 155 μg/m³ on 7/3/01, 604 μg/m³ on 8/17/01 and 165 μg/m³ on 9/13/01 at Station Number 4157; and 432 μg/m³ on 7/3/01 at Station Number 4137) were excluded in accordance with EPA's Natural Events Policy.
- I) Station relocated in May 2001.



Printed on Recycled Paper

<sup>\*\* -</sup> Salton Sea Air Basin.

Page: 1

URBEMIS 2002 For Windows 7.4.2

File Name:

<Not Saved>

Project Name:

Coliseum 78000

Project Location:

South Coast Air Basin (Los Angeles area)

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

SUMMARY REPORT (Pounds/Day - Summer)

| CONSTRUCTION | MOTESTAR | PSTIMATES |
|--------------|----------|-----------|

| CONSTRUCTION EMISSION ESTIMATE | ٥           |        |          |      |        |         |        |
|--------------------------------|-------------|--------|----------|------|--------|---------|--------|
|                                |             |        |          |      | PM10   | PM10    | PM10   |
| *** 2005 ***                   | ROG         | NОх    | CO       | SO2  | TOTAL  | EXHAUST | DUST   |
| TOTALS (lbs/day,unmitigated)   | 56.71       | 638.31 | 348.54   | 5.88 | 214.21 | 21.69   | 192.52 |
| TOTALS (lbs/day, mitigated)    | 56.71       | 638.31 | 348.54   | 5.88 | 10.95  | 4.34    | 6.61   |
|                                |             |        |          |      | PM10   | PM10    | PM10   |
| *** 2006 ***                   | ROG         | NOx    | CO       | SO2  | TOTAL  | EXHAUST | DUST   |
| TOTALS (lbs/day,unmitigated)   | 19.55       | 140.63 | 150.02   | 0.00 | 5.91   | 5.91    | 0.00   |
| TOTALS (lbs/day, mitigated)    | 19.55       | 140.63 | 150.02   | 0.00 | 1.18   | 1.18    | 0.00   |
| AREA SOURCE EMISSION ESTIMATES |             |        |          |      |        |         |        |
|                                | ROG         | NOx    | co       | SO2  | PM10   |         |        |
| TOTALS (lbs/day,unmitigated)   | 0.00        | 0.00   | 0.00     | 0.00 | 0.00   |         |        |
| OPERATIONAL (VEHICLE) EMISSION | ESTIMATES   |        |          |      |        |         |        |
| Ormania (vantosa) antosas.     | ROG         | NOx    | CO       | SO2  | PM10   |         |        |
| TOTALS (lbs/day,unmitigated)   | 1,705.04    | 257.64 | 2,811.06 | 2.19 | 201.13 |         |        |
| SUM OF AREA AND OPERATIONAL EM | ISSION ESTI | MATES  |          |      |        |         |        |
|                                | ROG         | NOx    | CO       | SO2  | PM10   |         |        |
| TOTALS (lbs/day,unmitigated)   | 1,705.04    | 257.64 | 2,811.06 | 2.19 | 201.13 |         |        |

#### URBEMIS 2002 For Windows 7.4.2

le Name:

<Not Saved>

Coliseum 78000

oject Name: Project Location:

South Coast Air Basin (Los Angeles area)

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

#### DETAIL REPORT (Pounds/Day - Summer)

Ponstruction Start Month and Year: January, 2005

onstruction Duration: 22

tal Land Use Area to be Developed: 19.5 acres
iximum Acreage Disturbed Per Day: 5 acres
Single Family Units: 0 Multi-Family Units: 0
tetail/Office/Institutional/Industrial Square Footage: 0

NSTRUCTION EMISSION ESTIMATES UNMITIGATED (lbs/day)

| Mainuction buildion balling                      | IIDS OMITII          | .daiao       | s/day)       |      | PM10   | PM10        | PM10   |
|--------------------------------------------------|----------------------|--------------|--------------|------|--------|-------------|--------|
| Source<br>*** 2005***                            | ROG                  | NOx          | СО           | SO2  | TOTAL  | EXHAUST     | DUST   |
| nase 1 - Demolition Emissio                      | ns                   |              |              |      |        |             |        |
| igitive Dust                                     | -                    |              | -            | -    | 0.94   | _           | 0.94   |
| Off-Road Diesel                                  | 26.67                | 196.71       | 203.09       | _    | 8.71   | 8.71        | 0.00   |
| On-Road Diesel                                   | 0.28<br>0.37         | 6.37         | 1.06         | 0.09 | 0.15   | 0.13        | 0.02   |
| orker Trips                                      | 0.37                 | 0.70         | 7.46         | 0.00 | 0.03   | 0.01        | 0.02   |
| · Maximum lbs/day                                | 27.32                | 203.78       | 211.61       | 0.09 | 9.83   | 8.85        | 0.98   |
| Phase 2 - Site Grading Emiss                     | ions                 |              |              |      |        |             |        |
| Pugitive Dust                                    | -                    | -            | _            |      | 191.00 | -           | 191.00 |
| Ef-Road Diesel                                   | 37.27<br>19.30       | 286.80       | 274.72       | -    | 12.96  | 12.96       | 0.00   |
| 1-Road Diesel                                    | 19.30                | 351.45       | 72.15        | 5.88 | 10.23  | 8.73        | 1.50   |
| orker Trips                                      | 0.14                 | 0.06         | 1.67         | 0.00 | 0.02   | 0.00        | 0.02   |
| Maximum 1bs/day                                  | 56.71                | 638.31       | 348.54       | 5.88 | 214.21 | 21.69       | 192.52 |
| hase 3 - Building Construct                      |                      | 4.5.50       | 146.06       |      | 6.00   | <i>c</i> 00 | 0.00   |
| Ldg Const Off-Road Diesel                        | 19.55                | 145.59       | 146.86       | -    | 6.29   | 6.29        | 0.00   |
| bidg Const Worker Trips                          | 0.00                 | 0.00         | 0.00         | 0.00 | 0.00   | 0.00        | 0.00   |
| Arch Coatings Off-Gas                            | 0.00                 | - 0.00       | - 00         |      | - 0.00 |             | 0.00   |
| irch Coatings Worker Trips                       | 0.00                 | 0.00         | 0.00         | 0.00 | 0.00   | 0.00        | 0.00   |
| sphalt Off-Gas                                   | 0.00                 |              |              | _    | 0.00   | 0.00        |        |
| sphalt Off-Road Diesel                           | 0.00<br>0.00<br>0.00 | 0.00<br>0.00 | 0.00<br>0.00 | 0.00 | 0.00   | 0.00        | 0.00   |
| Asphalt On-Road Diesel                           | 0.00                 | 0.00         | 0.00         | 0.00 | 0.00   | 0.00        | 0.00   |
| Asphalt Worker Trips                             | 19.55                | 145.59       | 146.86       | 0.00 | 6.29   | 6.29        | 0.00   |
| Maximum lbs/day                                  |                      | 143.39       | 140.00       | 0.00 | 0.29   |             |        |
| Max lbs/day all phases                           | 56.71                | 638.31       | 348.54       | 5.88 | 214.21 | 21.69       | 192.52 |
| *** 2006***                                      |                      |              |              |      |        |             |        |
| nase 1 - Demolition Emissio                      | ns                   |              |              |      |        |             |        |
| Lagitive Dust                                    | •                    | _            | _            |      | 0.00   |             | 0.00   |
| Off-Road Diesel                                  | 0.00                 | 0.00         | 0.00         | -    | 0.00   | 0.00        | 0.00   |
| On-Road Diesel                                   | 0.00                 | 0.00         | 0.00         | 0.00 | 0.00   | 0.00        | 0.00   |
| orker Trips                                      | 0.00                 | 0.00         | 0.00         | 0.00 | 0.00   | 0.00        | 0.00   |
| Maximum lbs/day                                  | 0.00                 | 0.00         | 0.00         | 0.00 | 0.00   | 0.00        | 0.00   |
| Phase 2 - Site Grading Emiss                     | ions                 |              |              |      |        |             |        |
| igitive Dust ويت                                 | -                    | _            | -            | -    | 0.00   | -           | 0.00   |
| ff-Road Diesel                                   | 0.00                 | 0.00         | 0.00         | _    | 0.00   | 0.00        | 0.00   |
| 1-Koad Diesel                                    | 0.00                 | 0.00         | 0.00         | 0.00 | 0.00   | 0.00        | 0.00   |
| Worker Trips                                     | 0.00                 | 0.00         | 0.00         | 0.00 | 0.00   | 0.00        | 0.00   |
| Maximum lbs/day                                  | 0.00                 | 0.00         | 0.00         | 0.00 | 0.00   | 0.00        | 0.00   |
| hase 3 - Building Construct                      |                      | 140 (2       | 160.00       |      | E 01   | E 01        | 0.00   |
| ldg Const Off-Road Diesel                        | 19.55                | 140.63       | 150.02       |      | 5.91   | 5.91        | 0.00   |
| Bldg Const Worker Trips                          | 0.00<br>0.00         | 0.00         | 0.00         | 0.00 | 0.00   | 0.00        | 0.00   |
| Arch Coatings Off-Gas                            |                      |              |              | 0 00 |        |             |        |
| rch Coatings Worker Trips                        | 0 00                 | 0.00         | 0.00         | 0.00 | 0.00   | 0.00        | 0.00   |
| sphalt Off-Gas                                   | 0.00                 | 0.00         | 0.00         | _    | 0.00   | 0.00        | 0.00   |
| sphalt Off-Road Diesel<br>Asphalt On-Road Diesel | 0.00                 | 0.00         | 0.00         | 0.00 | 0.00   | 0.00        | 0.00   |
| Asphalt Worker Trips                             | 0.00                 | 0.00         | 0.00         | 0.00 | 0.00   | 0.00        | 0.00   |
| Maximum lbs/day                                  | 19.55                | 140.63       | 150.02       | 0.00 | 5.91   | 5.91        | 0.00   |
| Max lbs/day all phases                           | 19.55                | 140.63       | 150.02       | 0.00 | 5.91   | 5.91        | 0.00   |
| May 102/day att buases                           | 13.55                | 140.03       | 100.02       | 0.00 | 3.51   | 0.51        | 0.00   |

| Arch Coatings Worker Trips   | 0.00  | 0.00   | 0.00   | 0.00 | 0.00  | 0.00 | 0.00 |
|------------------------------|-------|--------|--------|------|-------|------|------|
| Asphalt Off-Gas              | 0.00  | _      | _      | -    | _     |      | ~    |
| Asphalt Off-Road Diesel      | 0.00  | 0.00   | 0.00   |      | 0.00  | 0.00 | 0.00 |
| Asphalt On-Road Diesel       | 0.00  | 0.00   | 0.00   | 0.00 | 0.00  | 0.00 | 0.00 |
| Asphalt Worker Trips         | 0.00  | 0.00   | 0.00   | 0.00 | 0.00  | 0.00 | 0.00 |
| Maximum lbs/day              | 19.55 | 145.59 | 146.86 | 0.00 | 1.26  | 1.26 | 0.00 |
| Max lbs/day all phases       | 56.71 | 638.31 | 348.54 | 5.88 | 10.95 | 4.34 | 6.61 |
| *** 2006***                  |       |        |        |      |       |      |      |
| Phase 1 - Demolition Emissic | ns    |        |        |      |       |      |      |
| Fugitive Dust                |       | _      | _      |      | 0.00  | ~    | 0.00 |
| Off-Road Diesel              | 0.00  | 0.00   | 0.00   | -    | 0.00  | 0,00 | 0.00 |
| On-Road Diesel               | 0,00  | 0.00   | 0.00   | 0.00 | 0.00  | 0.00 | 0.00 |
| Worker Trips                 | 0.00  | 0.00   | 0.00   | 0.00 | 0.00  | 0.00 | 0.00 |
| Maximum lbs/day              | 0.00  | 0.00   | 0.00   | 0.00 | 0.00  | 0.00 | 0.00 |
| Phase 2 - Site Grading Emiss | ions  |        |        |      |       |      |      |
| Fugitive Dust                | _     | -      | _      | -    | 0.00  | _    | 0.00 |
| Off-Road Diesel              | 0.00  | 0.00   | 0.00   |      | 0.00  | 0.00 | 0.00 |
| On-Road Diesel               | 0.00  | 0.00   | 0.00   | 0.00 | 0.00  | 0.00 | 0.00 |
| Worker Trips                 | 0.00  | 0.00   | 0.00   | 0.00 | 0.00  | 0.00 | 0.00 |
| Maximum lbs/day              | 0.00  | 0.00   | 0.00   | 0.00 | 0.00  | 0.00 | 0.00 |
| Phase 3 - Building Construct | ion   |        |        |      |       |      |      |
| Bldg Const Off-Road Diesel   | 19.55 | 140.63 | 150.02 | -    | 1.18  | 1.18 | 0.00 |
| Bldg Const Worker Trips      | 0.00  | 0.00   | 0.00   | 0.00 | 0.00  | 0.00 | 0.00 |
| Arch Coatings Off-Gas        | 0.00  | _      | -      |      | -     | _    | _    |
| Arch Coatings Worker Trips   | 0.00  | 0.00   | 0.00   | 0.00 | 0.00  | 0.00 | 0.00 |
| Asphalt Off-Gas              | 0.00  |        | _      | -    | ~     | -    | -    |
| Asphalt Off-Road Diesel      | 0.00  | 0.00   | 0.00   | -    | 0.00  | 0.00 | 0.00 |
| Asphalt On-Road Diesel       | 0.00  | 0.00   | 0.00   | 0.00 | 0.00  | 0.00 | 0.00 |
| Asphalt Worker Trips         | 0.00  | 0.00   | 0.00   | 0.00 | 0.00  | 0.00 | 0.00 |
| Maximum lbs/day              | 19.55 | 140.63 | 150.02 | 0.00 | 1.18  | 1.18 | 0.00 |
| Max lbs/day all phases       | 19.55 | 140.63 | 150.02 | 0.00 | 1.18  | 1.18 | 0.00 |

#### Construction-Related Mitigation Measures

Building Volume Total (cubic feet): 18750

Phase 1: Off-Road Diesel Exhaust: Use diesel particulate filter Percent Reduction(ROG 0.0% NOx 0.0% CO 0.0% SO2 0.0% PM10 80.0%) Phase 1: On-Road Diesel Exhaust: Use diesel particulate filter Percent Reduction (ROG 0.0% NOx 0.0% CO 0.0% SO2 0.0% PM10 80.0%) Phase 1: Worker Trips: Use shuttle to retail establishments @lunch Percent Reduction(ROG 1.0% NOx 1.3% CO 1.3% SO2 1.3% PM10 1.3%) Phase 2: Soil Disturbance: Apply soil stabilizers to inactive areas Percent Reduction (ROG 0.0% NOx 0.0% CO 0.0% SO2 0.0% PM10 30.0%) Phase 2: Soil Disturbance: Replace ground cover in disturbed areas guickly Percent Reduction(ROG 0.0% NOx 0.0% CO 0.0% SO2 0.0% PM10 15.0%) Phase 2: Soil Disturbance: Water exposed surfaces - 2x daily Percent Reduction (ROG 0.0% NOx 0.0% CO 0.0% SO2 0.0% PM10 34.0%) Phase 2: Off-Road Diesel Exhaust: Use diesel particulate filter Percent Reduction (ROG 0.0% NOx 0.0% CO 0.0% SO2 0.0% PM10 80.0%) Phase 2: On-Road Diesel Exhaust: Use diesel particulate filter Percent Reduction (ROG 0.0% NOx 0.0% CO 0.0% SO2 0.0% PM10 80.0%) Phase 2: Stockpiles: Cover all stock piles with tarps Percent Reduction(ROG 0.0% NOx 0.0% CO 0.0% SO2 0.0% PM10 9.5%) Phase 2: Unpaved Roads: Pave all haul roads Percent Reduction(ROG 0.0% NOx 0.0% CO 0.0% SO2 0.0% PM10 92.5%) Phase 3: Off-Road Diesel Exhaust: Use diesel particulate filter Percent Reduction (ROG 0.0% NOx 0.0% CO 0.0% SO2 0.0% PM10 80.0%) Phase 3: Off-Road Diesel Exhaust: Use diesel particulate filter Percent Reduction (ROG 0.0% NOx 0.0% CO 0.0% SO2 0.0% PM10 80.0%) Phase 3: On-Road Diesel Exhaust: Use diesel particulate filter Percent Reduction (ROG 0.0% NOx 0.0% CO 0.0% SO2 0.0% PM10 80.0%) Phase 3: Worker Trips: Use shuttle to retail establishments @lunch Percent Reduction (ROG 1.0% NOx 1.3% CO 1.3% SO2 1.3% PM10 1.3%) Phase 3: Worker Trips: Use shuttle to retail establishments @lunch Percent Reduction (ROG 1.0% NOx 1.3% CO 1.3% SO2 1.3% PM10 1.3%) Phase 3: Worker Trips: Use shuttle to retail establishments @lunch Percent Reduction (ROG 1.0% NOx 1.3% CO 1.3% SO2 1.3% PM10 1.3%) Phase 1 - Demolition Assumptions Start Month/Year for Phase 1: Jan '05 Phase 1 Duration: 3 months

Building Volume Daily (cubic feet): 2250 On-Road Truck Travel (VMT): 210

ff-Road Equipment

| No. | Type                      | Horsepower | Load Factor | Hours/Day |
|-----|---------------------------|------------|-------------|-----------|
| 2   | Concrete/Industrial saws  | 84         | 0.730       | 8.0       |
| 1   | Cranes                    | 190        | 0.430       | 8.0       |
| 1   | Crushing/Processing Equip | 154        | 0.780       | 8.0       |
| 2   | Excavators                | 180        | 0.580       | 8.0       |
| . 2 | Graders                   | 174        | 0.575       | 8.0       |
| 1   | Other Equipment           | 190        | 0.620       | 8.0       |
| 2   | Rubber Tired Dozers       | 352        | 0.590       | 8.0       |
| 2   | Rubber Tired Loaders      | 165        | 0.465       | 8.0       |
| 1   | Tractor/Loaders/Backhoes  | 79         | 0.465       | 8.0       |
| 1   | Trenchers                 | 82         | 0.695       | 8.0       |

Phase 2 - Site Grading Assumptions
'tart Month/Year for Phase 2: Apr '05
hase 2 Duration: 2 months n-Road Truck Travel (VMT): 14205

Off-Road Equipment

| Type                      | Horsepower                                                                                                                                                                          | Load Factor                                                                                                                                                                                                                                                                                                                                                                      | Hours/Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cranes                    | 190                                                                                                                                                                                 | 0.430                                                                                                                                                                                                                                                                                                                                                                            | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Crawler Tractors          | 143                                                                                                                                                                                 | 0.575                                                                                                                                                                                                                                                                                                                                                                            | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Crushing/Processing Equip | 154                                                                                                                                                                                 | 0.780                                                                                                                                                                                                                                                                                                                                                                            | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Excavators                | 180                                                                                                                                                                                 | 0.580                                                                                                                                                                                                                                                                                                                                                                            | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Graders                   | 174                                                                                                                                                                                 | 0.575                                                                                                                                                                                                                                                                                                                                                                            | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Other Equipment           | 190                                                                                                                                                                                 | 0.620                                                                                                                                                                                                                                                                                                                                                                            | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rubber Tired Dozers       | 352                                                                                                                                                                                 | 0.590                                                                                                                                                                                                                                                                                                                                                                            | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rubber Tired Loaders      | 165                                                                                                                                                                                 | 0.465                                                                                                                                                                                                                                                                                                                                                                            | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Scrapers                  | 313                                                                                                                                                                                 | 0.660                                                                                                                                                                                                                                                                                                                                                                            | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Surfacing Equipment       | 437                                                                                                                                                                                 | 0.490                                                                                                                                                                                                                                                                                                                                                                            | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Tractor/Loaders/Backhoes  | 79                                                                                                                                                                                  | 0.465                                                                                                                                                                                                                                                                                                                                                                            | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Trenchers                 | 82                                                                                                                                                                                  | 0.695                                                                                                                                                                                                                                                                                                                                                                            | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                           | Cranes Crawler Tractors Crushing/Processing Equip Excavators Graders Other Equipment Rubber Tired Dozers Rubber Tired Loaders Scrapers Surfacing Equipment Tractor/Loaders/Backhoes | Cranes       190         Crawler Tractors       143         Crushing/Processing Equip       154         Excavators       180         Graders       174         Other Equipment       190         Rubber Tired Dozers       352         Rubber Tired Loaders       165         Scrapers       313         Surfacing Equipment       437         Tractor/Loaders/Backhoes       79 | Cranes       190       0.430         Crawler Tractors       143       0.575         Crushing/Processing Equip       154       0.780         Excavators       180       0.580         Graders       174       0.575         Other Equipment       190       0.620         Rubber Tired Dozers       352       0.590         Rubber Tired Loaders       165       0.465         Scrapers       313       0.660         Surfacing Equipment       437       0.490         Tractor/Loaders/Backhoes       79       0.465 |

Phase 3 - Building Construction Assumptions rhart Month/Year for Phase 3: Jun '05
hase 3 Duration: 15 months
Start Month/Year for SubPhase Building: Jun '05

SubPhase Building Duration: 12 months

Off-Road Equipment

| No. | Type                    | Horsepower | Load Factor | Hours/Day |
|-----|-------------------------|------------|-------------|-----------|
| 1   | Bore/Drill Rigs         | 218        | 0.750       | 8.0       |
| 1   | Cranes                  | 190        | 0.430       | 8.0       |
| 1   | Other Equipment         | 190        | 0.620       | 8.0       |
| 2   | Pavers                  | 132        | 0.590       | 8.0       |
| 2   | Paving Equipment        | 111        | 0.530       | 8.0       |
| 1   | Rough Terrain Forklifts | 94         | 0.475       | 8.0       |
| 2   | Surfacing Equipment     | 437        | 0.490       | 8.0       |

2 Surfacing Equipment 437 0.4
Start Month/Year for SubPhase Architectural Coatings: Oct '05
SubPhase Architectural Coatings Duration: 3 months

SubPhase Asphalt Turned OFF

| (Summer | Pounds per                               | Day, Unmition                        | gated)                                               |                                                  |
|---------|------------------------------------------|--------------------------------------|------------------------------------------------------|--------------------------------------------------|
| ROG     | NOx                                      | CO                                   | SO2                                                  | PM10                                             |
| 0.00    | 0.00                                     | 0.00                                 | _                                                    | 0.00                                             |
| ons     |                                          |                                      |                                                      |                                                  |
| ns      |                                          |                                      |                                                      |                                                  |
| 0.00    | 0.00                                     | 0.00                                 | 0.00                                                 | 0.00                                             |
| 0.00    | -                                        | _                                    | _                                                    |                                                  |
| 0.00    | 0.00                                     | 0.00                                 | 0.00                                                 | 0.00                                             |
|         | ROG<br>0.00<br>ons<br>ns<br>0.00<br>0.00 | ROG NOX 0.00 0.00 ons ns 0.00 0.00 - | ROG NOX CO 0.00 0.00 0.00 ons ns 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 - ons ns 0.00 0.00 0.00 0.00 0.00 |

Changes made to the default values for Land Use Trip Percentages "e Primary Trip % for City park changed from 70 to 100 e Diverted Trip % for City park changed from 25 to 0 e Pass-By Trip % for City park changed from 5 to 0 thanges made to the default values for Construction e user has overridden the Default Phase Lengths \_molition Truck Hauling Miles/Round Trip changed from 30 to 50 Site Grading Fugitive Dust Emission Rate changed from 10 to 38.2 ite Grading Miles/Round Trip changed from 20 to 50 ase 1 mitigation measure Off-Road Diesel Exhaust: Use diesel particulate filter has been changed from off to on. rnase 1 mitigation measure On-Road Diesel Exhaust: Use diesel particulate filter has been changed from off to on. Mase 1 mitigation measure Worker Trips: Use shuttle to retail establishments @lunch has been changed from off to on. ase 2 mitigation measure Soil Disturbance: Apply soil stabilizers to inactive areas has been changed from off to on. phase 2 mitigation measure Soil Disturbance: Replace ground cover in disturbed areas quickly has been changed from off to on. ase 2 mitigation measure Soil Disturbance: Water exposed surfaces - 2x daily has been changed from off to on. Phase 2 mitigation measure Off-Road Diesel Exhaust: Use diesel particulate filter has been changed from off to on. ase 2 mitigation measure On-Road Diesel Exhaust: Use diesel particulate filter has been changed from off to on. . Hase 2 mitigation measure Stockpiles: Cover all stock piles with tarps has been changed from off to on. hase 2 mitigation measure Unpaved Roads: Pave all haul roads has been changed from off to on. wase 3 mitigation measure Off-Road Diesel Exhaust: Use diesel particulate filter has been changed from off to on. Phase 3 mitigation measure Off-Road Diesel Exhaust: Use diesel particulate filter has been changed from off to on. lase 3 mitigation measure On-Road Diesel Exhaust: Use diesel particulate filter has been changed from off to on. Phase 3 mitigation measure Worker Trips: Use shuttle to retail establishments @lunch has been changed from off to on. lase 3 mitigation measure Worker Trips: Use shuttle to retail establishments @lunch has been changed from off to on. ase 3 mitigation measure Worker Trips: Use shuttle to retail establishments @lunch has been changed from off to on.

langes made to the default values for Area

Changes made to the default values for Operations

#### URBEMIS 2002 For Windows 7.4.2

File Name: <Not Saved>
Project Name: Coliseum 78000

Project Location: South Coast Air Basin (Los Angeles area)

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

## DETAIL REPORT (Tons/Year)

Construction Start Month and Year: January, 2005 Construction Duration: 22 Total Land Use Area to be Developed: 19.5 acres Maximum Acreage Disturbed Per Day: 5 acres

Single Family Units: 0 Multi-Family Units: 0 Retail/Office/Institutional/Industrial Square Footage: 0

CONSTRUCTION EMISSION ESTIMATES UNMITIGATED (tons/year)

| CONSTRUCTION BRITADION BOILING  | BB 01111111 | OIII DD (COII | 3/ Year / |      | PM10  | PM10      | PM10 |
|---------------------------------|-------------|---------------|-----------|------|-------|-----------|------|
| Source<br>*** 2005***           | ROG         | ИОх           | CO        | SO2  | TOTAL | EXHAUST   | DUST |
| Phase 1 - Demolition Emission:  |             |               |           |      |       |           |      |
| Fugitive Dust                   |             | - 40          |           | -    | 0.03  | _         | 0.03 |
| Off-Road Diesel                 | 0.87        | 6.48          | 6.69      | _    | 0.30  | 0.30      | 0.00 |
| On-Road Diesel                  | 0.00        | 0.21          | 0.03      | 0.00 | 0.00  | 0.00      | 0.00 |
| Worker Trips                    | 0.00        | 0.03          | 0.23      | 0.00 | 0.00  | 0.00      | 0.00 |
| Total tons/year                 | 0.87        | 6.72          | 6.95      | 0.00 | 1.02  | 0.30      | 0.03 |
| Phase 2 - Site Grading Emission | ons         |               |           |      |       |           |      |
| Fugitive Dust                   |             | _             | -         | _    | 4.20  | -         | 4.20 |
| Off-Road Diesel                 | 0.82        | 6.30          | 6.04      |      | 0.28  | 0.28      | 0.00 |
| On-Road Diesel                  | 0.42        | 7.74          | 1.58      | 0.12 | 0.24  | 0.20      | 0.04 |
| Worker Trips                    | 0.00        | 0.00          | 0.04      | 0.00 | 0.00  | 0.00      | 0.00 |
| Total tons/year                 | 1.24        | 14.04         | 7.66      | 0.12 | 18.12 | 0.48      | 4.24 |
| Phase 3 - Building Construction |             |               |           |      |       |           |      |
| Bldg Const Off-Road Diesel      | 1.54        | 11.20         | 11.34     | -    | 0.49  | 0.49      | 0.00 |
| Bldg Const Worker Trips         | 0.00        | 0.00          | 0.00      | 0.00 | 0.00  | 0.00      | 0.00 |
| Arch Coatings Off-Gas           | 0.00        | -             | -         | -    | _     | -         | -    |
| Arch Coatings Worker Trips      | 0.00        | 0.00          | 0.00      | 0.00 | 0.00  | 0.00      | 0.00 |
| Asphalt Off-Gas                 | 0.00        | <del>.</del>  | _         | -    | -     | _         | -    |
| Asphalt Off-Road Diesel         | 0.00        | 0.00          | 0.00      | _    | 0.00  | 0.00      | 0.00 |
| Asphalt On-Road Diesel          | 0.00        | 0.00          | 0.00      | 0.00 | 0.00  | 0.00      | 0.00 |
| Asphalt Worker Trips            | 0.00        | 0.00          | 0.00      | 0.00 | 0.00  | 0.00      | 0.00 |
| Total tons/year                 | 1.54        | 11.20         | 11.34     | 0.00 | 3.92  | 0.49      | 0.00 |
| Total all phases tons/yr        | 3.65        | 31.96         | 25.95     | 0.12 | 23.06 | 1.27      | 4.27 |
| *** 2006***                     |             |               |           |      |       |           |      |
| Phase 1 - Demolition Emissions  | :           |               |           |      |       |           |      |
| Fugitive Dust                   | ,           | _             | _         | _    | 0.00  |           | 0.00 |
| Off-Road Diesel                 | 0.00        | 0.00          | 0.00      | _    | 0.00  | 0.00      | 0.00 |
| On-Road Diesel                  | 0.00        | 0.00          | 0.00      | 0.00 | 0.00  | 0.00      | 0.00 |
| Worker Trips                    | 0.00        | 0.00          | 0.00      | 0.00 | 0.00  | 0.00      | 0.00 |
| Total tons/year                 | 0.00        | 0.00          | 0.00      | 0.00 | 0.00  | 0.00      | 0.00 |
| Phase 2 - Site Grading Emissic  | ons         |               |           |      |       |           |      |
| Fugitive Dust                   | _           | _             | -         | -    | 0.00  | _         | 0.00 |
| Off-Road Diesel                 | 0.00        | 0.00          | 0.00      | -    | 0.00  | 0.00      | 0.00 |
| On-Road Diesel                  | 0.00        | 0.00          | 0.00      | 0.00 | 0.00  | 0.00      | 0.00 |
| Worker Trips                    | 0.00        | 0.00          | 0.00      | 0.00 | 0.00  | 0.00      | 0.00 |
| Total tons/year                 | 0.00        | 0.00          | 0.00      | 0.00 | 0.00  | 0.00      | 0.00 |
| Phase 3 - Building Construction | n           |               |           |      |       |           |      |
| Bldg Const Off-Road Diesel      | 1.10        | 7.75          | 8.25      | •••  | 0.35  | 0.35      | 0.00 |
| Bldg Const Worker Trips         | 0.00        | 0.00          | 0.00      | 0.00 | 0.00  | 0.00      | 0.00 |
| Arch Coatings Off-Gas           | 0.00        | -             | -         | _    | -     | - • • • • | -    |
| Arch Coatings Worker Trips      | 0.00        | 0.00          | 0.00      | 0.00 | 0.00  | 0.00      | 0.00 |
| Asphalt Off-Gas                 | 0.00        | -             | -         | -    | -     | _         |      |
| Asphalt Off-Road Diesel         | 0.00        | 0.00          | 0.00      |      | 0.00  | 0.00      | 0.00 |
| Asphalt On-Road Diesel          | 0.00        | 0.00          | 0.00      | 0.00 | 0.00  | 0.00      | 0.00 |
| Asphalt Worker Trips            | 0.00        | 0.00          | 0.00      | 0.00 | 0.00  | 0.00      | 0.00 |
| Total tons/year                 | 1.10        | 7.75          | 8.25      | 0.00 | 2.80  | 0.35      | 0.00 |
| Total all phases tons/yr        | 1.10        | 7.75          | 8.25      | 0.00 | 2.80  | 0.35      | 0.00 |

Phase 1 - Demolition Assumptions Start Month/Year for Phase 1: Jan '05 Phase 1 Duration: 3 months Building Volume Total (cubic feet): 18750 Building Volume Daily (cubic feet): 2250 On-Road Truck Travel (VMT): 210

Off-Road Equipment

| No.         | Type                                                                                      | Horsepower                     | Load Factor                               | Hours/Day                |
|-------------|-------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------|--------------------------|
| 2           | Concrete/Industrial saws                                                                  | 84                             | 0.730                                     | 8.0                      |
| 1           | Cranes                                                                                    | 190                            | 0.430                                     | 8.0                      |
| 1           | Crushing/Processing Equip                                                                 | 154                            | 0.780                                     | 8.0                      |
| 2           | Excavators                                                                                | 180                            | 0.580                                     | 8.0                      |
| 2           | Graders                                                                                   | 174                            | 0.575                                     | 8.0                      |
| 1           | Other Equipment                                                                           | 190                            | 0.620                                     | 8.0                      |
| 2           | Rubber Tired Dozers                                                                       | 352                            | 0.590                                     | 8.0                      |
| 2           | Rubber Tired Loaders                                                                      | 165                            | 0.465                                     | 8.0                      |
| 1           | Tractor/Loaders/Backhoes                                                                  | 79                             | 0.465                                     | 8.0                      |
| 1           | Trenchers                                                                                 | 82                             | 0.695                                     | 8.0                      |
| 2<br>1<br>2 | Graders Other Equipment Rubber Tired Dozers Rubber Tired Loaders Tractor/Loaders/Backhoes | 174<br>190<br>352<br>165<br>79 | 0.575<br>0.620<br>0.590<br>0.465<br>0.465 | 8.0<br>8.0<br>8.0<br>8.0 |

Phase 2 - Site Grading Assumptions Start Month/Year for Phase 2: Apr '05 Phase 2 Duration: 2 months On-Road Truck Travel (VMT): 14205 Off-Road Equipment

| No. | Type                      | Horsepower | Load Factor | Hours/Day |
|-----|---------------------------|------------|-------------|-----------|
| 1   | Cranes                    | 190        | 0.430       | 8.0       |
| 1   | Crawler Tractors          | 143        | 0.575       | 8.0       |
| 1   | Crushing/Processing Equip | 154        | 0.780       | 8.0       |
| 1   | Excavators                | 180        | 0.580       | 8.0       |
| 1   | Graders                   | 174        | 0.575       | 8.0       |
| 2   | Other Equipment           | 190        | 0.620       | 8.0       |
| 2   | Rubber Tired Dozers       | 352        | 0.590       | 8.0       |
| 2   | Rubber Tired Loaders      | 165        | 0.465       | 8.0       |
| 1   | Scrapers                  | 313        | 0.660       | 8.0       |
| 2   | Surfacing Equipment       | 437        | 0.490       | 8.0       |
| 2   | Tractor/Loaders/Backhoes  | 79         | 0.465       | 8.0       |
| 2   | Trenchers                 | 82         | 0.695       | 8.0       |

Phase 3 - Building Construction Assumptions

Start Month/Year for Phase 3: Jun '05 Phase 3 Duration: 15 months

Start Month/Year for SubPhase Building: Jun '05

SubPhase Building Duration: 12 months

Off-Road Equipment

| No. | Type                    | Horsepower | Load Factor | Hours/Day |
|-----|-------------------------|------------|-------------|-----------|
| 1   | Bore/Drill Rigs         | 218        | 0.750       | 8.0       |
| 1   | Cranes                  | 190        | 0.430       | 8.0       |
| 1   | Other Equipment         | 190        | 0.620       | 8.0       |
| 2   | Pavers                  | 132        | 0.590       | 8.0       |
| 2   | Paving Equipment        | 111        | 0.530       | 8.0       |
| 1   | Rough Terrain Forklifts | 94         | 0.475       | 8.0       |
| 2   | Surfacing Equipment     | 437        | 0.490       | 8.0       |

2 Surfacing Equipment 437 0.4 Start Month/Year for SubPhase Architectural Coatings: Oct '05

SubPhase Architectural Coatings Duration: 3 months

SubPhase Asphalt Turned OFF

#### AREA SOURCE EMISSION ESTIMATES

| Source                    | ROG  | NOx  | CO   | SO2  | PM10 |
|---------------------------|------|------|------|------|------|
| Natural Gas               | 0.00 | 0.00 | 0.00 | _    | 0.00 |
| Wood Stoves               | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Fireplaces                | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Landscaping               | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Consumer Prdcts           | 0.00 | _    | _    | -    | ~    |
| TOTALS (tpv, unmitigated) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

#### UNMITIGATED OPERATIONAL EMISSIONS

| sity park                 | ROG    | NOx   | CO     | SO2  | PM10  |
|---------------------------|--------|-------|--------|------|-------|
|                           | 223.43 | 54.26 | 508.40 | 0.39 | 36.71 |
| TOTAL EMISSIONS (tons/yr) | 223.43 | 54.26 | 508.40 | 0.39 | 36.71 |

oes not include correction for passby trips. oes not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

nalysis Year: 2004 Temperature (F): 90 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

ummary of Land Uses:

| ∪nit Type | Trip Rate          | Size      | Total Trips |
|-----------|--------------------|-----------|-------------|
| City park | 0.30 trips / seats | 78,000.00 | 23,088.00   |

ehicle Assumptions:

#### Fleet Mix:

|   | ehicle Type  | <b>:</b>      | Percent Type | Non-Catalyst | Catalyst | Diesel |
|---|--------------|---------------|--------------|--------------|----------|--------|
|   | ight Auto    |               | 56.10        | 2.70         | 96.80    | 0.50   |
|   | Light Truck  | < 3,750 lbs   | 15.10        | 4.60         | 92.70    | 2.70   |
|   | Light Truck  | 3,751- 5,750  | 15.60        | 2.60         | 96.20    | 1.20   |
|   | ed Truck     | 5,751- 8,500  | 6.90         | 2.90         | 94.20    | 2.90   |
| • | ite-Heavy    | 8,501-10,000  | 1.00         | 0.00         | 80.00    | 20.00  |
|   | _ite-Heavy   | 10,001-14,000 | 0.30         | 0.00         | 66.70    | 33.30  |
|   | Med-Heavy    | 14,001-33,000 | 1.00         | 10.00        | 20.00    | 70.00  |
|   | Heavy-Heavy  | 33,001-60,000 | 0.80         | 0.00         | 12.50    | 87.50  |
|   | , ine Haul > | 60,000 lbs    | 0.00         | 0.00         | 0.00     | 100.00 |
|   | rban Bus     |               | 0.10         | 0.00         | 0.00     | 100.00 |
|   | motorcycle   |               | 1.60         | 87.50        | 12.50    | 0.00   |
|   | School Bus   |               | 0.20         | 0.00         | 0.00     | 100.00 |
|   | ™otor Home   |               | 1.30         | 15.40        | 76.90    | 7.70   |

| Tuver comarerone         |             |       |       |            |          |          |
|--------------------------|-------------|-------|-------|------------|----------|----------|
|                          | Residential |       |       | Commercial |          |          |
|                          | Home-       | Home- | Home- |            |          |          |
|                          | Work        | Shop  | Other | Commute    | Non-Work | Customer |
| rban Trip Length (miles) | 11.5        | 4.9   | 6.0   | 10.3       | 5.5      | 5.5      |
| ural Trip Length (miles) | 11.5        | 4.9   | 6.0   | 10.3       | 5.5      | 5.5      |
| Trip Speeds (mph)        | 35.0        | 40.0  | 40.0  | 40.0       | 40.0     | 40.0     |
| % of Trips - Residential | 20.0        | 37.0  | 43.0  |            |          |          |
| of Trips - Commercial (  | by land     | use)  |       |            |          |          |
| Lity park                | -           |       |       | 5.0        | 2.5      | 92.5     |

Page: 12

Changes made to the default values for Land Use Trip Percentages

The Primary Trip % for City park changed from 70 to 100 The Diverted Trip % for City park changed from 25 to 0 The Pass-By Trip % for City park changed from 5 to 0

Changes made to the default values for Construction

The user has overridden the Default Phase Lengths Demolition Truck Hauling Miles/Round Trip changed from 30 to 50 Site Grading Fugitive Dust Emission Rate changed from 10 to 38.2 Site Grading Miles/Round Trip changed from 20 to 50

Phase 1 mitigation measure Off-Road Diesel Exhaust: Use diesel particulate filter has been changed from off to on.

Phase 1 mitigation measure On-Road Diesel Exhaust: Use diesel particulate filter has been changed from off to on.

Phase 1 mitigation measure Worker Trips: Use shuttle to retail establishments @lunch has been changed from off to on.

Phase 2 mitigation measure Soil Disturbance: Apply soil stabilizers to inactive areas has been changed from off to on.

Phase 2 mitigation measure Soil Disturbance: Replace ground cover in disturbed areas quickly has been changed from off to on.

Phase 2 mitigation measure Soil Disturbance: Water exposed surfaces - 2x daily has been changed from off to on.

Phase 2 mitigation measure Off-Road Diesel Exhaust: Use diesel particulate filter has been changed from off to on.

Phase 2 mitigation measure On-Road Diesel Exhaust: Use diesel particulate filter has been changed from off to on.

Phase 2 mitigation measure Stockpiles: Cover all stock piles with tarps has been changed from off to on.

Phase 2 mitigation measure Unpaved Roads: Pave all haul roads

has been changed from off to on.

Phase 3 mitigation measure Off-Road Diesel Exhaust: Use diesel particulate filter has been changed from off to on.

Phase 3 mitigation measure Off-Road Diesel Exhaust: Use diesel particulate filter has been changed from off to on.

Phase 3 mitigation measure On-Road Diesel Exhaust: Use diesel particulate filter has been changed from off to on.

Phase 3 mitigation measure Worker Trips: Use shuttle to retail establishments @lunch has been changed from off to on.

Phase 3 mitigation measure Worker Trips: Use shuttle to retail establishments @lunch has been changed from off to on.

Phase 3 mitigation measure Worker Trips: Use shuttle to retail establishments @lunch has been changed from off to on.

13

Changes made to the default values for Area

Changes made to the default values for Operations

# **ASSUMPTIONS**

|    |                                              | Daily Trips | VMT     |
|----|----------------------------------------------|-------------|---------|
|    | LA Memorial Coliseum                         | 24,000      | 127,213 |
|    | Mc Donald's Restaurant                       | 1,638       | 8,682   |
| _  | Junior Market                                | 1,308       | 6,933   |
|    | Shopping Center                              | 5,417       | 28,713  |
|    | Apartment/Restaurant                         | 3,814       | 20,216  |
|    | Bialal Islamic Center                        | 398         | 2,110   |
|    | Accessory Mart                               | 1,654       | 8,767   |
|    | Balasco Theater                              | 1,220       | 6,467   |
|    | Staples Ent. District                        | -           | -       |
| 9  | Convienence Store/Gas Station                | 605         | 3,207   |
| 10 | LA Mart                                      | 968         | 5,131   |
|    | LA County Office                             | 3,931       | 20,836  |
| 12 | Quality Restaurant and Night Club            | 630         | 3,339   |
|    | Medical Center and Clinic                    | 1,143       | 6,059   |
| 14 | Jefferson New Continuation High School       | 156         | 827     |
| 15 | Central LA Area New High School              | 3,834       | 20,322  |
| 16 | Jefferson New Primary Center                 | 329         | 1,744   |
| 17 | Weemes Playground                            | 1           | 5       |
| 18 | Manual Arts New Primary Center               | 363         | 1,924   |
| 19 | Orthopaedic Hospital HS                      | 1,364       | 7,230   |
| 20 | Jefferson New Elementary School              | 799         | 4,235   |
| 21 | Manual Arts New Elementary School            | 773         | 4,097   |
| 22 | South Central LA Area New HS                 | 3,780       | 20,036  |
| 23 | Accelerated Charter School                   | -           | -       |
|    | Jefferson New Elementary School              | 885         | 4,691   |
| 25 | Manual Arts New Elementary School            | 684         | 3,626   |
| 26 | Central LA Area New Middle School            | 2,716       | 14,396  |
| 27 | CA Science Center Phase II and III Expansion | 620         | 3,286   |
| 28 | Science Museum School and Science Educatic   | 1,890       | 10,018  |
| 29 | EPICC                                        | 3,117       | 16,522  |
| 30 | Molecular Biology                            | -           | -       |
| 31 | Tudor Hall                                   | -           | •       |
| 32 | Events Center                                | -           | •       |
| 33 | Natural History Museum                       | 1,845       | 9,780   |
| 34 | Retail                                       | 700         | 3,710   |
| 35 | Transamerica Phase III                       | 14,011      | 74,266  |
| 36 | CIM Group                                    | 14,543      | 77,086  |
| 37 | Light Industrial                             | 2,096       | 11,110  |
|    |                                              |             |         |
|    | TOTAL                                        | 101,232     | 536,585 |

the same of the sa

ExiSTING CONDITIONS (AVE.)

URBEMIS 2002 For Windows 7.4.2

le Name:

C:\Program Files\URBEMIS 2002 For Windows\Projects2k2\Coliseum 78000.urb

oject Name: roject Location: Coliseum 78000

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

South Coast Air Basin (Los Angeles area)

DETAIL REPORT (Pounds/Day - Summer)

#### UNMITIGATED OPERATIONAL EMISSIONS

| City park               | ROG      | NOX    | CO       | SO2  | PM10   |
|-------------------------|----------|--------|----------|------|--------|
|                         | 1,066.20 | 161.11 | 1,757.81 | 1.37 | 125.77 |
| TAL EMISSIONS (lbs/day) | 1,066.20 | 161.11 | 1,757.81 | 1.37 | 125.77 |

Des not include correction for passby trips.

Does not include double counting adjustment for internal trips.

'ERATIONAL (Vehicle) EMISSION ESTIMATES

milalysis Year: 2004 Temperature (F): 90 Season: Summer

MFAC Version: EMFAC2002 (9/2002)

ımmary of Land Uses:

| Unit | Type |
|------|------|
|------|------|

Trip Rate

Size Total Trips

ity park

0.30 trips / seats

48,775.00 14,437.40

Vehicle Assumptions:

leet Mix:

| shicle Type                                                                                                           | Percent Type                                                     | Non-Catalyst                                   | Catalyst                                        | Diesel                                |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------|---------------------------------------|
| Light Auto                                                                                                            | 56.10                                                            | 2.70                                           | 96.80                                           | 0.50                                  |
| ight Truck < 3,750 1                                                                                                  | bs 15.10                                                         | 4.60                                           | 92.70                                           | 2.70                                  |
| ight Truck 3,751- 5,7                                                                                                 | 50 15.60                                                         | 2.60                                           | 96.20                                           | 1.20                                  |
| ed Truck 5,751-8,5                                                                                                    | 00 6.90                                                          | 2.90                                           | 94.20                                           | 2.90                                  |
| Lite-Heavy 8,501-10,0                                                                                                 | 00 1.00                                                          | 0.00                                           | 80.00                                           | 20.00                                 |
| Lite-Heavy 10,001-14,0                                                                                                | 00 0.30                                                          | 0.00                                           | 66.70                                           | 33.30                                 |
| 'ed-Heavy 14,001-33,0                                                                                                 | 00 1.00                                                          | 10.00                                          | 20.00                                           | 70.00                                 |
| eavy-Heavy 33,001-60,0                                                                                                | 00 0.80                                                          | 0.00                                           | 12.50                                           | 87.50                                 |
|                                                                                                                       | bs 0.00                                                          | 0.00                                           | 0.00                                            | 100.00                                |
| Urban Bus                                                                                                             | 0.10                                                             | 0.00                                           | 0.00                                            | 100.00                                |
| Motorcycle                                                                                                            | 1.60                                                             | 87.50                                          | 12.50                                           | 0.00                                  |
| chool Bus                                                                                                             | 0.20                                                             | 0.00                                           | 0.00                                            | 100.00                                |
| otor Home                                                                                                             | 1.30                                                             | 15.40                                          | 76.90                                           | 7.70                                  |
| Lite-Heavy 10,001-14,0 'ed-Heavy 14,001-33,0 avy-Heavy 33,001-60,0 ine Haul > 60,000 1 Urban Bus Motorcycle chool Bus | 00 0.30<br>00 1.00<br>00 0.80<br>bs 0.00<br>0.10<br>1.60<br>0.20 | 10.00<br>0.00<br>0.00<br>0.00<br>87.50<br>0.00 | 20.00<br>12.50<br>0.00<br>0.00<br>12.50<br>0.00 | 70.0<br>87.5<br>100.0<br>100.0<br>0.0 |

#### Travel Conditions

|                           | Residential |                   |       | Commercial |          |          |
|---------------------------|-------------|-------------------|-------|------------|----------|----------|
|                           | Home-       | Home- Home- Home- |       |            |          |          |
|                           | Work        | Shop              | Other | Commute    | Non-Work | Customer |
| _rban Trip Length (miles) | 11.5        | 4.9               | 6.0   | 10.3       | 5.5      | 5.5      |
| Rural Trip Length (miles) | 11.5        | 4.9               | 6.0   | 10.3       | 5.5      | 5.5      |
| rip Speeds (mph)          | 35.0        | 40.0              | 40.0  | 40.0       | 40.0     | 40.0     |
| of Trips - Residential    | 20.0        | 37.0              | 43.0  |            |          |          |

\* of Trips - Commercial (by land use)

City park

2.5 92.5 5.0

URBEMIS 2002 For Windows 7.4.2

File Name: Project Name: C:\Program Files\URBEMIS 2002 For Windows\Projects2k2\Coliseum 78000.urb

Coliseum 78000

Project Location:

South Coast Air Basin (Los Angeles area)

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Pounds/Day - Summer)

#### UNMITIGATED OPERATIONAL EMISSIONS

| City park                 | ROG      | NOx    | CO       | SO2  | PM10   |
|---------------------------|----------|--------|----------|------|--------|
|                           | 2,025.09 | 309.66 | 3,378.68 | 2.63 | 241.74 |
| TOTAL EMISSIONS (lbs/dav) | 2,025.09 | 309.66 | 3.378.68 | 2.63 | 241.74 |

Does not include correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2004 Temperature (F): 90 Season: Summer

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

| Unit Type | Trip Rate          | Size      | Total Trips |
|-----------|--------------------|-----------|-------------|
| City park | 0.30 trips / seats | 92,500.00 | 27,750.00   |

Vehicle Assumptions:

Fleet Mix:

| Vehicle Type             | Percent Type | Non-Catalyst | Catalyst | Diesel |
|--------------------------|--------------|--------------|----------|--------|
| Light Auto               | 56.10        | 2.70         | 96.80    | 0.50   |
| Light Truck < 3,750 lb   | s 15.10      | 4.60         | 92.70    | 2.70   |
| Light Truck 3,751- 5,75  | 0 15.60      | 2.60         | 96.20    | 1.20   |
| Med Truck 5,751-8,50     | 0 6.90       | 2.90         | 94.20    | 2.90   |
| Lite-Heavy 8,501-10,00   | 0 1.00       | 0.00         | 80.00    | 20.00  |
| Lite-Heavy 10,001-14,00  | 0 0.30       | 0.00         | 66.70    | 33.30  |
| Med-Heavy 14,001-33,00   | 0 1.00       | 10.00        | 20.00    | 70.00  |
| Heavy-Heavy 33,001-60,00 | 0.80         | 0.00         | 12.50    | 87.50  |
| Line Haul > 60,000 lb    | s 0.00       | 0.00         | 0.00     | 100.00 |
| Urban Bus                | 0.10         | 0.00         | 0.00     | 100.00 |
| Motorcycle               | 1.60         | 87.50        | 12.50    | 0.00   |
| School Bus               | 0.20         | 0.00         | 0.00     | 100.00 |
| Motor Home               | 1.30         | 15.40        | 76.90    | 7.70   |

Travel Conditions

|                           | Residential |       |       |         | Commercia. | 1        |
|---------------------------|-------------|-------|-------|---------|------------|----------|
|                           | Home-       | Home- | Home- |         |            |          |
|                           | Work        | Shop  | Other | Commute | Non-Work   | Customer |
| Urban Trip Length (miles) | 11.5        | 4.9   | 6.0   | 10.3    | 5.5        | 5.5      |
| Rural Trip Length (miles) | 11.5        | 4.9   | 6.0   | 10.3    | 5.5        | 5.5      |
| Trip Speeds (mph)         | 35.0        | 40.0  | 40.0  | 40.0    | 40.0       | 40.0     |
| % of Trips - Residential  | 20.0        | 37.0  | 43.0  |         |            |          |
| -                         |             |       |       |         |            |          |

% of Trips - Commercial (by land use) City park  $5.0\ 2.5\ 92.5$ 

URBEMIS 2002 For Windows 7.4.2

Tile Name: roject Name:

C:\Program Files\URBEMIS 2002 For Windows\Projects2k2\Coliseum 78000.urb

Coliseum 78000

roject Location:

South Coast Air Basin (Los Angeles area)

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Pounds/Day - Summer)

#### UNMITIGATED OPERATIONAL EMISSIONS

| city park                 | ROG      | NOx    | CO       | SO2  | PM10   |
|---------------------------|----------|--------|----------|------|--------|
|                           | 1,705.04 | 257.64 | 2,811.06 | 2.19 | 201.13 |
| TOTAL EMISSIONS (lbs/day) | 1,705.04 | 257.64 | 2,811.06 | 2.19 | 201.13 |

oes not include correction for passby trips.

Does not include double counting adjustment for internal trips.

PERATIONAL (Vehicle) EMISSION ESTIMATES

nalysis Year: 2004 Temperature (F): 90 Season: Summer

EMFAC Version: EMFAC2002 (9/2002)

ummary of Land Uses:

| Unit Type | Trip Rate          | Size      | Total Trips |
|-----------|--------------------|-----------|-------------|
| ity park  | 0.30 trips / seats | 78,000.00 | 23,088.00   |

Vehicle Assumptions:

"leet Mix:

| ehicle Type             | Percent Type | Non-Catalyst | Catalyst | Diesel |
|-------------------------|--------------|--------------|----------|--------|
| Light Auto              | 56.10        | 2.70         | 96.80    | 0.50   |
| Light Truck < 3,750 lb  | s 15.10      | 4.60         | 92.70    | 2.70   |
| ight Truck 3,751- 5,75  | 0 15.60      | 2.60         | 96.20    | 1.20   |
| ed Truck 5,751-8,50     | 0 6.90       | 2.90         | 94.20    | 2.90   |
| ite-Heavy 8,501-10,00   | 0 1.00       | 0.00         | 80.00    | 20.00  |
| Lite-Heavy 10,001-14,00 | 0.30         | 0.00         | 66.70    | 33.30  |
| Med-Heavy 14,001-33,00  | 0 1.00       | 10.00        | 20.00    | 70.00  |
| eavy-Heavy 33,001-60,00 | 0.80         | 0.00         | 12.50    | 87.50  |
| ine Haul > 60,000 lb.   | s 0.00       | 0.00         | 0.00     | 100.00 |
| orban Bus               | 0.10         | 0.00         | 0.00     | 100.00 |
| Motorcycle              | 1.60         | 87.50        | 12.50    | 0.00   |
| School Bus              | 0.20         | 0.00         | 0.00     | 100.00 |
| otor Home               | 1.30         | 15.40        | 76.90    | 7.70   |

Travel Conditions

City park

|                           | Residential |       |       | Commercial |          |          |
|---------------------------|-------------|-------|-------|------------|----------|----------|
|                           | Home-       | Home- | Home- |            |          |          |
|                           | Work        | Shop  | Other | Commute    | Non-Work | Customer |
| rban Trip Length (miles)  | 11.5        | 4.9   | 6.0   | 10.3       | 5.5      | 5.5      |
| Rural Trip Length (miles) | 11.5        | 4.9   | 6.0   | 10.3       | 5.5      | 5.5      |
| Trip Speeds (mph)         | 35.0        | 40.0  | 40.0  | 40.0       | 40.0     | 40.0     |
| of Trips - Residential    | 20.0        | 37.0  | 43.0  |            |          |          |
| of Trips - Commercial (   | by land     | use)  |       |            |          |          |

5.0

2.5

92.5

# APPENDIX C ACOUSTIC REPORT

# Arup**Acoustics**

Christopher A. Joseph & Associates
Environmental Planning & Research

Los Angeles Memorial Coliseum

Ĺ

**Acoustics Report** 

Report No. AAc/32372/R02

Report ref AAc/32372/R02

# **ArupAcoustics**

# Christopher A. Joseph & Associates Environmental Planning & Research

# Los Angeles Memorial Coliseum

**Acoustics Report** 

**Site Noise Measurements** 

July 2003

Ove Arup & Partners California Ltd
2440 South Sepulveda Boulevard, Suite 180, Los Angeles California 90064
Tel +1 310 312 5040 Fax +1 310 312 5788
www.arup.com/acoustics/acoustics/acoustics/acoustics

Job number

#### **CONTENTS**

|                                         |                                                               | Page               |  |  |
|-----------------------------------------|---------------------------------------------------------------|--------------------|--|--|
| 1.                                      | OBJECTIVE                                                     | 1                  |  |  |
| 2.                                      | EXECUTIVE SUMMARY                                             | 1                  |  |  |
| <b>3.</b><br>3.1                        | SITE NOISE MEASUREMENTS Project settings                      | 1 2                |  |  |
| 3.2                                     | Sound Measurement Procedures                                  | 3                  |  |  |
| <b>4.</b><br>4.1<br>4.2                 | DATA ANALYSIS Specific noise sources Time history correlation | <b>4</b><br>5<br>7 |  |  |
| 5.                                      | CONCLUSIONS                                                   | 8                  |  |  |
| APPENDIX A (EQUIPMENT LIST)             |                                                               |                    |  |  |
| APPENDIX B (GLOSSARY OF ACOUSTIC TERMS) |                                                               |                    |  |  |

#### **TABLES**

- Table 1: Description of Acoustic Measurement Locations
- Table 2: Record of Measurement Time
- Table 3: Summary of Acoustic Measurement

#### **FIGURES**

- Figure 1: Aerial view of the residential measurement locations
- Figure 2: Time history snapshot of background sound environment during Notre Dame game

#### OBJECTIVE

Christopher A. Joseph and Associates (CAJA) has retained Arup to conduct environmental noise measurements at the residential area surrounding the Los Angeles Memorial Coliseum (hereafter referred to as the Coliseum) and to determine the effect of noise from a football game at the Coliseum on the surrounding community.

#### 2. EXECUTIVE SUMMARY

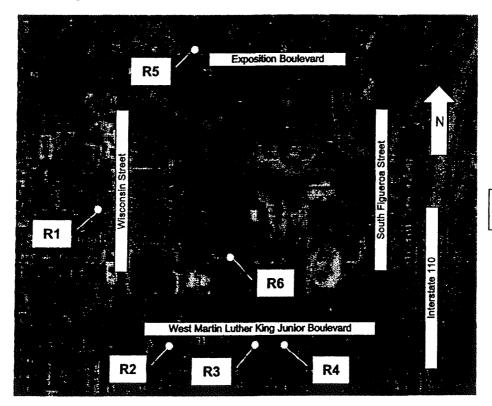
Arup engineers measured sound levels in and around the Coliseum over 15 minute intervals on three separate occasions: during two college football games (ASU vs. USC and Notre Dame vs. USC) and at a time when no activity was reported within the Coliseum. A total of five residential locations, representing the existing residential land uses near the Coliseum Complex, were selected for noise monitoring.

Both graphical data analysis and actual site observations confirmed that the Coliseum related noise generations are audible at some of the nearby residential communities. Intruding noises associated with the football games in the Coliseum consisted of Public Address system noise (Announcer), crowd cheers, band noise from within the Coliseum, and automobile and helicopter traffic. These noises were most audible at residences directly west and south of the Coliseum with clear line of sight to the Coliseum building. General ambient noise sources in the surrounding neighborhood were somewhat loud and consisted primarily of automobile traffic on local surface streets and noise from local residents.

The results of the site noise survey indicate that:

- > The Coliseum related noise generation is consistent with the existing sound environment at the surrounding residential communities,
- Existing noise environment at the residential neighborhood around the Coliseum is primarily controlled by the auto traffic on the nearby streets such as Martin Luther King Boulevard, Vermont Avenue, and Hoover Street,
- > Coliseum noise sources such as public address systems and crowd cheers are occasionally audible at the residential communities immediately west and south of the Coliseum complex,
- Apparent increase in helicopter traffic over the Coliseum during the scheduled sport events influences the existing general sound environment.

#### 3. SITE NOISE MEASUREMENTS


Arup measured sound in and around the Coliseum during two separate football games and compared this with sound data collected during no activities at the Coliseum. The first football game occurred on November 16, 2002 and was played between Arizona State University (ASU) and the University of Southern California (USC) with a recorded attendance of 63,241 spectators<sup>1</sup>. Acoustic measurements were also obtained during a game on November 30, 2002 between Notre Dame and USC with a recorded attendance of 87,944 spectators<sup>1</sup> (the present seating capacity in the Coliseum is 92,500<sup>1</sup>). Ambient noise levels (no Coliseum activities) were measured on December 7, 2002.

<sup>&</sup>lt;sup>1</sup> Number provided by CAJA

### 3.1 Project settings

The Coliseum is located within Exposition Park at 3911 South Figueroa Street, Los Angeles, CA. To the north side of Exposition Park lays the USC campus and the west side of the park is bounded by residential properties, which consists mainly of single-family homes. The land-use south of Exposition Park is also residential, and consists of apartments and single-family homes. Exposition Park is bordered to the east by commercial use property.

The sound levels during each of the football games were measured on the roof of the press box (inside the Coliseum) and at 5 locations outside the Coliseum (shown in Figure 1). The 5 off-site measurement locations were chosen based on the following criterion. The locations must be within the residential area immediately surrounding the Coliseum, since the goal is to determine the noise impact of the sports activity on the residential neighborhood. Of these off-site noise-monitoring locations, only locations R2 and R5 do not have a clear line of sight to the Coliseum building. Also, the closest residence on the eastern side of the Coliseum structure is too far away (about ½ mile) to be significantly impacted by noise from sporting events. A description of each measurement location is provided in Table 1.



Measurement Location

Figure 1: Aerial view of the residential measurement locations<sup>2</sup>

<sup>&</sup>lt;sup>2</sup> Globe Explorer, Copyright 2002 GlobeExplorer, AirPhotoUSA, www.mapquest.com/maps

| Sound<br>Measurement<br>Location <sup>a</sup> | Description                                                     | Estimated Distance<br>to Coliseum (ft) <sup>b</sup> | Intervening Structures Between the Coliseum and the Sound Receptor | Existing Land<br>Use<br>(Arup Site<br>Observations)                          |
|-----------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|
| R1                                            | Intersection of Wisconsin St. and 39 <sup>th</sup> Pl.          | 550                                                 | No                                                                 | Residential -<br>Single Family<br>Homes                                      |
| R2                                            | Intersection of<br>Menlo Ave. and<br>W. 40 <sup>th</sup> PI.    | 650                                                 | Yes                                                                | Residential –<br>Apartment<br>Buildings                                      |
| R3                                            | Intersection of<br>W. 40 <sup>th</sup> Pl. and<br>S. Hoover St. | 550                                                 | No                                                                 | Residential –<br>Apartment<br>Buildings                                      |
| R4                                            | 702 W. 40 <sup>th</sup> Pl.                                     | 600                                                 | No                                                                 | Residential - Mix<br>of Single Family<br>Homes and<br>Apartment<br>Buildings |
| R5                                            | USC Watt Way<br>Entrance                                        | 900                                                 | Yes                                                                | USC Campus                                                                   |
| R6                                            | Los Angeles<br>Memorial<br>Coliseum -<br>Press Box Roof         | 0                                                   | No                                                                 | Sport Complex                                                                |

<sup>&</sup>lt;sup>a</sup> See figure 1 for a map showing the physical location of these measurements

**Table 1: Description of Acoustic Measurement Locations** 

#### 3.2 Sound Measurement Procedures

Ambient sound levels measurements were recorded using a microphone, DAT (Digital Audio Tape) recorder, and real-time signal analyzer (see Appendix A for a full list of measurement equipment). The signal analyzer used a Type 1 sound level meter as specified in the American National Standards Institute A.581 S1.4 (consistent with City of Los Angeles Noise Regulation<sup>3</sup> that a type 2 or better sound level meter be used for taking measurements). The measurements were recorded for a minimum of 15 minutes at each of the sound monitoring locations except for R6, where the sound recording extended for the entire duration of the football game. Table 2 shows the noise measurement duration, start and finish times, at each location during the ASU vs. USC game, the Notre Dame vs. USC game, and no game (that is, no sport activity in the Coliseum).

<sup>&</sup>lt;sup>b</sup> This is the distance from the measurement location to the closest point on the Coliseum structure

<sup>&</sup>lt;sup>3</sup> Los Angeles Municipal Code, Noise Regulation, Rev. No. 53 – 1994.

|                        | Measurement Duration (Start and Finish Times) |                                |                 |  |  |  |  |  |
|------------------------|-----------------------------------------------|--------------------------------|-----------------|--|--|--|--|--|
| Measurement Location * | During Colleg                                 | No Game                        |                 |  |  |  |  |  |
|                        | ASU vs. USC<br>11/16/02                       | Notre Dame vs. USC<br>11/30/02 | 12/07/02        |  |  |  |  |  |
| R1                     | 4:46pm – 5:01pm <sup>b</sup>                  | 5:30pm – 5:45pm                | 5:20pm – 5:35pm |  |  |  |  |  |
| R2                     | 5:16pm – 5:31pm                               | 5:51pm – 6:06pm                | 5:39pm – 5:54pm |  |  |  |  |  |
| R3                     | 5:38pm – 5:53pm                               | 6:09pm – 6:24pm                | 5:57pm – 6:12pm |  |  |  |  |  |
| R4                     | 6:03pm – 6:18pm                               | 7:08pm – 7:23pm                | 6:13pm – 6:28pm |  |  |  |  |  |
| R5                     | 6:31pm – 6:46pm                               | 7:44pm – 7:59pm                | 6:43pm – 6:58pm |  |  |  |  |  |
| R6                     | 3:45pm - 7:19pm                               | 5:12pm – 8:20pm                | N/A             |  |  |  |  |  |

<sup>&</sup>lt;sup>a</sup> See Figure 1 for a map showing the physical location of these measurements and Table 1 for location addresses <sup>b</sup> Minimum of 15 minute noise measurements were recorded, consistent with requirements of Los Angeles City Noise Regulations Chapter 11, Article 1, Section 111.01a

#### **Table 2: Record of Measurement Time**

These measurements were recorded through a microphone placed on a tripod arranged such that the microphone was at least 5' from the local ground (sidewalk elevation), in accordance with Los Angeles Noise Regulation<sup>3</sup>. The sound analyzer was set up to record sound on 15-minute intervals and the DAT recorder was additionally used to record acoustic time histories. All measurement equipment was calibrated before and after measurement recording in accordance with the manufacturers written procedure. In addition to sound recordings, Arup engineers also made notes with respect to local sound sources, i.e., auto traffic, helicopter traffic, Coliseum sound systems, and Coliseum crowd.

#### 4. DATA ANALYSIS

Field noise data were analyzed to determine the noise levels emanating from the Coliseum at the surrounding land uses (mainly residential properties). The 15-minute  $L_{eq}$  sound levels (see Appendix B for a glossary of acoustic terms including Leq) are tabulated below in Table 3 (for the ASU vs. USC game, Notre Dame vs. USC game, and no game). In addition, the audibility of Coliseum noise was expressed as percent time audible for each measurement. That is, the amount of time when the Coliseum was audible during each measurement was divided by the total time over which the measurement was taken and expressed as a percentage. Audible, in this case, refers to sounds that are detectable by an Arup engineer listening via headphones to taped recordings of the ambient sound measurements.

As shown in Table 3, measurement location R1 receives the most audible noise from the Coliseum, followed by location R4. Listeners at locations R2, R3, and R5 hear little to no noise directly from the Coliseum because of intervening buildings, presence of high general ambient conditions, and relatively long distance.

Table 3 shows that the  $L_{eq}$  levels are not consistently highest during the Notre Dame game and/or consistently lowest when there is no game. Based on this fact, it does not appear that the Coliseum noise is the <u>dominant factor</u> in the  $L_{eq}$  sound levels. This is mainly due to the nature of the noise emanating from the Coliseum (noise sources associated with the football games are not continuous, and therefore not described well through  $L_{eq}$  metric). However, the Coliseum sound system, related helicopters overhead,

and crowd noise are all intruding noise in the surrounding neighborhood, which is illustrated in the field notes/observations and in the time history correlation analysis shown in the following section.

#### 4.1 Specific noise sources

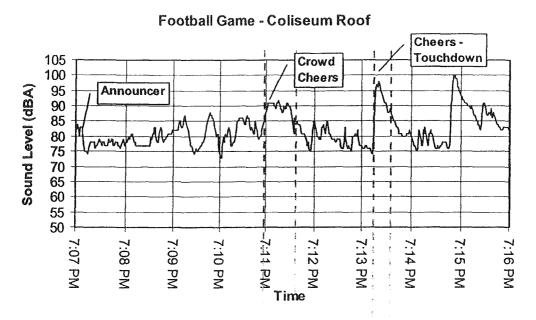
In addition to recording of the general ambient noise, Arup also noted traffic patterns near the 5 off-site measurement locations, which are different when there is a football game in the Coliseum than when there is no game. In order to compensate for Coliseum traffic, Exposition Blvd. and Martin Luther King Jr. Blvd. both experienced reduced traffic volume during the game due to temporary traffic management (such as: limited left turns). As a result of the change in the traffic patterns the general ambient noise due to the local street traffic is actually less during a football game than that of a typical Saturday.

One intruding noise not shown in Table 3 is helicopter noise. During the games, aircraft and helicopter traffic (associated with the Coliseum events) appeared to increase. During the Notre Dame vs. USC game, helicopter flight over the Coliseum and the adjoining residential neighborhood produced noise levels in the range of 65-70-dBA at each sound monitoring location for about 50% of the time. Helicopter activities appeared to be the most frequent of all game associated intruding noises in the residential communities surrounding the Coliseum.

| _                 | L <sub>eq</sub> (15 min.)<br>(dBA) |                                    |     | % Time Coliseum-<br>Related Sounds were<br>Audible<br>(Over meas. time) |                                    |                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------|------------------------------------|------------------------------------|-----|-------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Meas.<br>Location | USC vs.<br>ASU <sup>b</sup>        | USC vs.<br>Notre Dame <sup>c</sup> |     | USC vs.<br>ASU <sup>b</sup>                                             | USC vs.<br>Notre Dame <sup>c</sup> | Notes <sup>d</sup><br>Field Observations                                                                                                                                                                                                                                                                                                                                              |
| R1                | 69                                 | 64                                 | 64  | 13%                                                                     | 13%                                | <ul> <li>Announcer is <u>clearly heard</u> (PA system)</li> <li>Crowd cheer is <u>audible</u></li> <li>Referee whistle and band also <u>heard</u></li> <li>General ambient noise is primarily due to traffic on Vermont Ave. and 39<sup>th</sup> Pl., residents talking, and street music</li> </ul>                                                                                  |
| R2                | 61                                 | 66                                 | 59  | 0%                                                                      | 0%                                 | <ul> <li>Noise directly from Coliseum not audible</li> <li>Buildings block line-of-sight to Coliseum</li> <li>General ambient noise is mainly due to traffic on Martin Luther King (MLK) Jr. Blvd. and children playing</li> </ul>                                                                                                                                                    |
| R3                | 67                                 | 68                                 | 66  | 0%                                                                      | 0%                                 | <ul> <li>Coliseum noise is <u>not audible</u> during ASU game</li> <li>Band is barely heard at this location during Notre Dame game</li> <li>General ambient noise level is highest at this location due to traffic on S. Hoover St. and MLK Jr. Blvd.</li> </ul>                                                                                                                     |
| R4                | 61                                 | 64                                 | 64  | 4%                                                                      | 6%                                 | <ul> <li>Announcer's voice (PA system) is fairly <u>audible</u>, but muffled</li> <li>Crowd and band can also be heard (faintly)</li> <li>General ambient noise was from traffic on MLK Jr. Blvd.</li> </ul>                                                                                                                                                                          |
| R5                | 60                                 | 65                                 | 63  | 0%                                                                      | 0%                                 | <ul> <li>Coliseum is not audible at this location due to relatively long distance</li> <li>Exposition Blvd, was closed to thru traffic during both games thus lower general ambient sound levels are recorded during the games</li> <li>During the games general ambient noise was primarily from row of idling buses parked along the exposition park near the USC Campus</li> </ul> |
| R6                | 84                                 | 86                                 | N/A | 100%                                                                    | 100%                               |                                                                                                                                                                                                                                                                                                                                                                                       |

<sup>\*</sup>See Figure 1 for a map showing the physical location of these measurements and Table 1 for location addresses

Table 3: Summary of Acoustic Measurement


<sup>&</sup>lt;sup>b</sup> ASU game refers to the football game played between ASU and USC at the Coliseum on November 16, 2002

Notre Dame game refers to the football game played between Notre Dame and USC at the Coliseum on November 30, 2002

<sup>&</sup>lt;sup>d</sup> Helicopters associated with the football game produced sound at locations R1 through R5 that was noticeable for about 50% of the measurement times and reached sound levels up to 70 dBA

# 4.2 Time history correlation

In addition to sound level comparisons, a time history correlation of the data was also carried out in order to show the direct effects of the Coliseum noise on the surrounding environment. Figure 2 compares the time history recorded in the Coliseum with that recorded at location R4 during the Notre Dame game.





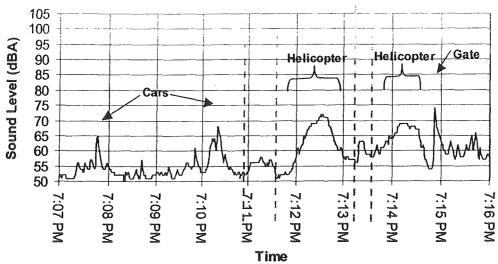



Figure 2: Time history snapshot of background sound environment during Notre Dame game

Notice that crowd cheers are audible at location R4 for two time intervals starting at 7:11:00 pm and at 7:13:15 pm. The sound level of the first cheer is 92 dBA inside the Coliseum and 57 dBA at location R4,

which yields a sound attenuation of 35 dBA. Similarly, the second cheer (starting at 7:13:15 pm) reaches a sound level of 98 dBA inside the Coliseum and is 63 dBA at location 4, again yielding a sound attenuation of 35 dBA.

The loudest sounds at this location, R4, are due to helicopters (at about 70 dBA), a gate slamming nearby, and auto traffic. The announcer is also heard at this location, but the correlation is not visible on this plot simply because it was not the loudest event. Band noise is also discernable at this location.

#### 5. CONCLUSIONS

Arup engineers measured 15 minute  $L_{eq}$  sound levels (and time histories) in and around the Coliseum on three separate occasions: during the ASU vs. USC football game on November 16, 2002, during more crowded Notre Dame vs. USC football game on November 30, 2002, and on December 7, 2002, when no game was reported inside the Coliseum.

This data was analyzed both quantitatively and qualitatively (listening tests) and Arup found that the noise sources from the Coliseum are intruding noise sources in the residential neighborhood. In addition, listening tests confirm that the crowd, band, and PA system were discernable at locations R1 and R4. Also, helicopter noise associated with the Notre Dame football game reached up to 70 dBA at the off-site receptors and was intrusive for 50% of the measurement time. Fifteen minute  $L_{eq}$  noise levels have been provided in keeping with Los Angeles city standards, although the intrusive effects of these Coliseum noise sources are not clearly represented in these noise level measures because of their discontinuous nature. Ambient noise sources in the surrounding neighborhood were somewhat loud for a residential area and consisted primarily of automobile traffic on local surface streets and noise from local residents.

# **APPENDIX A (EQUIPMENT LIST)**

Larson Davis Environmental Monitor 870B

Larson Davis Preamplifier PRM900C, PRM900B, and PRM902

Larson Davis Microphone 2560

Larson Davis Real Time Analyzer 2900

Larson Davis Sound Level Meter/Real Time Analyzer 824RTA

Larson Davis Sound Level Meter Calibrator CAL200

Sony DAT Walkman TCD-D100

Sony DAT Walkman PCM-M1

#### APPENDIX B (GLOSSARY OF ACOUSTIC TERMS)

A-WEIGHTED SOUND LEVEL. The most generally used measure of noise as it relates to human judgement of sound. It is defined as the sound level, in decibels, measured with a sound level meter set to an A-weighting network, as specified in American National Standard Specifications for Sound Level Meters. It is common practice to refer to the numerical units of an A-weighted sound level as "dBA". The A-weighted network approximates the way the human ear hears different frequency sounds. Low frequency sounds are harder for the ear to hear than higher frequency sounds, therefor, a low frequency sound will have a lower level when measured using A-weighting (dBA) than it would without the weighting (dB).

dB (DECIBEL). A unit of measure of sound pressure, which compresses a large range of numbers into a more meaningful scale. Hearing tests indicate that the lowest audible pressure is approximately 2 x 10<sup>-5</sup> Pascals (0 dBA), while the sensation of pain is approximately 2 x 10<sup>2</sup> Pascals (140 dB). Generally, an increase of 10 dB is perceived as twice as loud.

Sound PressureLevel(dB) = 
$$10 \log \left( \frac{p^2}{p_o^2} \right)$$
  
Sound PressureLevel(dB) =  $20 \log \left( \frac{p}{p_o} \right)$ 

p= root-mean-square sound pressure (Pascals)  $p_0$ = reference root-mean-square sound pressure, generally 2 x 10<sup>-5</sup> Pascals.

dB and dBA. The human ear is capable of hearing a large range of levels of sound pressure from  $2 \times 10^{-5}$  Pascals (just audible, o dB) to  $2 \times 10^{2}$  Pascals (sensation of pain, 140 dB). This is 7 orders of magnitude. Because of this large range, the decibel (dB) is used to compress the range into a more meaningful scale. The symbol used to represent the linear decibel scale is dB(lin) or simply dB.

The A-weighted decibel scale is represented by dB(A) or simply dBA. The A-weighting network approximates the way the human ear hears different frequency sounds. Low frequency sounds (hum) are harder for the ear to hear than higher frequency sounds (whine). This means a low frequency sound would have a higher sound level on the linear scale (dB) than a high sound would and yet sound equally loud to the ear. These two sounds would have the same dBA rating on the A-weighting scale because they sound equally loud.

**EQUIVALENT SOUND LEVEL** ( $L_{eq}$ ).  $L_{eq}$  is the average sound level in an environment where the sound level changes, however, the  $L_{eq}$  is not a simple arithmetic average of the sound level over time, but is a logarithmic average.  $L_{eq}$  is the "energy" average noise level over a period of time.  $L_{eq}$  can be measured for any time period, but is typically measured for some increment or fraction of an hour such as 15 minutes, 1 hour or 24-hours.

**SOUND LEVEL (NOISE LEVEL).** An instrument, including a microphone, an amplifier, an output meter, and frequency weighting networks for the measurement and determination of noise and sound levels. For purposes of conduction noise measurements for studies required by the Community Noise Element, a "Type 2" or better sound level meter should be used according to the American National Standards Institute (ANSI) S1.4 standards.

# APPENDIX D TRAFFIC IMPACT STUDY

# TRAFFIC STUDY FOR THE LOS ANGELES MEMORIAL COLISEUM RENOVATION PROJECT

LOS ANGELES, CALIFORNIA

**AUGUST 2003** 

PREPARED FOR

CHRISTOPHER A. JOSEPH & ASSOCIATES

PREPARED BY



# TRAFFIC STUDY FOR THE LOS ANGELES MEMORIAL COLISEUM RENOVATION PROJECT

LOS ANGELES, CALIFORNIA

August 2003

Prepared for:

# **CHRISTOPHER A. JOSEPH & ASSOCIATES**

Prepared by:

KAKU ASSOCIATES, INC. 1453 Third Street, Suite 400 Santa Monica, California 90401 (310) 458-9916

Ref: 1618

# TABLE OF CONTENTS

| 1.      | Introduction                                        | 1  |
|---------|-----------------------------------------------------|----|
|         | Project Description                                 | 1  |
|         | Study Scope                                         | 2  |
|         | Organization of Report                              | 5  |
| 11.     | Existing Highway Conditions                         | 6  |
|         | Existing Street System                              |    |
|         | Level of Service Methodology                        |    |
|         | Existing Weekend Scenario                           |    |
|         | Existing Weekday Scenario                           |    |
|         | Existing Transit Service                            |    |
| 111.    | Analysis of Project Traffic                         | 21 |
|         | Weekend Traffic Analysis                            |    |
|         | Weekday Traffic Analysis                            |    |
|         | Weekday Project Traffic Volumes                     |    |
|         | Weekday Cumulative Plus Project Traffic Projections |    |
| IV.     | Traffic Impact Analysis                             | 38 |
| • • • • | Significant Traffic Impact Criteria                 |    |
|         | Weekend Conditions with Project                     |    |
|         | Weekday Conditions with Project                     |    |
|         | Project Traffic Impact Analysis                     |    |
|         | Mitigation Measures                                 |    |
|         | Future Rail Transit                                 |    |
| V.      | CMP Regional Analysis                               | 51 |
| ٧.      | CMP Significant Traffic Impact Criteria             |    |
|         | Weekday PM CMP Freeway Analysis                     |    |
| VI.     | Parking Analysis                                    | 54 |
| VII.    | Conclusions                                         | 59 |
|         |                                                     |    |
| Append  | lix D: Supporting Documents and References          |    |

# LIST OF FIGURES

| NO.                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                            |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 1<br>2-1<br>2-2<br>3<br>4-1<br>4-2<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13 | Study Location & Analyzed Intersections  Existing Weekend Traffic Volumes without Project  Existing Weekday Traffic Volumes without Project  Existing Transit Services  Pre-Event Weekend Traffic Volumes with Project  Post-Event Weekend Traffic Volumes with Project  Cumulative Development Projects  Cumulative Base Weekday Traffic Volumes  Project Traffic Distribution  Pre-Event Turn Prohibitions and Parking Restrictions  Project Only Weekday Traffic Volumes  Cumulative Base Plus Project Weekday Traffic Volumes  Pre-Event Turn Prohibitions  Parking Inventory  Location for Yard and Off-Street Parking | 13<br>17<br>19<br>22<br>23<br>28<br>29<br>34<br>35<br>36<br>37<br>47<br>55 |
|                                                                                     | LIST OF TABLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                            |
| NO.                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                            |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                           | Existing Surface Street Characteristics  Level of Service Definitions for Signalized Intersections  Intersection Level of Service Analysis – Existing Weekend Conditions  Intersection Level of Service Analysis – Existing Weekday Evening Conditions  Trip Generation Estimates for Related Projects  Average Vehicle Occupancy Based on Historical Coliseum Data  Intersection Level of Service Analysis – Weekend Conditions  Intersection Level of Service Analysis – Weekend Conditions  Weekday Intersection Level of Service Analysis                                                                               | 11<br>14<br>18<br>26<br>31<br>40<br>42                                     |
| 10                                                                                  | Cumulative Base and Cumulative Plus Project Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 53                                                                         |

#### I. INTRODUCTION

This report documents the results of a study conducted by Kaku Associates, Inc. to evaluate the potential traffic impacts of the proposed Los Angeles Memorial Coliseum Renovation Project located in the City of Los Angeles, California. This document includes the assumptions and methods used to conduct the study as well as a presentation of the results.

#### PROJECT DESCRIPTION

The Proposed Project consists of a vision for the historic Los Angeles Memorial Coliseum that would enable the stadium to become a premiere venue for an NFL franchise. The design is based on the strength of the existing architectural elements of the peristyle and Olympic flame, with a new modern stadium constructed within the existing structure.

The proposed project would have a maximum seating capacity of 78,000 persons for an NFL game. It is envisaged that the pedestrian patron access to the project site from the outlying parking areas off-site would remain quite similar to present day. The perimeter fence surrounding the Coliseum bordering Exposition Park along Figueroa Street would likely be removed. This provides an increase in the public open space surrounding the Coliseum façade.

Vehicle access to the field from the outside the stadium will continue to be provided by Menlo Avenue. No alterations to the current parking arrangements are forecast for the Proposed Project. In summation, the areas external to the Coliseum perimeter fence will remain unchanged, except the removal of all extraneous Coliseum outbuildings.

Exposition Park and USC will provide a total of 19,820 on-site parking spaces.

The analysis for this study centers around two different scenarios, that of a weekend game and a weekday game. The separate analyses are undertaken to highlight the difference in conditions between the two scenarios. The weekend games will likely occur between 12:00

p.m. and 5:00 p.m. (Pacific Time). The weekday games will most likely begin at 6:00 p.m. (Pacific Time) to accommodate television schedules, with the majority of the spectators arriving during the hour prior to the game commencing.

For the purposes of this traffic study, it is assumed that weekday NFL games could occur occasionally during a season, as the NFL currently plays Monday and Thursday nights.

. ¥.

#### STUDY SCOPE

As acknowledged by the City of Los Angeles Department of Transportation (LADOT) in responding to the Notice of Preparation, the scope of analysis and mitigation measures for this study were developed in consultation with LADOT. The base assumptions, technical methodologies, and geographic coverage of the study were identified as part of the study approach. They are described below.

This study analyzes the potential traffic of the proposed project. It assumes completion of the project in the Year 2006. The periods under analysis were a typical weekday football game and a weekend football game.

The study examines the conditions for a weekend (Saturday) college football game at the Coliseum. The game in question is between the USC Trojans and Notre Dame (November 30, 2002). This scenario is examined in detail, as it represents a worst possible scenario for the weekend game. The attendance was 87,944 persons, which far exceeds the proposed 78,000-person capacity expected for an NFL weekend game. The potential impacts of the proposed project are, therefore, reliant on the assessment of present conditions for weekend collegiate (University of Southern California) games.

The weekday games are due to commence at 6 p.m. Pacific Time, meaning that approximately 50% of the vehicles going to the Coliseum arrive in the hour prior to the start of the game. This time period is approximately the peak traffic hour for the area surrounding the Coliseum and as such represents the largest traffic volumes.

The potential impacts of the Proposed Project are, therefore, reliant on the assessment of future conditions for weekday games in 2006. These include an analysis of the following traffic scenarios:

- Existing (2002/2003) Conditions -The analysis of existing traffic conditions provides a basis for the remainder of the study. The existing conditions analysis includes an assessment of streets, traffic volumes, and operating conditions.
- <u>Cumulative Base (2006) Conditions</u> -Future traffic conditions without the proposed project were developed for the year 2006. The objective of this analysis is to project future traffic growth and operating conditions that could be expected to result from regional growth and related projects in the vicinity of the project site by the year 2006. This condition also includes traffic generated by the Staples Center and Los Angeles Convention Center.
- <u>Cumulative (2006) Conditions Plus Project</u> -Traffic expected to be generated by the proposed project is added to the Cumulative Base traffic forecasts. The impacts of the proposed project on future traffic operating conditions can then be identified.

The following 26 intersections, which are illustrated in Figure 1, along with the project location, are to be analyzed with respect to the scenarios above:

- 1. Figueroa Street and Adams Boulevard
- 2. Figueroa Street and Jefferson Boulevard
- 3. Flower Street and Exposition Boulevard
- 4. Figueroa Street and Exposition Boulevard & 37th Street
- 5. Flower Street and 37th Street
- 6. Figueroa Street and State Drive
- 7. Figueroa Street and 38th Place/Flower Street
- 8. I-110 HOV ramps and 39th Street
- 9. Figueroa Street and 39th Street/Coliseum Drive
- 10. I-110 Northbound Ramps/Hill Street and Martin Luther King Junior Boulevard
- 11. I-110 Southbound Ramps and Martin Luther King Junior Boulevard
- 12. Figueroa Street and Martin Luther King Junior Boulevard

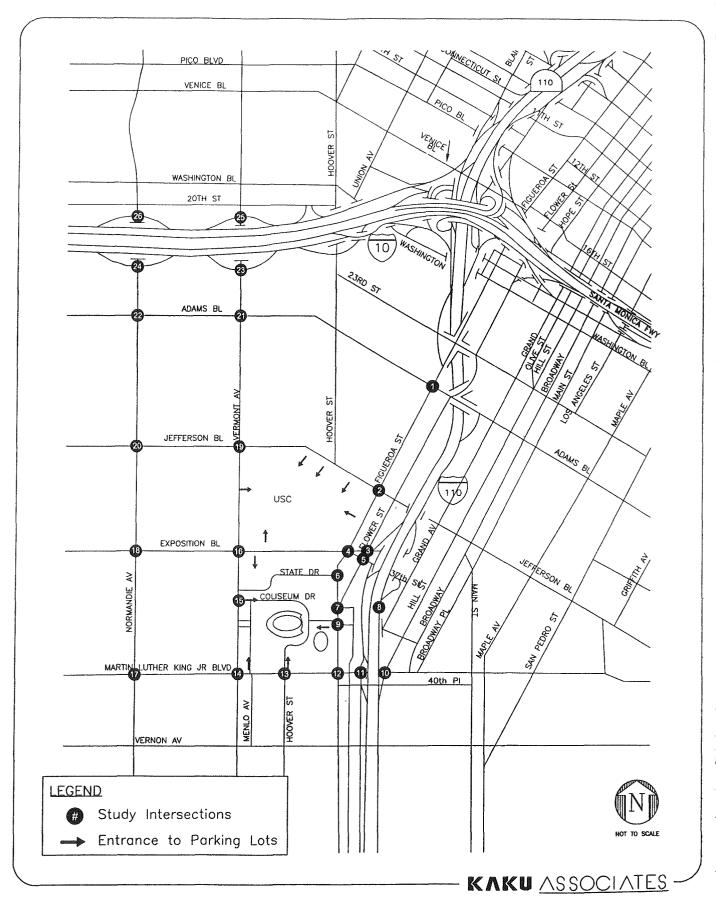



FIGURE 1
STUDY LOCATION AND ANALYZED INTERSECTIONS

- 13. Hoover Street and Martin Luther King Junior Boulevard
- 14. Vermont Avenue and Martin Luther King Junior Boulevard
- 15. Vermont Avenue and 39th Street
- 16. Vermont Avenue and Exposition Boulevard
- 17. Normandie Avenue and Martin Luther King Junior Boulevard
- 18. Normandie Avenue and Exposition Boulevard
- 19. Vermont Avenue and Jefferson Boulevard
- 20. Normandie Avenue and Jefferson Boulevard
- 21. Vermont Avenue and Adams Boulevard
- 22. Normandie Avenue and Adams Boulevard
- 23. Vermont Avenue and I-10 eastbound ramps
- 24. Normandie Avenue and I-10 eastbound ramps
- 25. Vermont Avenue and I-10 westbound ramps
- 26. Normandie Avenue and I-10 westbound ramps

#### ORGANIZATION OF REPORT

This report is divided into seven chapters, including this introduction. Chapter II describes the existing conditions in the study area including the circulation system, traffic volumes, and traffic conditions. The methodologies used to analyze and forecast project traffic are described in Chapter III. Chapter IV presents an assessment of the potential traffic impacts for the Year 2006 cumulative plus project scenario, i.e., the future conditions including the addition of project traffic and traffic mitigation management plans. Chapter V includes a discussion of the regional project impacts. Chapter VI contains a parking analysis (including USC and the Coliseum lots).

Finally, a summary of the analyses and study conclusions comprise Chapter VII. Appendices to this report include details of the technical analysis and supporting calculation worksheets.

#### **II. EXISTING HIGHWAY CONDITIONS**

A comprehensive data collection effort was undertaken to develop a detailed description of existing conditions within the study area. The assessment of conditions relevant to this study includes an inventory of the street system, traffic volumes on these facilities, operating conditions at key intersections, and the current transit services in the study area.

#### **EXISTING STREET SYSTEM**

Principal regional access to the project site is provided by the Harbor Freeway (Interstate 110) and the Santa Monica Freeway (Interstate 10). The Harbor Freeway is located less than ½ mile east of the project site and the Santa Monica Freeway is located approximately 1½ miles north of the project. The study area is bounded by Martin Luther King Junior Boulevard on the south, Vermont Avenue on the west, Exposition Boulevard on the north, and Figueroa Street on the east. In addition to the street descriptions below, Table 1 describes the major streets serving the area in greater detail:

Martin Luther King Jr. Boulevard - Martin Luther King Jr. Boulevard which borders the project site to the south, provides six travel lanes during the am peak period and five lanes during the pm peak period (three westbound lanes and two eastbound lanes) near to the project site. The travel lanes are separated by a dual left turn centerline except between Broadway and Figueroa Street (where a double yellow centerline is used). Parking is prohibited between Figueroa Street and Vermont Avenue on the southbound side of the street during the am peak period and on the north side all of the day. The posted speed limit is 35 miles per hour.

<u>Vermont Avenue</u> - Vermont Avenue borders the project site to the west and provides four travel lanes separated by a double yellow striped centerline except between Martin Luther King Jr. Boulevard and Adams Boulevard, where a combination of dual left-turn centerline, double yellow centerline and a raised median are used. The posted speed limit is 35 miles per hour.

TABLE 1
EXISTING SURFACE STREET CHARACTERISTICS

|              |                    |                    | ROADWAY LANE |       |       | MEDIAN | PARKING                   | RESTRICTIONS               | SPEED |
|--------------|--------------------|--------------------|--------------|-------|-------|--------|---------------------------|----------------------------|-------|
| SEGMENT      | FROM               | to                 | DESIGNATION  | NB/EB | SB/WB | TYPE   | NB/EB                     | SB/WB                      | LIMIT |
| Normandie Av | 48th St            | 47th St            | S            | 2     | 2     | DY     | PA                        | 1hr 8A-6P                  | 35    |
|              | 47th St            | 45th St            | s            | 2     | 2     | DY     | PA                        | PA                         | 35    |
|              | 45th St            | Vernon Av          | s            | 2     | 2     | DY     | NSAT                      | PA                         |       |
|              | Vernon Av          | M.L. King BI       | s            | 2     | 2     | DY     | PA                        |                            | 35    |
|              | M.L. King BI       | Exposition BI      | S            |       |       |        |                           | PA                         | 35    |
|              | Exposition BI      | Jefferson Bl       |              | 2     | 2     | DY     | PA                        | PA                         | 35    |
|              |                    |                    | S            | 2     | 2     | DY     | PA                        | PA                         | 35    |
|              | Jefferson Bl       | Adams Bl           | s            | 2     | 2     | 2LT    | PA                        | PA                         | 35    |
|              | Adams BI           | 23rd St            | S            | 2     | 2     | 2LT    | PA I                      | PA                         | 35    |
|              | 23rd St            | I-10 East Ramps    | S            | 2     | 2     | 2LT    | NS 7A - 9P                | NSAT                       | 35    |
|              | I-10 East Ramps    | I-10 West Ramps    | S            | 2     | 2     | RM     | NSAT                      | NSAT                       | 35    |
|              | I-10 West Ramps    | 20th St            | S            | 2     | 2     | 2LT    | RZ                        | NSAT                       | 35    |
|              | 20th St            | Cordova St         | s            | 2     | 2     | 2LT    | PA                        | NSAT                       | 35    |
|              | Cordova St         | Washington BI      | s            | 2     | 2     | 2LT    | PA                        | PA                         | 35    |
| Vermont Av   | 48th St            | 45th St            | MII          | 2     | 2     | DY     | 1hr 8A-6P                 | 1hr 8A-6P                  |       |
|              | 45th St            | Vernon Av          | MII          | 2     | 2     | DY     | PA PA                     |                            | 35    |
|              | Vernon Av          | 43rd Pl            | Mil          | 2     | 2     | DY     | PA<br>PA                  | RZ                         | 35    |
|              | 43rd PI            | 42nd St            | MI           | 2     | 2     |        |                           | 1hr 8A-6P                  | 35    |
|              | 42nd St            | 41st Dr            | MII          | 2     |       | DY     | 1hr 8A-6P                 | 1hr 8A-6P                  | 35    |
|              | 41st Dr            | 41st Dr<br>41st St |              |       | 2     | DY     | PA                        | NS 7A-5P                   | 35    |
|              | 41st Dr<br>41st St |                    | MII          | 2     | 2     | DY     | NS 7A-5P                  | NS 7A-5P                   | 35    |
|              |                    | 40th PI            | MII          | 2     | 2     | DY     | 1hr 8A-6P                 | 1hr 8A-6P                  | 35    |
|              | 40th PI            | M.L. King Bi       | MII          | 2     | 2     | DY     | RZ                        | 1hr 8A-6P                  | 35    |
|              | M.L. King BI       | Exposition BI      | MII          | 2     | 2     | RM     | NSAT                      | NSAT                       | 35    |
|              | Exposition BI      | Jefferson Bl       | MII          | 3     | 3     | 2LT    | 4hr 8A-6P                 | 4hr 8A-6P                  | 35    |
|              | Jefferson Bl       | 30th PI            | MII          | 2     | 2     | 2LT    | 4hr 8A-6P                 | 4hr 8A-6P                  | 35    |
|              | 30th PI            | 27th St            | MII          | 2     | 2     | DY     | 1hr 8A-6P                 | 1hr 8A-6P                  | 35    |
|              | 27th St            | Dana St            | MII          | 2     | 2     | 2LT    |                           |                            |       |
|              | Dana St            | Adams BI           | MII          | 2     |       |        | 1hr 8A-6P                 | 1hr 8A-6P                  | 35    |
|              | Adams BI           |                    | 1            |       | 2     | 2LT    | 1hr 8A-6P                 | RŽ                         | 35    |
|              |                    | 25th St            | MII          | 2     | 2     | DY     | RZ                        | RZ                         | 35    |
|              | 25th St            | 24th St            | MII          | 2     | 2     | DY     | NS 7-9A, 4-7P / 1hr 9A-4P | NS 7-9A, 4-7P / 1hr 9A-4P  | 35    |
|              | 24th St            | 23rd St            | MII          | 2     | 2     | DY     | NS 7-9A, 4-7P / 1hr 9A-4P | RZ                         | 35    |
|              | 23rd St            | 22nd Pi            | MII          | 2     | 2     | DY     | NS 7-9A, 4-7P / 1hr 9A-4P | NS 7-9A, 4-7P / 1hr 9A-4P  | 35    |
|              | 22nd Pl            | I-10 East Ramps    | MIL          | 2     | 2     | DY     | RZ                        | PA                         | 35    |
|              | I-10 East Ramps    | 20th St            | MII          | 2     | 2     | DY     | NSAT                      | NSAT                       |       |
|              | 20th St            | Washington BI      | MII          | 2     | 2     | DY     |                           |                            | 35    |
|              | Washington Bl      | Venice BI          | MIL          |       |       |        | NS 7-9A, 4-7P / 1hr 9A-4P | NS 7-9A, 4-7P / 1hr 9A-4P  | 35    |
|              |                    |                    |              | 2     | 2     | DY     | NS 7-9A, 4-7P / 1hr 9A-4P | NS 7-9A, 4-7P / 1hr 9A-4P  | 35    |
| Hoover St    | 48th St            | Vernon Av          | s            | 2     | 2     | DY     | NS 7A-8A                  | NS 4-6P                    | 35    |
|              | Vernon Av          | 40th PI            | S            | 2     | 2     | DY     | NS 7A-8A                  | NS 4-6P                    | 35    |
|              | 40th Pi            | M.L. King BI       | S            | 2     | 2     | DY     | NS 7A-8A                  | NPAT                       | 35    |
|              | M.L. Kina Bl       | Jefferson Bl       |              |       | _     |        |                           |                            | 33    |
|              | Jefferson Bl       | 30th St            | MII          | 2*    | 2*    | 2LT    | 2hr 8A-6P                 | 01-04 OD                   |       |
|              | 30th St            |                    |              | ł .   |       | ,      | 9                         | 2hr 8A-6P                  | 35    |
|              |                    | Adams Bi           | MII          | 2*    | 2*    | 2LT    | PA                        | PA                         | 35    |
|              | Adams Bl           | 24th St            | MII          | 2*    | 2°    | 2LT    | PA                        | PA                         | 35    |
|              | 24th St            | 23rd St            | MII          | 2*    | 2*    | 2LT    | PA                        | RZ                         | 35    |
|              | 23rd St            | 22nd St            | MII          | 2°    | 2*    | 2LT    | PA                        | PA                         | 35    |
|              | 22nd St            | 20th St            | MII          | 3     | 2*    | 2LT    | RZ                        | RZ                         | 35    |
|              | 20th St            | Washington Bl      | MI           | 2*    | 2*    | 2LT    | RZ RZ                     |                            |       |
|              | Washington BI      | 18th St            | MII          |       |       |        |                           | NS 4-6P                    | 35    |
|              |                    |                    |              | 2*    | 2*    | 2LT    | PA                        | 2hr 8A-6P                  | 35    |
|              | 18th St            | Venice BI          | MII          | 2*    | 2*    | 2LT    | PA                        | 1hr 8A-6P                  | 35    |
| Figueroa St  | 48th St            | 45th St            | MII          | 3     | 3     | 2LT    | NS 7A-9A                  | NS 4-7P                    | 35    |
|              | 45th St            | Vernon Av          | MII          | 3     | 3     | 2LT    | NS 7A-9A / 1hr 9A-6P      | NS 4-7P / 1hr 8A-4P        | 35    |
|              | Vernon Av          | M.L. King BI       | MII          | 3     | 3     | 2LT    | NS 7A-9A / 1hr 9A-6P      | NS 4-7P / 1hr 8A-4P        | 35    |
|              | M.L. King BI       | 39th St            | MII          | 3     | 3     | 2LT    | NS 7-9A, 4-6P / 1hr 9A-4P | NSAT                       | 35    |
|              | 39th St            | 37th PI            | MII          | 3     | 2*    | RM     | RZ                        | RZ                         | 35    |
|              | 37th PI            | 37th St            | MII          | 4     | 2°    | RM     | RZ RZ                     | RŽ<br>RŽ                   |       |
|              | 37th St            | Jefferson Bi       | •            |       | _     |        | . –                       | ·                          | 35    |
|              | Jefferson Bl       |                    | MII          | 3*    | 2*    | RM     | NS 7A-9A / 4hr 9A-6P      | NS 7A-9A, 4-7P / 4hr 9A-4P | 35    |
|              |                    | 27th St            | MII          | 3.    | 2°    | 2LT    | NS 7A-9A / 1hr 9A-6P      | NS 4-7P / 1hr 8A-4P        | 35    |
|              | 27th St            | Adams Bl           | M II         | 3*    | 2     | 2LT    | NS 7A-9A / 1hr 9A-6P      | RZ                         | 35    |
|              | Adams Bl           | 20th St            | M 11         | 3*    | 2     | 2LT    | NS 7A-9A / 1hr 9A-6P      | NS 4-7P / 1hr 8A-4P        | 35    |
|              | 20th St            | Washington BI      | MII          | 3*    | 2     | 2LT    | NS 7-9A, 3-6P / 1hr9A-3P  | NSAT                       | 35    |
|              | Washington BI      | 17th St            | MII          | 3*    | 2     | 2LT    | NS 7-9A, 3-6P / 1hr9A-3P  | NS 7-9A, 3-6P / 1hr9A-3P   | 35    |
|              | 17th St            | Venice BI          | MII          | 3*    | 2     | 2LT    | NS 7-9A, 3-6P / 1hr9A-3P  | NSAT                       | 35    |

# TABLE 1 continued EXISTING SURFACE STREET CHARACTERISTICS

|               |               |               | ROADWAY     | LA    | NE        | MEDIAN   | PARKING                   | SPEED                           |          |
|---------------|---------------|---------------|-------------|-------|-----------|----------|---------------------------|---------------------------------|----------|
| SEGMENT       | FROM          | TO            | DESIGNATION | NB/EB | SB/WB     | TYPE     | NB/EB                     | SB/WB                           | LIMIT    |
| Adams Bl      | Maple Av      | Main St       | MII         | 2     | 2         | DY       | PA                        | PA                              | 35       |
|               | Main St       | Broadway      | MII         | 2     | 2         | DY       | NS 4-6P                   | NS 7-9A.4-6P                    | 35       |
|               | Broadway      | Hill St       | MII         | 2     | 2         | DY       | NS 7-9A, 4-6P             | NS 7-9A.4-6P                    | 35       |
|               | Hill St       | Grand St      | MII         | 2     | 2         | 2LT      | NS 7-9A, 4-6P             | NS 7-9A.4-6P                    | 35       |
|               | Grand St      | I-110 SB Ramp | MII         | 2     | 2         | 2LT      | NS 7-9A, 4-6P / 1hr 9A-4P | NS 7-9A.4-6P                    | 35       |
|               | I-110 SB Ramp | Flower St     | MII         | 2     | 2         | DY       | NSAT                      | NSAT                            | 35       |
|               | Flower St     | Figueroa St   | MII         | 2     | 2         | DY       | RZ                        | RZ                              | 35       |
|               | Figueroa St   | Saint James   | MII         | 2     | 2         | DY       | 4hr 8A-8P / NS 4-6P       | NS 4-6P / 2hr 8A-4P / 4hr 8A-4P |          |
|               | Saint James   | Portland St   | MII         | 2     | 2         | DY       | 4hr 8A-6P                 |                                 | 35       |
|               | Portland St   | Hoover St     | MII         | 2     | 2         | DY       |                           | NS 4-6P                         | 35       |
|               | Hoover St     | Magnolia      | Mil         | 2     | 2         | 2LT      | PA                        | NS 4-6P                         | 35       |
|               | Magnolia      | Vermont Av    | MI          |       |           |          | PA                        | NS 4-6P                         | 35       |
|               | Vermont Av    |               |             | 2     | 2         | DY       | PA                        | PA                              | 35       |
|               | Raymond Av    | Raymond Av    | MII         | 2     | 2         | DY       | PA                        | PA                              | 35       |
|               |               | Kenwood Av    | MII         | 2     | 2         | DY       | 1hr 8A-6P                 | PA                              | 35       |
|               | Kenwood Av    | Normandie Av  | MII         | 2     | 2         | DY       | PA                        | PA                              | 35       |
|               | Normandie Av  | Halldale Av   | MII         | 2     | 2         | DY       | PA                        | 1hr 8A-6P                       | 35       |
| Jefferson Bl  | Maple Av      | Main St       | S           | 2     | 2         | DY       | PA                        | PA                              | 35       |
|               | Main St       | Broadway      | s           | 2     | 2         | DY       | PA                        | PA                              | 35       |
|               | Broadway      | Hill St       | s           | 2     | 2         | DY       | PA !                      | PA                              | 35       |
|               | Hill St       | Grand St      | s           | 2     | 2         | DY       | 1hr 8A-6P                 | 1hr 8A-6P                       | 35       |
|               | Grand St      | Hope St       | s           | 2     | 2         | DY       | 1hr 8A-6P                 | 1hr 8A-6P                       | 35       |
|               | Hope St       | Flower St     | s           | 2     | 2         | DY       | NSAT                      | NSAT                            | 35       |
|               | Flower St     | Figueroa St   | s           | 2     | 2         | DY       | NS 7-9A, 4-6P / 1hr 9A-4P | NS 7-9A. 4-6P / 1hr 9A-4P       | 35       |
|               | Figueroa St   | Royal St      | s           | 3     | 3         | RM       | 4hr 8A-6P                 |                                 |          |
|               | Royal St      | Hoover St     | s           | 3     | 3         | RM       |                           | 1hr 8A-6P                       | 35       |
|               | Hoover St     | McClintock Av | s           | 3     | 3         |          | 4hr 8A-6P                 | NS 7A-5P                        | 35       |
|               | McClintock Av | Vermont Av    |             |       | 1         | RM       | 4hr 8A-6P                 | NSAT                            | 35       |
|               | Vermont Av    |               | S           | 3     | 3         | RM       | 4hr 8A-6P                 | 4hr 8A-6P                       | 35       |
|               | Catalina      | Catalina      | S           | 2     | 2         | 2LT      | 4hr 8A-6P                 | 4hr 8A-6P                       | 35       |
|               |               | Budlong       | S           | 2     | 2         | 2LT      | NS 7-9A, 4-6P / 1hr 9A-4P | NS 7-9A, 4-6P / 1hr 9A-4P       | 35       |
|               | Budlong       | Kenwood Av    | s           | 2     | 2         | DY       | NS 7-9A, 4-6P / 1hr 9A-4P | NS 7-9A, 4-6P / 1hr 9A-4P       | 35       |
|               | Kenwood Av    | Normandie Av  | s           | 2     | 2         | DY       | NSAT                      | NSAT                            | 35       |
|               | Normandie Av  | Denker Av     | s           | 2     | 2         | 2LT      | 1hr 8A-6P                 | 1hr 8A-6P                       | 35       |
| M.L. King BI  | Woodlawn Av   | Main St       | MII         | 2*    | 2*        | 2LT      | PA                        | 1hr 8A-6P / NS 4-6P             | 35       |
|               | Main St       | Broadway      | MII         | 3     | 3         | 2LT      | NS 7-9A                   | 1hr 8A-4P / NS 4-6P             | 35       |
|               | Broadway      | Hill St       | MII         | 3     | 3         | DY       | NS 7-9A / 1hr 9A-6P       | PA                              | 35       |
|               | Hill St       | Figueroa St   | MII         | 3     | 3         | DY       | NSAT                      | NSAT                            | 35       |
|               | Figueroa St   | Hoover St     | MII         | 3     | 3         | 2LT      | NS 7-9A / 1hr 9A-6P       | NSAT                            | 35       |
|               | Hoover St     | Vermont Av    | MII         | 3     | 3         | 2LT      | NS 7-9A                   | NSAT                            | 35       |
|               | Vermont Av    | Walton Av     | MII         | 3     | 3         | 2LT      | 2hr 8A-6P                 | NSAT                            | 35       |
|               | Walton Av     | Budlong       | MII         | 3     | 3         | 2LT      | 2hr 8A-6P                 | 2hr 8A-6P                       | 35       |
|               | Budiong       | Normandle Av  | MII         | 3     | 3         | 2LT      | PA                        | PA                              | 35       |
|               | Normandie Av  | Brighton Av   | MII         | 3     | 3         | 2LT      | NS 7-9A                   | RZ.                             | 35       |
|               | Brighton Av   | Denker Av     | MII         | 3     | 3         | 2LT      | NS 7-9A / 1hr 9A-6P       | NS 4-6P / 1hr 8A-4P             | 35       |
| Exposition BI | I-110 NB Ramp | Flower St     | s           | 3     | 2         | RM       | NSAT NSAT                 | NSAT                            | 35       |
| •             | Flower St     | Figueroa St   | s           | 3     | 3         | RM       | NSAT                      | NSAT                            | 35       |
|               | Figueroa St   | USC Pardee Wy | s           | 4     | 3         | RM       | 4hr 6-10P                 | RZ                              | 35<br>35 |
|               | USC Pardee Wy | USC Watt Wy   | s           | 3     | 3         | RM       | 4hr 6-10P                 | 4hr 8A-6P                       |          |
|               | USC Watt Wy   | Vermont Av    | s           | 3     | 2         | RM       | 4hr 6-10P                 | 4hr 8A-6P<br>4hr 8A-6P          | 35       |
|               | Vermont Av    | Catalina      | s           | 3     | 3         | RM<br>RM |                           |                                 | 35       |
|               | Catalina      | Normandie Av  | s           | 3     | 3         |          | 1hr 8A-6P                 | 1hr 8A-6P                       | 35       |
|               | Normandie Av  | Halidale Av   | s           |       |           | RM       | PA                        | PA                              | 35       |
|               |               |               | s           | 3     | 3         | RM       | PA                        | PA                              | 35       |
|               | Halldale Av   | Denker Av     | ) 5         | 3     | <u> 2</u> | RM       | PA                        | PA                              | 35       |

KEY:

MEDIAN TYPE: DY = Double Yellow Centerline 2LT = Dual Left Turn Centerline

RM = Raised Median

ROADWAY M II = Major Highway Class II

DESIGNATION: S= Secondary

PARKING: PA = Parking Allowed NSAT = No Stopping Anytime NPAT = No Parking Anytime RZ = Red zone - No parking allowed

LANES: # = Number of lanes

<sup>\* =</sup> Bike Lane & Parking Lane

<u>Hoover Street</u> - Hoover Street provides four travel lanes separated by a double yellow striped centerline between Vernon Avenue and Martin Luther King Jr. Boulevard and a dual left turn centerline between Jefferson Boulevard and Venice Boulevard. The posted speed limit is 35 miles per hour

<u>Figueroa Street</u> - Figueroa Street borders the project site to the east and provides six travel lanes between 48<sup>th</sup> Street and 39<sup>th</sup> Street, which are separated by a dual left turn centerline during the a.m. and p.m. peak periods. Between 39<sup>th</sup> Street and Venice Boulevard there are five travel lanes (three northbound and two southbound). The lanes are separated by a raised median from 39<sup>th</sup> street to Jefferson Boulevard and by a dual left turn centerline from Jefferson Boulevard to Venice Boulevard. The posted speed limit is 35 miles per hour.

Normandie Avenue - Normandie Avenue has four travel lanes between 48<sup>th</sup> street and Washington Boulevard. These travel lanes are separated by a double yellow centerline between 48<sup>th</sup> Street and Jefferson Boulevard and a dual left turn centerline between Jefferson Boulevard and Washington Boulevard. The posted speed limit is 35 miles per hour.

Adams Boulevard - Adams Boulevard provides four travel lanes between Maple Avenue and Normandie Avenue. The travel lanes are separated by a double yellow centerline for the majority of the street except between Hill Street and I-110 ramps and Hoover Street and Magnolia Avenue, where a dual left turn centerline is used. The posted speed limit is 35 miles per hour.

<u>Jefferson Boulevard</u> - Jefferson Boulevard provides four travel lanes between Maple Avenue and Figueroa Street and these are separated by a double yellow centerline. There are six travel lanes between Figueroa Street and Vermont Avenue separated by a raised center median, and there are four travel lanes between Vermont Avenue and Normandie Avenue separated by a combination for dual left turn and double yellow centerlines. The posted speed limit is 35 mile per hour.

<u>Exposition Boulevard</u> - Exposition Boulevard borders the project site to the north and provides between five and seven travel lanes between the I-110 Northbound ramp and Normandie Avenue. These lanes are separated by a raised median and the posted speed limit is 35 miles per hour.

Diagrams of existing lane configurations at the analyzed intersections are contained in Appendix A.

#### LEVEL OF SERVICE METHODOLOGY

The following section presents a description of the methodology utilized to analyze operating conditions.

Level of service (LOS) is a qualitative measure used to describe the condition of traffic flow, ranging from excellent conditions at LOS A to overload conditions at LOS F. LOS D is the typically recognized minimum acceptable level of service in urban areas. Level of service definitions for signalized intersections are provided in Table 2. The 26 analyzed intersections are all controlled by traffic signals.

The "Critical Movement Analysis-Planning" method from the *Transportation Research Circular No. 212 - Interim Materials on Highway Capacity* (Transportation Research Board, 1980) was used to determine the intersection volume to capacity (V/C) ratio and corresponding level of service for the signalized intersections.

All but two of signalized intersections are currently operated under the Automated Traffic Surveillance And Control (ATSAC) system. In accordance with LADOT procedures, capacity values were increased by 7% at intersections included in the ATSAC system as a reflection of ATSAC's estimated benefit to the transportation system. The two intersections not included in the ATSAC system are as follows:

- Figueroa Street and Exposition Boulevard
- I-110 northbound ramps/Hill Street and Martin Luther King Junior Boulevard

The area is under the ATSC (Adaptive Traffic Control System), but the estimated benefit from this system, an increase of approximately 3% per intersection, has not been included due to the system not running in 'adaptive' mode. The adaptive mode is a set of procedures that adapt the

TABLE 2
LEVEL OF SERVICE DEFINITIONS FOR SIGNALIZED INTERSECTIONS

| Level of Service | Volume/Capacity<br>Ratio                                                                          | Definition                                                                                                                                                                                                |
|------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| А                | 0.000 - 0.600                                                                                     | EXCELLENT. No vehicle waits longer than one red light and no approach phase is fully used.                                                                                                                |
| В                | 0.601 - 0.700                                                                                     | VERY GOOD. An occasional approach phase is fully utilized; many drivers begin to feel somewhat restricted within groups of vehicles.                                                                      |
| С                | C 0.701 - 0.800 GOOD. Occasionally drive to wait through more than obackups may develop behinded. |                                                                                                                                                                                                           |
| D                | 0.801 - 0.900                                                                                     | FAIR. Delays may be substantial during portions of the rush hours, but enough lower volume periods occur to permit clearing of developing lines, preventing excessive backups.                            |
| E                | 0.901 - 1.000                                                                                     | POOR. Represents the most vehicles intersection approaches can accommodate; may be long lines of waiting vehicles through several cycles.                                                                 |
| F                | >1.000                                                                                            | FAILURE. Backups from nearby locations or on cross streets may restrict or prevent movement of vehicles out of the intersection approaches. Tremendous delays with continuously increasing queue lengths. |

Source: Transportation Research Board, Highway Capacity Manual, Special Reoprt 209, 1994

system, using real time traffic information, to optimize the signals and hence improve the intersection LOS.

#### **EXISTING WEEKEND SCENARIO**

The following section presents the existing traffic volumes for a weekend USC Trojans Football game at the Coliseum and hence the resulting level of service at each of the study intersections. This analysis is used as a proxy for projected weekend NFL game at the Coliseum, which will have a reduced capacity in comparison to the current USC games. The overall reduction in maximum seating capacity is 14,500 seats. Therefore, the USC game is considered a far worse scenario in terms of traffic than an NFL game would ever present.

## **Existing Weekend Traffic Volumes**

Weekend afternoon (2:00 to 5:00 p.m.) and evening (6:30 to 9:30 p.m.) traffic counts were conducted by Kaku Associates, Inc. on Saturday, November 30, 2002 at the 26 analyzed intersections. These counts were conducted on the day of a collegiate football game between University of Southern California (USC) and Notre Dame, where the attendance was 87,944 people. These volumes are illustrated in Figure 2-1 and represent the existing weekend traffic.

This particular date was chosen because the counts (from 6:30 to 9:30 p.m.) would capture the traffic associated with the National Hockey League (NHL) Los Angeles Kings and Chicago Blackhawks game at the Staples Center in downtown Los Angeles.

## Existing Levels of Service - Weekend Scenario

Table 3 summarizes the existing V/C ratios and corresponding levels of service at each of the study intersections. As shown in Table 3, 25 out of 26 intersections operate at LOS C or better. The intersection that does not is Vermont Avenue and Adams Boulevard (LOS D).

2

1.8




FIGURE 2-1
EXISTING WEEKEND TRAFFIC VOLUMES WITHOUT PROJECT

TABLE 3
INTERSECTION LEVEL OF SERVICE ANALYSIS - EXISTING WEEKEND CONDITIONS

|                                           |        | Without Project |          |  |
|-------------------------------------------|--------|-----------------|----------|--|
|                                           | Time   | Co              | nditions |  |
| Intersection                              | Period | V/C             | LOS      |  |
| 1. Figueroa St & Adams Bl                 | PM     | 0.112           | Α        |  |
| 2. Figueroa St & Jefferson Bl             | PM     | 0.411           | Α        |  |
| 3. Flower St & Exposition ВI              | PM     | 0.326           | Α        |  |
| 4. Figueroa St & Exposition Bl            | PM     | 0.798           | С        |  |
| 5. Flower St & 37th St                    | PM     | 0.274           | Α        |  |
| 6. Figueroa St & State Dr                 | PM     | 0.174           | Α        |  |
| 7. Figueroa St & 38th St                  | PM     | 0.359           | Α        |  |
| 8. I-110 HOV Ramps & 39th St              | РМ     | 0.286           | Α        |  |
| 9. Figueroa St & 39th St                  | PM     | 0.362           | Α        |  |
| 10. I-110 NB Ramps/Hill & M.L.King Jr. Bl | PM     | 0.672           | В        |  |
| 11. I-110 SB Ramps & M.L.King Jr. Bl      | PM     | 0.302           | Α        |  |
| 12. Figueroa St & M.L.King Jr. Bl         | PM     | 0.449           | Α        |  |
| 13. Hoover St & M.L.King Jr. Bl           | PM     | 0.386           | Α        |  |
| 14. Vermont Av & M.L.King Jr. Bl          | PM     | 0.699           | В        |  |
| 15. Vermont Av & 39th St                  | PM     | 0.494           | Α        |  |
| 16. Vermont Av & Exposition Bl            | РМ     | 0.479           | Α        |  |
| 17. Normandie Av & M.L.King Jr. Bl        | PM     | 0.631           | В        |  |
| 18. Normandie Av & Exposition Bl          | PM     | 0.579           | Α        |  |
| 19. Vermont Av & Jefferson Bl             | PM     | 0.739           | С        |  |
| 20. Normandie Av & Jefferson Bl           | PM     | 0.726           | С        |  |
| 21. Vermont Av & Adams Bl                 | РМ     | 0.818           | D        |  |
| 22. Normandie Av & Adams Bl               | PM     | 0.763           | С        |  |
| 23. Vermont Av & I-10 EB Ramps            | PM     | 0.762           | С        |  |
| 24. Normandie Av & I-10 EB Ramps          | PM     | 0.711           | С        |  |
| 25. Vermont Av & I-10 WB Ramps            | PM     | 0.651           | В        |  |
| 26. Normandie Av & I-10 WB Ramps          | PM     | 0.738           | С        |  |

In conclusion, the existing volumes analyses show that the 26 intersections are currently working satisfactorily prior to game day traffic.

#### **EXISTING WEEKDAY SCENARIO**

The following section presents the existing traffic volumes for a weekday at the 26 intersections around the Coliseum.

## **Existing Weekday Traffic Volumes**

Weekday intersection turning movement counts were conducted during the afternoon (4:00 to 7:00 p.m.) peak periods Tuesday, Wednesday, and Thursday April 22-24, 2003 at the 26 analyzed intersections. These counts are considered representative for a Monday or Thursday night game, when weekday NFL games are traditionally played.

The peak hour was extrapolated from the counts as 4:45 to 5:45 p.m. for 15 of the intersections and from 5:00 to 6:00 p.m. for seven intersections. The remaining four intersections are outside of these periods. For the purpose of this study, 5:00 to 6:00 p.m. was used as the peak hour for the study in the vicinity of the project location. This period is used to reflect the traffic conditions that are expected prior to a game in the evening peak rush hour.

Figure 2-2 illustrates the existing weekday traffic volumes and turning movements for the 5:00 to 6:00 p.m. peak hour.

## Existing Levels of Service – Weekday Scenario

Television scheduling and the need to broadcast games live throughout the United States of America currently govern the timing of NFL weekday night football games. While this does not represent a concern for games that are played on the east coast or in the central United States, games on the west coast operate on Pacific Time, which is three hours behind the east coast,

two hours behind the central region, and one hour behind the mountain region. Hence, games typically do not start any later than 6:00 p.m. Pacific Time (directly in the evening rush hour).

Traffic count data from the 5:00 to 6:00 p.m. peak hour was used to analyze the LOS for all 26 intersections. This time period was used as it is considered the time when the game generated traffic will be at its most concentrated level. This period is deemed to attract approximately 50% of NFL game generated traffic.

The results in Table 4 show that there is currently one intersection operating at LOS F, Figueroa Street and Martin Luther King Jr. Boulevard. Three intersections operate at LOS E (Figueroa Street and Exposition Boulevard, Vermont Avenue and Adams Boulevard, and Normandie Avenue and Adams Boulevard). The other 22 intersections operate between LOS A and D.

#### **EXISTING TRANSIT SERVICE**

The study area is served bus lines and the Metro Blue Line operated by Los Angeles County Metropolitan Transportation Authority (LACMTA) and two bus lines operated by the LADOT. These transit lines are described below and their routes in relation to the project site are shown in Figure 3:

- <u>LACMTA Blue Line</u> The Metro Blue Line is a north/south rail line that runs from Long Beach to downtown Los Angeles. The Blue Line travels close to the project site and has stops located at Vernon Avenue, Washington Boulevard and Grand Avenue. The hours of operation are from 5 a.m. until midnight.
- <u>LACMTA Line 40</u> LACMTA Line 40 is a local east/west line from Union Station in downtown Los Angeles to the South Bay Galleria Transit Center in the City of Redondo Beach. LACMTA Line 40 travels on Martin King Luther Jr. Boulevard through the study area. The service runs daily, evenings, and weekends.
- <u>LACMTA Line 42</u> LACMTA Line 42 is a local east/west line from Union Station in downtown Los Angeles to the LAX Bus Center. LACMTA Line 42 travels on Martin King Luther Jr. Boulevard through the study area. The service runs daily, evenings, and weekends.
- <u>LACMTA Line 204/754</u> LACMTA Lines 204/754 are local north/south lines from the Children's Hospital in Los Angeles to the Athens community in Los Angeles County. LACTMTA lines 204/754 travels on Vermont Avenue through the study area. The service runs daily, evenings, and weekends.

٠..

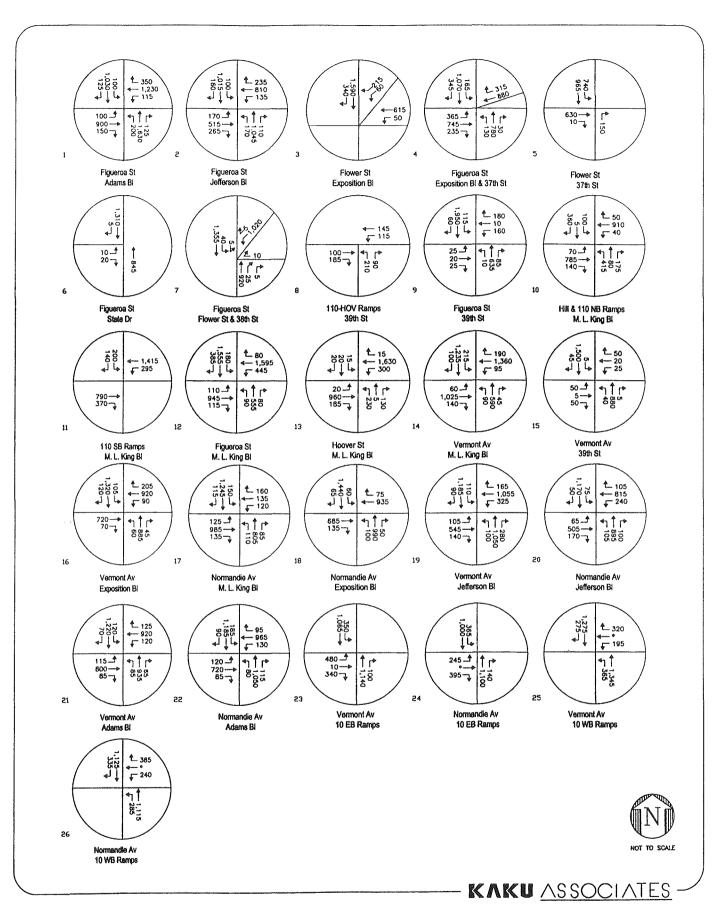



FIGURE 2-2
EXISTING WEEKDAY TRAFFIC VOLUMES WITHOUT PROJECT

TABLE 4
INTERSECTION LEVEL OF SERVICE ANALYSIS - EXISTING WEEKDAY EVENING CONDITIONS

|                                           | Exis           | tina  |     |
|-------------------------------------------|----------------|-------|-----|
| Intersection                              | Time<br>Period | V/C   | LOS |
| 1. Figueroa St & Adams Bl                 | РМ             | 0.881 | D   |
| 2. Figueroa St & Jefferson Bl             | PM             | 0.714 | С   |
| 3. Flower St & Exposition Bl              | PM             | 0.517 | Α   |
| 4. Figueroa St & Exposition Bl            | PM             | 0.985 | E   |
| 5. Flower St & 37th St                    | PM             | 0.365 | Α   |
| 6. Figueroa St & State Dr                 | PM             | 0.239 | Α   |
| 7. Figueroa St & 38th St                  | РМ             | 0.716 | С   |
| 8. I-110 HOV Ramps & 39th St              | РМ             | 0.271 | Α   |
| 9. Figueroa St & 39th St                  | РМ             | 0.524 | Α   |
| 10. I-110 NB Ramps/Hill & M.L.King Jr. Bl | PM             | 0.760 | С   |
| 11. I-110 SB Ramps & M.L.King Jr. Bl      | PM             | 0.459 | Α   |
| 12. Figueroa St & M.L.King Jr. Bl         | РМ             | 1.047 | F   |
| 13. Hoover St & M.L.King Jr. Bl           | PM             | 0.552 | Α   |
| 14. Vermont Av & M.L.King Jr. Bl          | PM             | 0.865 | D   |
| 15. Vermont Av & 39th St                  | PM             | 0.568 | Α   |
| 16. Vermont Av & Exposition Bl            | PM             | 0.783 | С   |
| 17. Normandie Av & M.L.King Jr. Bl        | РМ             | 0.784 | С   |
| 18. Normandie Av & Exposition Bl          | РМ             | 0.741 | С   |
| 19. Vermont Av & Jefferson Bl             | PM             | 0.882 | D   |
| 20. Normandie Av & Jefferson Bl           | РМ             | 0.757 | С   |
| 21. Vermont Av & Adams Bl                 | РМ             | 0.922 | E   |
| 22. Normandie Av & Adams Bl               | PM             | 0.958 | E   |
| 23. Vermont Av & I-10 EB Ramps            | PM             | 0.800 | С   |
| 24. Normandie Av & I-10 EB Ramps          | PM             | 0.849 | D   |
| 25. Vermont Av & I-10 WB Ramps            | РМ             | 0.743 | С   |
| 26. Normandie Av & I-10 WB Ramps          | PM             | 0.745 | С   |

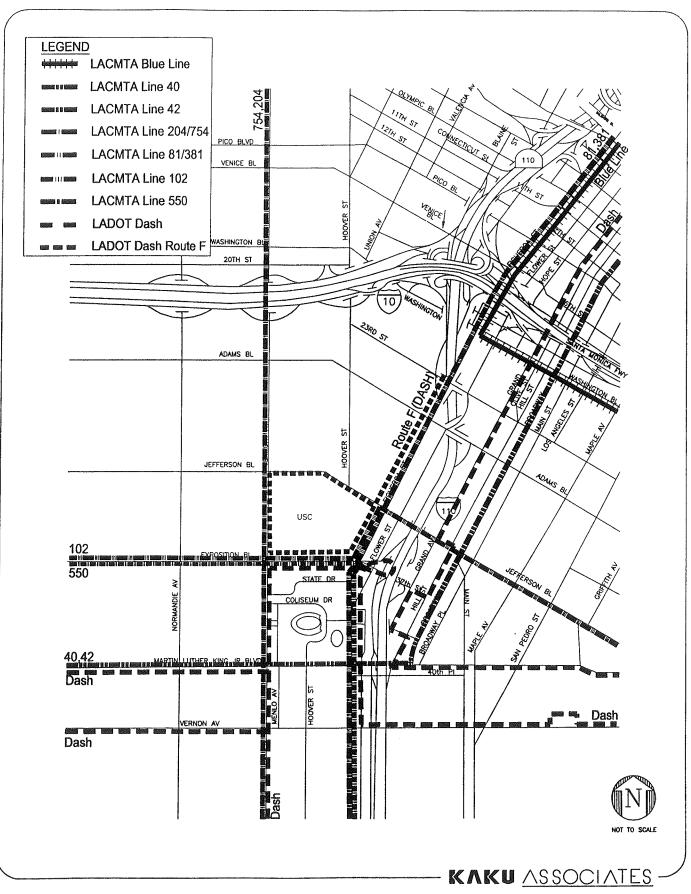
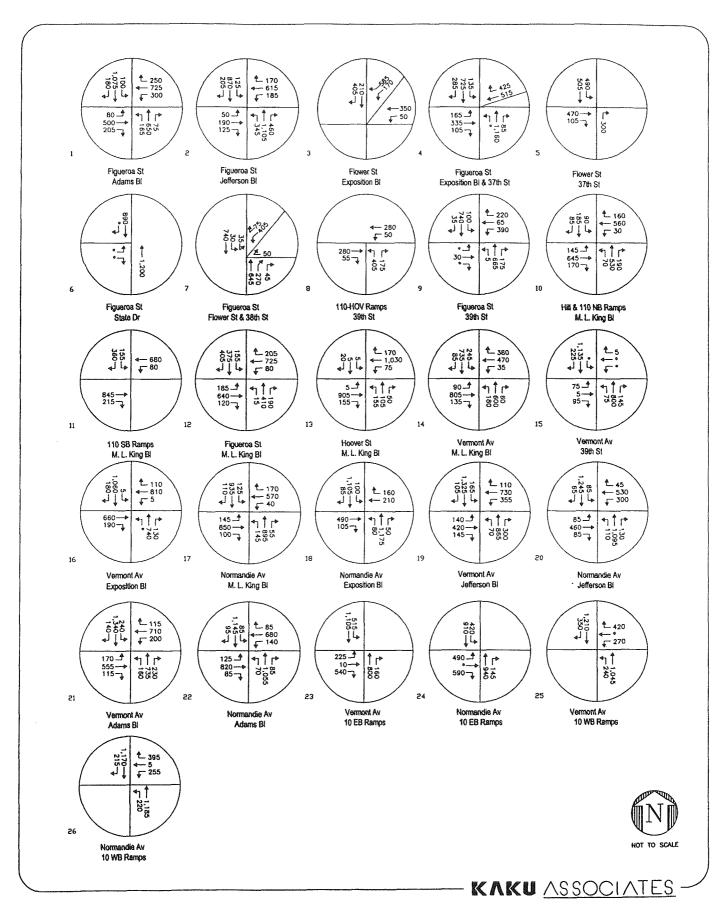



FIGURE 3
EXISTING TRANSIT SERVICES

- <u>LACMTA Line 81/381</u> LACMTA Lines 81/381 are local north/south lines from Eagle Rock Plaza to the Rosewood Community in Los Angeles County. LACMTA Line 81/381 travels on Figueroa Street through the study area. The service runs daily, evenings, and weekends.
- <u>LACMTA Line 102</u> LACMTA Line 102 is a local east/west route from La Brea Avenue to City of Vernon. LACMTA Line 102 travels along Exposition Boulevard through the study area. The service runs daily, evenings up to 9 p.m., and weekends.
- <u>LACMTA Line 550</u> LACMTA Line 550 is a north/south express route from the San Pedro to West Hollywood. LACMTA Line 550 travels along Exposition Boulevard through the study area. The service runs daily, evenings, and weekends.
- <u>LADOT Dash Southeast Line</u> The LADOT Dash Southeast Line is a community transit line that provides service to USC, Exposition Park, and southeast Los Angeles. The LADOT Dash Southeast line provides a connection to the Metro Blue Line stations in the southeast Los Angeles area. The LADOT Dash Southeast line travels on Vermont Avenue, Exposition Boulevard and Figueroa Street through the study area. The service runs weekdays between 6:30 a.m. to 7:00 p.m. and on Saturdays between 10:00 a.m. to 5:30 p.m.
- LADOT Dash King-East Line The LADOT Dash King-East line is a community transit line that provides a service on Martin Luther King Jr. Boulevard east of Figueroa Street. The service operates in a clockwise direction and goes as far as Washington Boulevard to the north, Martin Luther King Jr. Boulevard to the south, Central Avenue to the east and Figueroa Street to the west. The service runs weekdays between 7:00 a.m. to 7:00 p.m. and on Saturdays between 9:00 a.m. and 6:00 p.m.
- <u>LADOT Dash Leimert/Slauson</u> The LADOT Dash Leimert/Slauson line is a community transit line that provides a service along Martin Luther King Jr. Boulevard west of Vermont Avenue. It has stops along Vermont Avenue and travels west to Crenshaw Boulevard. The service runs weekdays between 6:30 a.m. to 7:00 p.m. and on Saturdays between 9:00 a.m. to 6:30 p.m.
- LADOT Dash Downtown Los Angeles Route F The LADOT Dash Route F is a transit line that provides service to USC, Exposition Park, and downtown Los Angeles. The LADOT Dash Downtown Route F line travels on Exposition Boulevard and Figueroa Street through the study area. The service runs weekdays between 6:30 a.m. to 6:30 p.m. and weekends between 10:00 a.m. to 5:00 p.m.

#### **III. ANALYSIS OF PROJECT TRAFFIC**

In order to evaluate correctly the potential impact of the proposed project on the local street system, it was necessary to develop estimates of traffic conditions both with and without the project.


#### **WEEKEND TRAFFIC ANALYSIS**

Traffic volumes are first estimated for the study area without the project these were taken from the observed ground counts from November 30, 2002. These can be seen in Figure 2-1. In addition the weekend volumes with project can be seen in Figure 4-1 and 4-2. The figures represent the pre-event and post-event traffic conditions respectively. The observed traffic counts used in the analysis for pre and post event reflect the street closures and turn prohibitions that are part of LADOT's event management plan.

The resulting impacts are discussed further in Chapter IV.

#### WEEKDAY TRAFFIC ANALYSIS

Future traffic volumes are first estimated for the study area without the project. These future forecasts reflect traffic increases due to general regional growth, traffic that is generated by other specific developments in the vicinity of the project site, and event related traffic at the Staples Center and Los Angeles Convention Center. These future conditions serve as the Cumulative Base conditions. The estimated project traffic is then added to the Cumulative Base traffic forecasts, resulting in the forecast of future conditions. This represents the Cumulative Plus Project conditions.



ت

FIGURE 4-1
PRE EVENT WEEKEND TRAFFIC VOLUMES WITH PROJECT

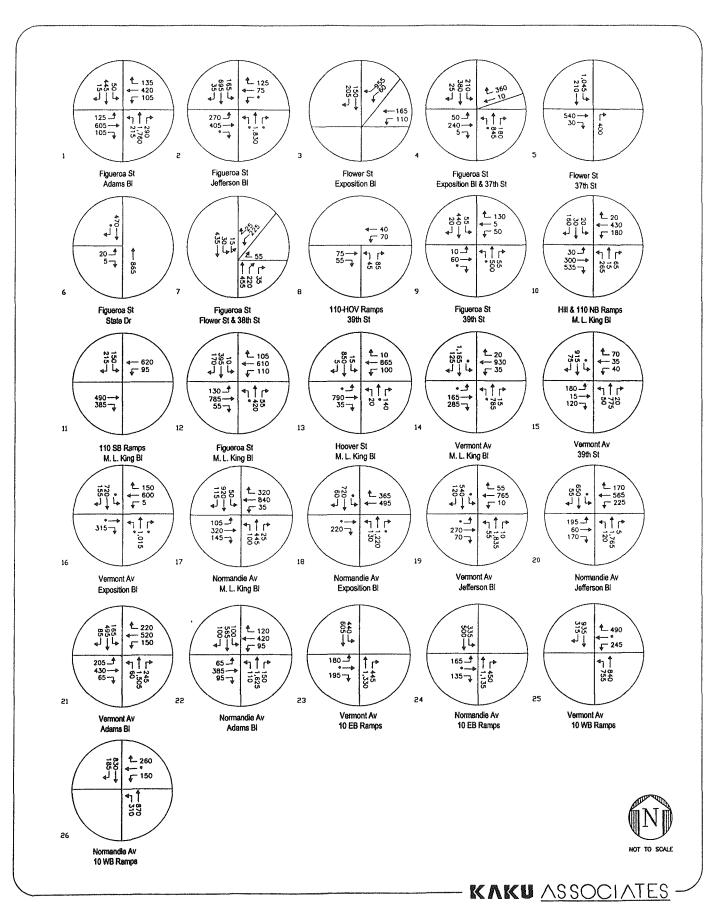



FIGURE 4-2
POST EVENT WEEKEND TRAFFIC VOLUMES WITH PROJECT

## Weekday Traffic Generation of Cumulative Development Projects

The Cumulative Base conditions include three distinct elements: growth in existing background traffic volumes reflecting the effects of overall regional growth and development both in and outside of the study area, traffic generated by the Staples Center and Los Angeles Convention Center, and the traffic generated by specific cumulative projects within or near a two-mile radius of the study area.

## **Areawide Traffic Growth**

The background growth in traffic reflected the overall regional growth both in and out of the study area. A factor of 1% per year was used in the analysis, based on general traffic volume growth factors suggested in the *2002 Congestion Management Program for Los Angeles* (Los Angeles County Metropolitan Transportation Authority, June 2002). The Coliseum is situated in Regional Statistical Area (RSA) 17. Annual growth in this RSA is 0.86%. Using a more conservative growth rate of 1%, the existing traffic volumes are adjusted upwards by 3% to reflect three years of background traffic growth, ultimately representing the year 2006.

## Staples Center and Los Angeles Convention Center Traffic Projections

The Staples Center and Los Angeles Convention center traffic projections represent additional traffic that may occur on a game day. This is added to the existing conditions traffic volumes. It is expected that all attempts will be made to avoid a conflict on game day, as the NFL weekday games occur occasionally. The traffic volumes for the Staples Center and Convention Center were taken from the *Traffic Impact Analysis for the Proposed Los Angeles Sports and Entertainment Complex* (Korve Engineering, Inc., March 1997).

## **Traffic Generation of Cumulative Development Projects**

The next future traffic scenario is that of cumulative projects, which will be added to the project traffic. This is traffic expected to be generated by specific development projects within, or with

the potential to affect, the study area. Information regarding potential future projects either under construction, planned, or proposed for development was obtained from several sources including recently conducted traffic studies, the Los Angeles Unified School District (LAUSD), the City of Los Angeles Planning Department, the Community Redevelopment Agency (CRA) and the LADOT. The locations of the cumulative projects are summarized in Table 5 and illustrated in Figure 5.

It is also expected that the Sports Arena situated on the project site will not pose a problem on game nights. This facility is under Coliseum jurisdiction and every attempt will be made to ensure that there is no event scheduled on the same day as an NFL game. In addition to the Sports Arena, the USC Events Center is currently in the planning stage but has not been included in the related projects as it has yet to receive formal approval.

Trip generation estimates for the cumulative projects were prepared using rates/equations contained in Trip Generation, 6th Edition (Institute of Transportation Engineers, 1997). The trip rates are summarized in Table 5. As shown in the table, the cumulative projects would generate a total of approximately 77,000 daily trips and 12,500 afternoon peak hour trips.

#### **Cumulative Base Traffic Volumes**

The Cumulative Base traffic volumes, future conditions without the proposed project, were produced by adding the traffic expected to be generated by the cumulative projects, Staples Center and Los Angeles Convention Center traffic to the existing volumes (which were increased by 3% to account for ambient growth). The resulting traffic volumes at the 26 analyzed intersections represent the Year 2006 Cumulative Base conditions, i.e., future conditions in Year 2006 without the proposed project. Figure 6 describes these conditions.

#### **WEEKDAY PROJECT TRAFFIC VOLUMES**

The preparation of traffic generation estimates for the project involves three steps: trip generation, trip distribution, and traffic assignment.

TABLE 5
TRIP GENERATION ESTIMATES FOR RELATED PROJECTS

| 1 Mc 2 Ju 3 Sh 4 Re 5 Bil 6 Ac 7 Ba       | IcDonald's restaurant unior market hopping Center partment lestaurant ilal Islamic Center ccessory Mart  lelasco Theatre | 2,307 sf fast food restaurant w/ drive-thru 8,720 sf junior market 57,640 sf shopping center 179-unit apartment 8,000sf restaurant 41,138sf religious institution 32,533sf retail w/ 7,909sf storage Variance to use existing theater to 33,423 sf entertain 3.5M sf(1800 rm hotel, 3600 seat cinema, 1000 seat theater, 345,000sf restaurant, 498,000sf retail, 165,000sf office, 800du | Project Location  730 Olympic BI 1450 Venice BI 5837 Vermont Av 1300 Figueroa St 4016 Central Av 10220 Main St | 2.3<br>8.7<br>57.6<br>179<br>8<br>41.1<br>32.5<br>7.9 | Kef | 1638<br>1308<br>5417<br>1907<br>1907<br>398<br>827<br>827 | 38<br>43<br>160<br>115<br>86<br>56<br>29<br>37 | Outbound  35 41 173 56 42 47 38 37               | [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]       |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------|------------------------------------------------|--------------------------------------------------|-----------------------------------------------|
| 2 Ju 3 Sh Ap 4 Re 5 Bil 6 Ac 7 Ba 8 St Fc | IcDonald's restaurant unior market hopping Center partment lestaurant ilal Islamic Center ccessory Mart salasco Theatre  | 2,307 sf fast food restaurant w/ drive-thru 8,720 sf junior market 57,640 sf shopping center 179-unit apartment 8,000sf restaurant 41,138sf religious institution 32,533sf retail w/ 7,909sf storage Variance to use existing theater to 33,423 sf entertain 3.5M sf(1800 rm hotel, 3600 seat cinema, 1000 seat theater, 345,000sf restaurant, 498,000sf retail, 165,000sf office, 800du | 730 Olympic BI 1450 Venice BI 5837 Vermont Av 1300 Figueroa St 4016 Central Av 10220 Main St                   | 2.3<br>8.7<br>57.6<br>179<br>8<br>41.1<br>32.5<br>7.9 | Ksf<br>Ksf<br>Ksf<br>Ksf<br>Ksf<br>Ksf  | 1638<br>1308<br>5417<br>1907<br>1907<br>398<br>827<br>827 | 38<br>43<br>160<br>115<br>86<br>56<br>29<br>37 | 35<br>41<br>173<br>56<br>42<br>47<br>38<br>37    | [1]<br>[1]<br>[1]<br>[1]<br>[1]<br>[1]<br>[1] |
| 2 Ju 3 Sh Ap 4 Re 5 Bil 6 Ac 7 Ba 8 St Fc | IcDonald's restaurant unior market hopping Center partment lestaurant ilal Islamic Center ccessory Mart salasco Theatre  | drive-thru  8,720 sf junior market  57,640 sf shopping center  179-unit apartment  8,000sf restaurant  41,138sf religious institution  32,533sf retail  w/ 7,909sf storage  Variance to use existing theater to  33,423 sf entertain  3.5M sf(1800 rm hotel, 3600 seat cinema, 1000 seat theater,  345,000sf restaurant, 498,000sf  retail, 165,000sf office, 800du                      | 1450 Venice BI<br>5837 Vermont Av<br>1300 Figueroa St<br>4016 Central Av<br>10220 Main St                      | 8.7<br>57.6<br>179<br>8<br>41.1<br>32.5<br>7.9        | Ksf<br>Ksf<br>Ksf<br>Ksf<br>Ksf         | 1308<br>5417<br>1907<br>1907<br>398<br>827<br>827         | 43<br>160<br>115<br>86<br>56<br>29<br>37       | 41<br>173<br>56<br>42<br>47<br>38<br>37          | [1]<br>[1]<br>[1]<br>[1]<br>[1]<br>[1]<br>[1] |
| 2 Ju 3 Sh Ap 4 Re 5 Bil 6 Ac 7 Ba 8 St    | unior market hopping Center partment lestaurant ilal Islamic Center ccessory Mart lealasco Theatre                       | 8,720 sf junior market 57,640 sf shopping center 179-unit apartment 8,000sf restaurant 41,138sf religious institution 32,533sf retail w/ 7,909sf storage Variance to use existing theater to 33,423 sf entertain 3.5M sf(1800 rm hotel, 3600 seat cinema, 1000 seat theater, 345,000sf restaurant, 498,000sf retail, 165,000sf office, 800du                                             | 1450 Venice BI<br>5837 Vermont Av<br>1300 Figueroa St<br>4016 Central Av<br>10220 Main St                      | 8.7<br>57.6<br>179<br>8<br>41.1<br>32.5<br>7.9        | Ksf<br>Ksf<br>Ksf<br>Ksf<br>Ksf         | 1308<br>5417<br>1907<br>1907<br>398<br>827<br>827         | 43<br>160<br>115<br>86<br>56<br>29<br>37       | 41<br>173<br>56<br>42<br>47<br>38<br>37          | [1]<br>[1]<br>[1]<br>[1]<br>[1]<br>[1]<br>[1] |
| 4 Re 5 Bil 6 Ac 7 Be 8 St                 | hopping Center partment lestaurent illal Islamic Center ccessory Mart lalasco Theatre                                    | 57,640 sf shopping center 179-unit apartment 8,000sf restaurant 41,138sf religious institution 32,533sf retail w/ 7,909sf storage Variance to use existing theater to 33,423 sf entertain 3.5M sf(1800 rm hotel, 3600 seat cinema, 1000 seat theater, 345,000sf restaurant, 498,000sf retail, 165,000sf office, 800du                                                                    | 5837 Vermont Av<br>1300 Figueroa St<br>4016 Central Av<br>10220 Main St                                        | 57.6<br>179<br>8<br>41.1<br>32.5<br>7.9               | Ksf<br>Ksf<br>Ksf<br>Ksf<br>Ksf         | 5417<br>1907<br>1907<br>398<br>827<br>827                 | 160<br>115<br>86<br>56<br>29<br>37             | 173<br>56<br>42<br>47<br>38<br>37                | [1]<br>[1]<br>[1]<br>[1]<br>[1]<br>[1]        |
| 4 Re 5 Bil 6 Ac 7 Be 8 St                 | partment lestaurant iilal Islamic Center ccessory Mart ialasco Theatre                                                   | 179-unit apartment 8,000sf restaurant 41,138sf religious institution 32,533sf retail w/ 7,909sf storage Variance to use existing theater to 33,423 sf entertain 3.5M sf(1800 rm hotel, 3600 seat cinema, 1000 seat theater, 345,000sf restaurant, 498,000sf retail, 165,000sf office, 800du                                                                                              | 1300 Figueroa St<br>4016 Central Av<br>10220 Main St                                                           | 179<br>8<br>41.1<br>32.5<br>7.9                       | Ksf<br>Ksf<br>Ksf<br>Ksf                | 1907<br>1907<br>398<br>827<br>827                         | 115<br>86<br>56<br>29<br>37                    | 56<br>42<br>47<br>38<br>37                       | [1]<br>[1]<br>[1]<br>[1]<br>[1]               |
| 4 Re 5 Bil 6 Ac 7 Bs                      | estaurant ilal Islamic Center ccessory Mart ialasco Theatre                                                              | 8,000sf restaurant 41,138sf religious institution 32,53sf retail w/ 7,909sf storage Variance to use existing theater to 33,423 sf entertain 3.5M sf(1800 rm hotel, 3600 seat cinema, 1000 seat theater, 345,000sf restaurant, 498,000sf retail, 165,000sf office, 800du                                                                                                                  | 4016 Central Av<br>10220 Main St                                                                               | 8<br>41.1<br>32.5<br>7.9                              | Ksf<br>Ksf<br>Ksf                       | 1907<br>398<br>827<br>827                                 | 86<br>56<br>29<br>37                           | 42<br>47<br>38<br>37                             | [1]<br>[1]<br>[1]<br>[1]                      |
| 5 Bil 6 Ac 7 Bs                           | ilal Islamic Center ccessory Mart salasco Theatre                                                                        | 41,138sf religious institution 32,533sf retail w/ 7,909sf storage Variance to use existing theater to 33,423 sf entertain 3.5M sf(1800 rm hotel, 3600 seat cinema, 1000 seat theater, 345,000sf restaurant, 498,000sf retail, 165,000sf office, 800du                                                                                                                                    | 10220 Main St                                                                                                  | 41.1<br>32.5<br>7.9                                   | Ksf<br>Ksf<br>Ksf                       | 398<br>827<br>827                                         | 56<br>29<br>37                                 | 47<br>38<br>37                                   | [1]<br>[1]<br>[1]                             |
| 6 Ac 7 Bs 8 St                            | ccessory Mart salasco Theatre staples Entertainment District                                                             | 32,533sf retail w/ 7,909sf storage Variance to use existing theater to 33,423 sf entertain 3.5M sf(1800 rm hotel, 3600 seat cinema, 1000 seat theater, 345,000sf restaurant, 498,000sf retail, 165,000sf office, 800du                                                                                                                                                                   | 10220 Main St                                                                                                  | 32.5<br>7.9                                           | Ksf<br>Ksf                              | 827<br>827                                                | 29<br>37                                       | 38<br>37                                         | [1]<br>[1]                                    |
| 7 Bs                                      | alasco Theatre                                                                                                           | w/ 7,909sf storage Variance to use existing theater to 33,423 sf entertain 3.5M sf(1800 rm hotel, 3600 seat cinema, 1000 seat theater, 345,000sf restaurant, 498,000sf retail, 165,000sf office, 800du                                                                                                                                                                                   |                                                                                                                | 7.9                                                   | Ksf                                     | 827                                                       | 37                                             | 37                                               | [1]                                           |
| 8 St                                      | ialasco Theatre                                                                                                          | Variance to use existing theater to 33,423 sf entertain 3.5M sf(1800 rm hotel, 3600 seat cinema, 1000 seat theater, 345,000sf restaurant, 498,000sf retail, 165,000sf office, 800du                                                                                                                                                                                                      | 1050 Hill St                                                                                                   |                                                       |                                         |                                                           |                                                |                                                  |                                               |
| 8 St                                      | alasco Theatre                                                                                                           | 33,423 sf entertain 3.5M sf(1800 rm hotel, 3600 seat cinema, 1000 seat theater, 345,000sf restaurant, 498,000sf retail, 165,000sf office, 800du                                                                                                                                                                                                                                          | 1050 Hill St                                                                                                   | 33,4                                                  | Ksf                                     | 1220                                                      | 164                                            | 164                                              | [1]                                           |
| 8 St                                      | staples Entertainment District                                                                                           | 3.5M sf(1800 rm hotel, 3600 seat cinema, 1000 seat theater, 345,000sf restaurant, 498,000sf retail, 165,000sf office, 800du                                                                                                                                                                                                                                                              | 1090 Hill St                                                                                                   | 33.4                                                  | KSI                                     | 1220                                                      | 164                                            | 1 364                                            | ₹  3  £                                       |
| Fo                                        | staples Entertainment District                                                                                           | cinema, 1000 seat theater,<br>345,000sf restaurant, 498,000sf<br>retail, 165,000sf office, 800du                                                                                                                                                                                                                                                                                         |                                                                                                                |                                                       |                                         |                                                           | 1                                              | <del>                                     </del> | 1                                             |
| Fo                                        | itaples Entertainment District                                                                                           | 345,000sf restaurant, 498,000sf retail, 165,000sf office, 800du                                                                                                                                                                                                                                                                                                                          | \ \ \                                                                                                          |                                                       |                                         |                                                           |                                                |                                                  | 1 1                                           |
| Fo                                        | taples Entertainment District                                                                                            | retail, 165,000sf office, 800du                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                |                                                       |                                         |                                                           |                                                |                                                  |                                               |
| Fo                                        | taples Entertainment District                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                |                                                       |                                         |                                                           |                                                |                                                  |                                               |
| Fo                                        |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                |                                                       |                                         |                                                           |                                                |                                                  |                                               |
|                                           | nod Market convenience store at I                                                                                        | apts)                                                                                                                                                                                                                                                                                                                                                                                    | Figueroa St                                                                                                    | 3500                                                  | Ksf                                     |                                                           | 1881                                           | 1731                                             | [1]                                           |
| Q Mana                                    |                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |                                                       |                                         |                                                           |                                                |                                                  |                                               |
|                                           | as station                                                                                                               | 12 fueling stations                                                                                                                                                                                                                                                                                                                                                                      | 1570 Western Av                                                                                                | 6.0                                                   | Ksf                                     | 605                                                       | 21                                             | 21                                               | [1]                                           |
|                                           |                                                                                                                          | Construct 215,000 sf building, 2                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                |                                                       |                                         |                                                           |                                                |                                                  |                                               |
|                                           |                                                                                                                          | stories, adjacent to LA Mart for                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                |                                                       |                                         |                                                           |                                                |                                                  |                                               |
|                                           | ,                                                                                                                        | special wholesale trade events                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |                                                       |                                         |                                                           |                                                |                                                  |                                               |
| 10 LA                                     | A Mart                                                                                                                   | during weekends                                                                                                                                                                                                                                                                                                                                                                          | 1933 Broadway                                                                                                  | 215                                                   | Ksf                                     | 968                                                       | 94                                             | 19                                               | [1]                                           |
|                                           |                                                                                                                          | Construct 447,500 sf office park,                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |                                                       |                                         |                                                           |                                                |                                                  |                                               |
|                                           |                                                                                                                          | w/child care center & 1,690                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |                                                       |                                         |                                                           |                                                |                                                  |                                               |
| 11                                        | A County Office Park                                                                                                     | parking spaces                                                                                                                                                                                                                                                                                                                                                                           | Slauson Av                                                                                                     | 447.5                                                 | Ksf                                     | 3931                                                      | 73                                             | 451                                              | [1]                                           |
|                                           |                                                                                                                          | Construct 7,142 sf quality                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                | . <del></del>                                         |                                         | 3301                                                      |                                                | 1                                                | 1                                             |
|                                           |                                                                                                                          | restaurant and nightclub in                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                              |                                                       |                                         |                                                           |                                                |                                                  |                                               |
|                                           |                                                                                                                          | existing office bldg w/18 on-site &                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                                                       |                                         |                                                           |                                                |                                                  |                                               |
| 42                                        |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                          | SOF Ohmeric DI                                                                                                 | 7.4                                                   | 16-6                                    | 000                                                       | 40                                             |                                                  | 1                                             |
| 12 Q                                      |                                                                                                                          | 100 off-site parking space                                                                                                                                                                                                                                                                                                                                                               | 605 Olympic BI                                                                                                 | 7.1                                                   | Ksf                                     | 630                                                       | 19                                             | 21                                               | [1]                                           |
| l.,                                       |                                                                                                                          | Construct 6-story 31,655 sf clinic                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                |                                                       | ]                                       |                                                           |                                                |                                                  |                                               |
|                                           |                                                                                                                          | w/off site parking space                                                                                                                                                                                                                                                                                                                                                                 | 1530 Ofive St                                                                                                  | 31.7                                                  | Ksf                                     | 1143                                                      | 49                                             | 49                                               | 111                                           |
|                                           | lefferson New Continuation High                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                          | Í                                                                                                              |                                                       |                                         |                                                           |                                                |                                                  | 1                                             |
| 14 S                                      | School                                                                                                                   | New Continuation High School                                                                                                                                                                                                                                                                                                                                                             | 1921 South Maple Avenue                                                                                        | 87                                                    | students                                | 156                                                       | 5                                              | 8                                                | [2]                                           |
|                                           |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                |                                                       |                                         |                                                           | 1                                              | 1                                                |                                               |
| 15 C                                      | Central LA Area New High School                                                                                          | New High School                                                                                                                                                                                                                                                                                                                                                                          | 1500 W. Washington Boulevard                                                                                   | 2142                                                  | students                                | 3834                                                      | _129                                           | 193                                              | [2]                                           |
| 16 Je                                     | lefferson New Primary Center                                                                                             | New Primary Center                                                                                                                                                                                                                                                                                                                                                                       | 3601 South Maple Avenue                                                                                        | 344                                                   | students                                | 329                                                       | 41                                             | 48                                               | [2]                                           |
| 17 W                                      | Veernes Playground                                                                                                       | Playground Expansion                                                                                                                                                                                                                                                                                                                                                                     | 1260 West 36th Place                                                                                           | 0.6                                                   | acres                                   | 1                                                         | 0                                              | 0                                                | [2]                                           |
|                                           |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                |                                                       |                                         |                                                           |                                                |                                                  |                                               |
| 18 M                                      | Manual Arts New Primary Center                                                                                           | New Primary Center                                                                                                                                                                                                                                                                                                                                                                       | 1017 W. 47th Street                                                                                            | 380                                                   | students                                | 363                                                       | 45                                             | 53                                               | [2]                                           |
|                                           |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                |                                                       | 1                                       |                                                           |                                                |                                                  |                                               |
| 19 0                                      | Orthopaedic Hospital High School                                                                                         | New Magnet High School                                                                                                                                                                                                                                                                                                                                                                   | 300 West 23rd Street                                                                                           | 762                                                   | students                                | 1364                                                      | 46                                             | 69                                               | [2]                                           |
|                                           |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                |                                                       |                                         |                                                           |                                                | 1                                                |                                               |
| 20 J                                      | Jefferson New Elementary School                                                                                          | New Elementary School                                                                                                                                                                                                                                                                                                                                                                    | 899 East 42nd Place                                                                                            | 831                                                   | students                                | 799                                                       | 99                                             | 117                                              | [2]                                           |
|                                           | Vanual Arts New Elementary                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                |                                                       |                                         |                                                           |                                                | 1                                                |                                               |
| B                                         | School                                                                                                                   | New Elementary School                                                                                                                                                                                                                                                                                                                                                                    | 3020 S. Catalina Street                                                                                        | 804                                                   | students                                | 773                                                       | 96                                             | 113                                              | [2]                                           |
|                                           | South Central LA Area New High                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                |                                                       |                                         |                                                           |                                                | T                                                | 1 -                                           |
|                                           | •                                                                                                                        | New High School                                                                                                                                                                                                                                                                                                                                                                          | 1921 South Maple Avenue                                                                                        | 2112                                                  | students                                | 3780                                                      | 127                                            | 190                                              | [2]                                           |

The state of the s

TABLE 5 TRIP GENERATION ESTIMATES FOR RELATED PROJECTS

|     |                                                                   |                                                                                          |                                                  |                              |                        |                             | PM Peak                | Hour Trips       |                          |
|-----|-------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------|------------------------|-----------------------------|------------------------|------------------|--------------------------|
| No. | Project Name                                                      | Project Description                                                                      | Project Location                                 | Size                         | Units                  | Daily Trips                 | Inbound                | Outbound         | Source                   |
|     |                                                                   |                                                                                          | 116 East Martin Luther King                      |                              |                        |                             |                        |                  | 1                        |
| 23  | Accelerated Charter School                                        | Expansion and Reuse                                                                      | Boulevard                                        | 797                          | students               |                             | 61                     | 99               | [2]                      |
| 24  | Jefferson New Elementary School                                   | New Elementary School                                                                    | 401 East 40th Place                              | 919                          | students               | 885                         | 110                    | 129              | [2]                      |
| N . | Manual Arts New Elementary<br>School                              | New Elementary School                                                                    | 700 State Drive                                  | 712                          | students               | 684                         | 85                     | 100              | [2]                      |
| 26  |                                                                   | New Middle School                                                                        | 3500 South Hill Street                           | 1512                         | students               | 2716                        | 114                    | 128              | [2]                      |
| 27  |                                                                   | Museum expansion & addition                                                              | West & East side of California<br>Science Center | 165                          | Ksf                    | 620                         | 15                     | 155              | [2]                      |
| 28  | Science Museum School and<br>Science Education Resource<br>Center | Renovation and expansion                                                                 | Northeast corner of Exposition<br>Park           | 172                          | Ksf                    | 1890                        | 10                     | 35               | [2]                      |
| 29  | Exposition Park Intergenerational Community Center                | Expansion and renovation                                                                 | South of the Coliseum                            | 6                            | Ksf                    | 3117                        | 162                    | 246              | [2]                      |
| 30  | Molecular Biology                                                 | Addition to the Science Complex                                                          | UCS Campus                                       | 135                          | Ksf                    | 0                           | 0                      | 0                | [2]                      |
| 31  | Tudor Hall                                                        | New addition                                                                             | UCS Campus                                       | 105                          | Ksf                    | 0                           | 0                      | 0                | [2]                      |
| 32  | Events Center                                                     | New addition under study                                                                 | USC Campus                                       | 10,000                       | Ksf                    | 0                           | 0                      | 0                | [2]                      |
| 33  | Natural History Museum                                            | Renovation and expansion                                                                 | North side of Exposition Park                    | 491                          | ksf                    | 1845                        | 44                     | 447              | [2]                      |
| 34  | RETAIL - No Name yet                                              | 17200 Sq Feet of retail                                                                  | West of Figueroa between 17th & 18th Street      | 17.2                         | Ksf                    | 700                         | 14                     | 19               | [2]                      |
| 35  | Transamerica (phase II)                                           | 2,006,000 Sq Ft of Office                                                                | 11th Street & Hope Street                        | 2006                         | Ksf                    | 13277                       | 404                    | 1663             | [2]                      |
| 36  | CIM Group                                                         | 100 Apartments 50,000 Sq Feet Supermarket 1,021 Apartments 66,700 retail and restaurants | 9th Street & Flower                              | 100<br>50<br>1021 du<br>66.7 | du<br>Ksf<br>du<br>Ksf | 734<br>5576<br>6254<br>2713 | 49<br>126<br>325<br>56 | 121<br>160<br>74 | [2]<br>[2]<br>[2]<br>[2] |
| 37  | Light Industrial                                                  | 700 employee light Industry                                                              | San Pedro & Pico                                 | 700                          | employees              | 2096                        | 54                     | 204              | [2]                      |
|     | TOTAL                                                             |                                                                                          |                                                  |                              |                        | 77232                       | 5082                   | 7320             | 1-1-1                    |

[1] Trip generation data obtained from the LADOT related project database (City of Los Angeles Planning Department, CRA, LAUSD)
[2] Christopher A. Joseph & Associates, 2003

FIGURE 5
CUMULATIVE DEVELOPMENT PROJECTS

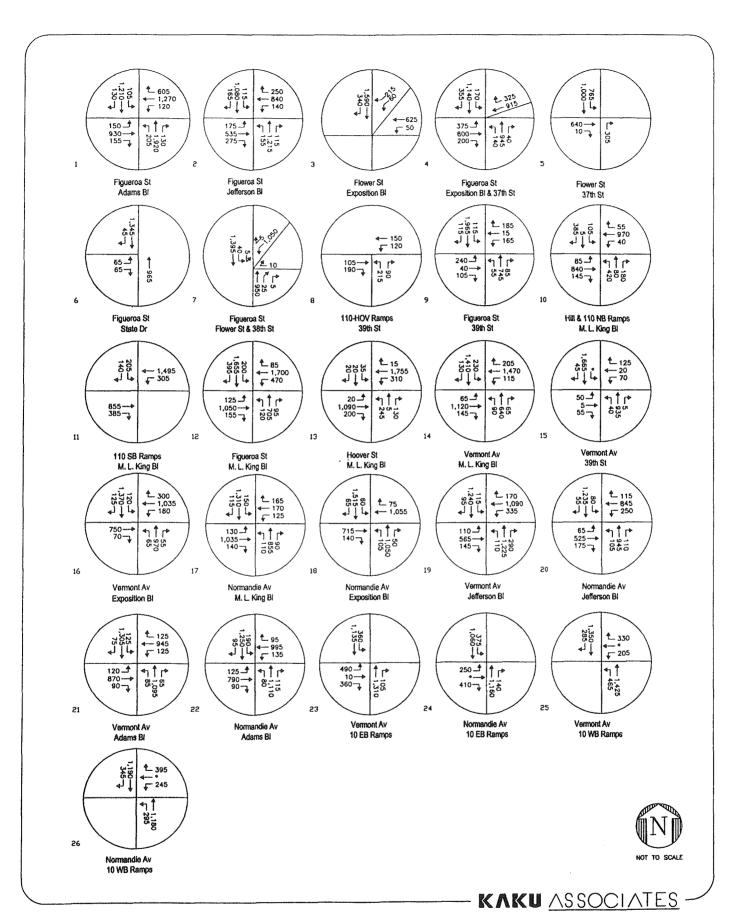



FIGURE 6
CUMULATIVE BASE WEEKDAY TRAFFIC VOLUMES

## Average Vehicle Occupancy (AVO) and Project Traffic Generation

The Los Angeles Memorial Coliseum currently occupies the proposed project site. USC College football games are currently held at the Coliseum on weekends where the attendance has been as much as 87,944 persons. The Coliseum also hosts other events such as concerts, soccer and special events. The current capacity of the Stadium is 92,500 persons. The Proposed Project would redevelop the Coliseum with a maximum seating capacity of 78,000 seats. Vehicular access to the site would remain unchanged. Assuming a sold out event, an NFL game at the redeveloped Coliseum would result in a maximum attendance of approximately 14,500 fewer persons at any one event as compared to existing conditions.

Average Vehicle Occupancy. Discussions were held with the LADOT staff to determine the most appropriate trip generation rate to estimate traffic generation characteristics of the project. It was decided that a detailed analysis of the AVO should be carried out to accurately reflect a typical NFL weekday game, as the average number of occupants per vehicle significantly affects the total number of vehicles that can be accommodated at the Los Angeles Coliseum. Kaku Associates, Inc. has recently undertaken a study for the proposed NFL Cardinals stadium in Arizona where the trip generation was determined using a 3.0 AVO. Details from this study are attached in Appendix D.

A previous study for the Coliseum undertaken by DKS Associates in 1991 discusses the adoption of specific rates for vehicle occupancy based on events at Los Angeles Dodger Stadium and the Greek Theatre. It concluded that average vehicle occupancy of 2.7 persons per vehicle was a reasonable, conservative value. Historical data from this study was analyzed for different events at the Coliseum; these events included college football games and concerts. The results are shown in Table 6. Details from this study are attached in Appendix D.

A study by Korve Engineering, Inc. was completed in 1997 for the proposed Los Angeles Sports and Entertainment Complex. This is now known as the Staples Center, located in downtown Los Angeles. The study recommends an AVO of 2.75 persons. Details from this study are attached in Appendix D.

TABLE 6
AVERAGE VEHICLE OCCUPANCY BASED ON HISTORICAL COLISEUM DATA

| EVENT               | AVERAGE<br>ATTENDANCE | ARRIVING VIA<br>AUTOMOBILE | AVERAGE<br>PARKING<br>DEMAND | AVERAGE<br>VEHICLE<br>OCCUPANCY |
|---------------------|-----------------------|----------------------------|------------------------------|---------------------------------|
| College Football    | 65,178                | 52,142                     | 19,312                       | 2.7                             |
| Professional Soccer | 47,032                | 37,626                     | 13,936                       | 2.7                             |
| Soccer              | 17,757                | 14,206                     | 5,261                        | 2.7                             |
| Concerts            | 66,598                | 53,278                     | 19,732                       | 2.7                             |
| Motocross           | 35,391                | 28,313                     | 10,486                       | 2.7                             |
| Special Events      | 16,700                | 13,360                     | 4,948                        | 2.7                             |

Source: "Los Angeles Memorial Coliseum Renovation Project", DKS Associates, 1991.

For the purpose of trip generation analysis for the LA Coliseum, the average vehicle occupancy rate was assumed to be 2.7 persons per vehicle. This rate is slightly lower than other NFL stadiums in order to produce a more conservative estimate.

<u>Trip Generation</u>. Based on consultation with Los Angeles Department of Transportation, it can be assumed that approximately 5% of patrons arrive at the Coliseum by transit and 95% arrive by automobile. Therefore, the 78,000 seats at the Coliseum would generate approximately 3,900 transit trips and using an AVO of 2.7, the remaining trips would arrive in approximately 27,450 vehicles.

It is assumed that 50% of the inbound trips occur during the p.m. peak hour. This would generate approximately 13,750 vehicle trips during the pre-event p.m. peak hour. The trip generation was developed using the equations below:

Number of Vehicle trips =  $78,000 \times 95\%$  auto arrival = 27,444 vehicle trips 2.7 persons/auto

Pre Event Peak Auto Arrival = 27,444 x 50% peak hour inbound = 13,722 vehicle trips

## Weekday Project Traffic Distribution/Assignment

The geographic distribution of the traffic generated by the proposed project was determined in consultation with LADOT staff. The direction that traffic will approach the stadium depends largely on the efficiency of the highway system serving the site and the geographical distribution of population in the region. The distribution of spectators arriving is as follows and is illustrated in Figure 6:

orași Silve Bare

270/

| South on the Harbor Freeway (1-110) and southbound on artenals  | 21%         |
|-----------------------------------------------------------------|-------------|
| West on the Santa Monica Freeway (I-10) and westbound arterials | 20%         |
| North on the Harbor Freeway (I-110) and northbound on arterials | 24%         |
| East on the Santa Monica Freeway (I-10) and eastbound arterials | 29%         |
|                                                                 |             |
| TOTAL                                                           | <u>100%</u> |

South on the Harber Frequency (1.110) and southhoused an arterials

The trips generated by the proposed project were assigned to the street system utilizing the distribution pattern illustrated in Figure 7 and were assigned the destination of a parking lot at either USC or the Coliseum (with the Coliseum lots being filled first). It was decided to assign vehicles to parking lots, as this is where the majority of vehicles end up parking. It is also worthwhile noting that vehicles may opt to use private parking lots in the area if they fail to find parking in the lots used by the Coliseum/USC.

Figure 8 illustrates parking entrances and restrictions that are applied during weekend game days for the USC Trojans. It is assumed that these restrictions and entrances would apply for a weekday NFL football game and were taken into account when assigning project traffic to the street network. The resultant weekday project traffic volumes at the analyzed intersections are shown in Figure 9.

## WEEKDAY CUMULATIVE PLUS PROJECT TRAFFIC PROJECTIONS

Project traffic volumes were added to the Cumulative Base traffic projections to develop the Cumulative Plus Project traffic forecasts. The Cumulative Plus Project traffic volumes, illustrated in Figure 10, represent future conditions with project traffic.

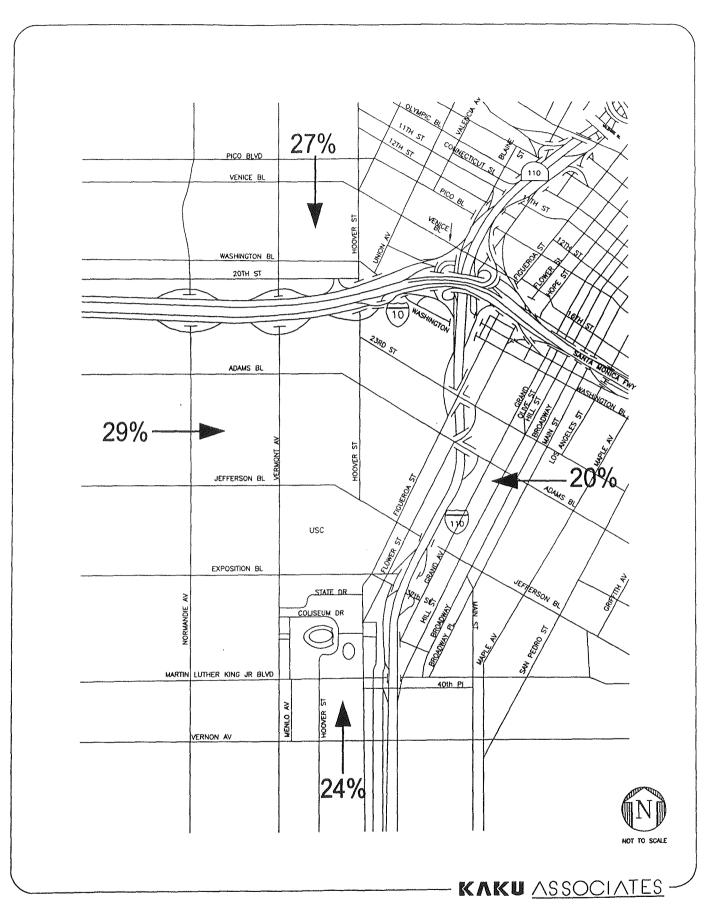



FIGURE 7
PROJECT TRAFFIC DISTRIBUTION

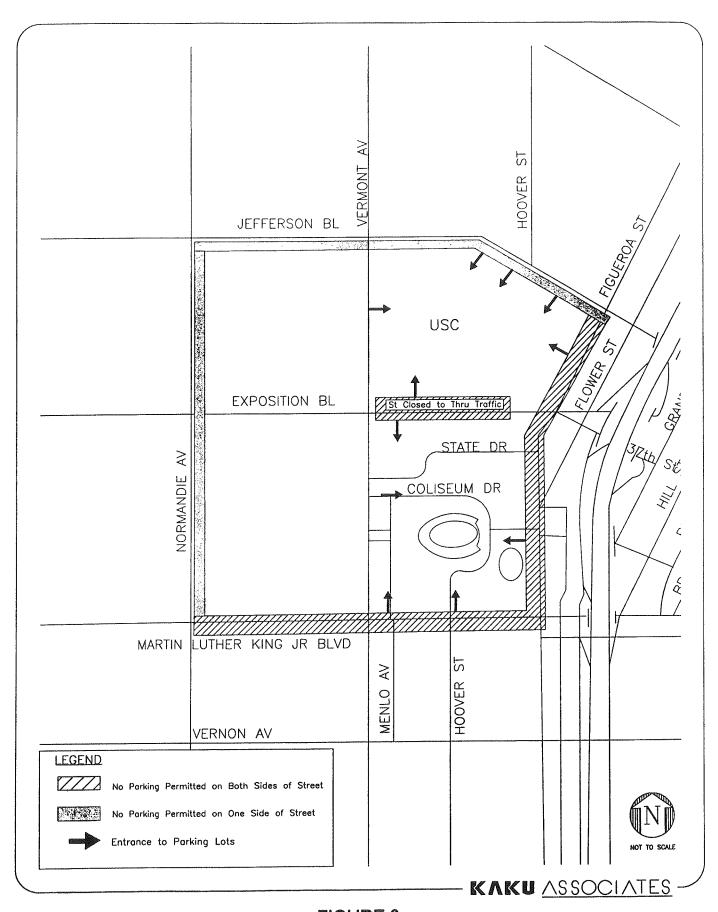



FIGURE 8
PRE-EVENT TURN PROHIBITIONS AND PARKING RESTRICTIONS

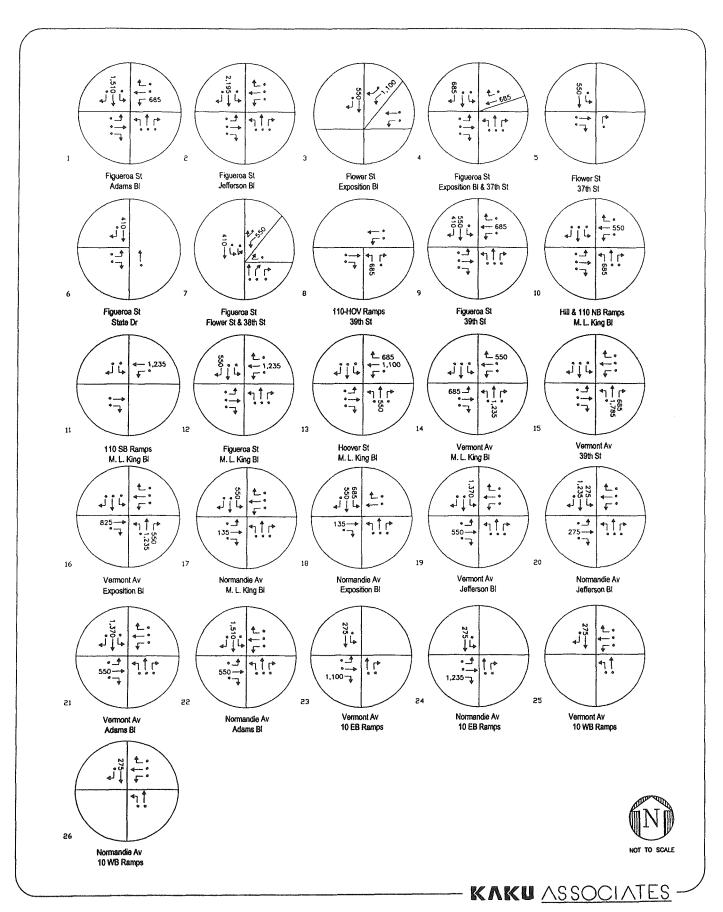



FIGURE 9
PROJECT ONLY WEEKDAY TRAFFIC VOLUMES

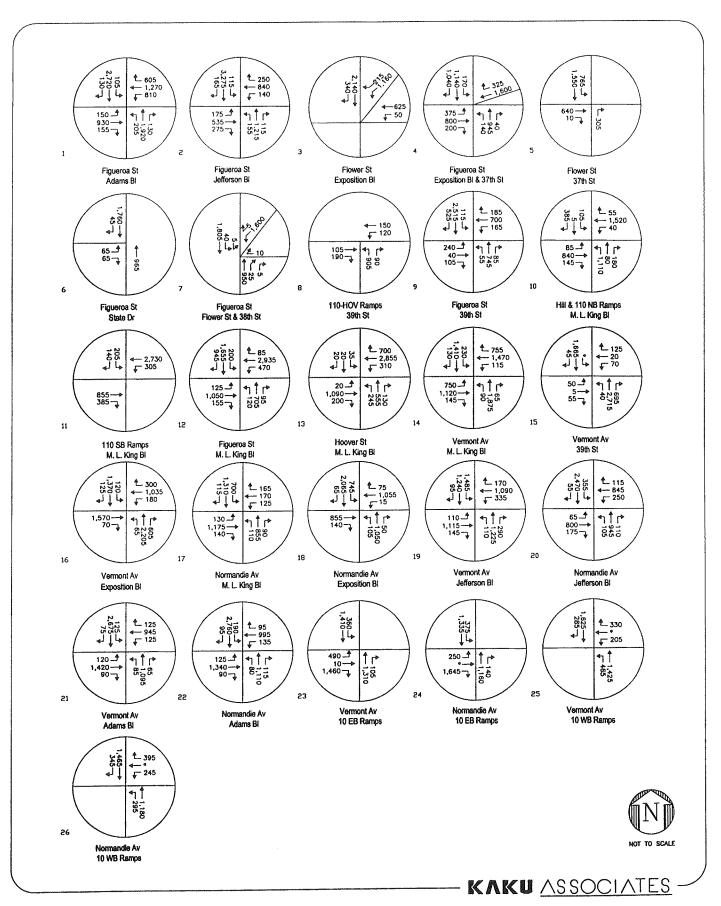



FIGURE 10
CUMULATIVE BASE PLUS PROJECT WEEKDAY TRAFFIC VOLUMES

#### IV. TRAFFIC IMPACT ANALYSIS

This chapter presents an analysis of the potential impacts of the proposed project traffic on the local street system for both the weekend and weekday scenarios. The analysis compares the projected levels of service at each study intersection under with and without project conditions to determine the potential impacts, using significance criteria established by the LADOT.

#### SIGNIFICANT TRAFFIC IMPACT CRITERIA

LADOT has established criteria that are used to determine if a project has a significant traffic impact at an intersection. Using the LADOT standard, a project impact would be considered significant if the following conditions are met:

| Intersection Cond | ition with Project Traffic | Project Related Increase in    |
|-------------------|----------------------------|--------------------------------|
| LOS               | V/C Ratio                  | V/C Ratio                      |
| С                 | 0.701 - 0.800              | Equal to or greater than 0.040 |
| D                 | 0.801 - 0.900              | Equal to or greater than 0.020 |
| E, F              | > 0.900                    | Equal to or greater than 0.010 |

Using these criteria, a project would not have a significant impact at an intersection if, for example, it is operating at LOS C after the addition of project traffic and the incremental change in the V/C ratio is less than 0.040. If the intersection is operating at a LOS F after the addition of project traffic, however, and the incremental change in the V/C ratio is 0.010 or greater, the project would be considered to have a significant impact at this location.

#### **WEEKEND CONDITIONS WITH PROJECT**

The weekend scenario with project conditions highlights the differences between traffic conditions with the addition of a football game at the Coliseum. A point worth consideration is that this scenario demonstrates the traffic impacts associated with a Coliseum event with a recorded

attendance of 87,944 persons. This represents a conservative future weekend conditions with project scenario, as the Proposed Project would redevelop the Coliseum with a maximum seating capacity of 78,000 seats (14,500 fewer seats than what currently exists).

## Pre-Event Scenario

Table 7 shows the difference between the 'with project' and 'without project' traffic volumes in the worst hour prior to the game. The worst hour is defined as the time period when the traffic volumes are at the heaviest through the 26 intersections. The results show that with the USC Trojans game, 23 out of the 26 intersections work at LOS D or better pre event. Two intersections work at LOS E (I-110 northbound ramps/Hill & Martin Luther King Jr. Boulevard and Normandie Avenue & I-10 eastbound ramps).

Application of the significance criteria, previously described in this chapter, indicates that the project would create significant traffic impacts at the following eight study intersections:

- Figueroa Street & Adams Boulevard
- I-110 NB Ramps/Hill Street & Martin Luther King Jr. Boulevard
- Vermont Avenue & Jefferson Boulevard
- Normandie Avenue & Jefferson Boulevard
- Vermont Avenue & Adams Boulevard
- Normandie Avenue & Adams Boulevard
- Normandie Avenue & I-10 EB ramps
- Vermont Avenue & I-10 WB ramps

As mentioned previously, only three of the above eight intersections operate at LOS E or greater showing that Coliseum traffic for College football games is well managed by the majority of the 26 intersections analyzed. These results take into account the LADOT traffic management plan implemented on game days to improve and facilitate traffic movement issues resulting from the increase in the number of vehicles on the surrounding street network.

TABLE 7
PRE-EVENT INTERSECTION LEVEL OF SERVICE ANALYSIS - WEEKEND CONDITIONS

| Intersection                              | Time<br>Period | l     | Project<br>itions<br>LOS | Pre E<br>w/Project<br>V/C |   | Project<br>Increase<br>in V/C | Significant<br>Project<br>Impact |
|-------------------------------------------|----------------|-------|--------------------------|---------------------------|---|-------------------------------|----------------------------------|
| 1. Figueroa St & Adams Bl                 | РМ             | 0.112 | Α                        | 0.834                     | D | 0.722                         | YES                              |
| 2. Figueroa St & Jefferson Bl             | РМ             | 0.411 | Α                        | 0.668                     | В | 0.257                         | МО                               |
| 3. Flower St & Exposition BI              | PM             | 0.326 | Α                        | 0.432                     | Α | 0.106                         | NO                               |
| 4. Figueroa St & Exposition Bl            | PM             | 0.798 | С                        | 0.744                     | С | -0.054                        | NO                               |
| 5. Flower St & 37th St                    | PM             | 0.274 | Α                        | 0.316                     | Α | 0.042                         | NO                               |
| 6. Figueroa St & State Dr                 | РМ             | 0.174 | Α                        | 0.331                     | Α | 0.157                         | NO                               |
| 7. Figueroa St & 38th St                  | РМ             | 0.359 | Α                        | 0.477                     | Α | 0.118                         | NO                               |
| 8. I-110 HOV Ramps & 39th St              | PM             | 0.286 | Α                        | 0.328                     | Α | 0.042                         | NO                               |
| 9. Figueroa St & 39th St                  | РМ             | 0.362 | Α                        | 0.385                     | Α | 0.023                         | NO                               |
| 10. I-110 NB Ramps/Hill & M.L.King Jr. Bl | РМ             | 0.672 | В                        | 0.907                     | E | 0.235                         | YES                              |
| 11. I-110 SB Ramps & M.L.King Jr. Bl      | РМ             | 0.302 | Α                        | 0.351                     | Α | 0.049                         | NO                               |
| 12. Figueroa St & M.L.King Jr. Bl         | PM             | 0.449 | Α                        | 0.594                     | Α | 0.145                         | NO                               |
| 13. Hoover St & M.L.King Jr. Bl           | PM             | 0.386 | Α                        | 0.333                     | Α | -0.053                        | NO                               |
| 14. Vermont Av & M.L.King Jr. Bl          | РМ             | 0.699 | В                        | 0.672                     | В | -0.027                        | NO                               |
| 15. Vermont Av & 39th St                  | РМ             | 0.494 | Α                        | 0.551                     | Α | 0.057                         | NO                               |
| 16. Vermont Av & Exposition BI            | PM             | 0.479 | Α                        | 0.591                     | Α | 0.112                         | NO                               |
| 17. Normandie Av & M.L.King Jr. Bl        | PM             | 0.631 | В                        | 0.612                     | В | -0.019                        | NO                               |
| 18. Normandie Av & Exposition BI          | РМ             | 0.579 | Α                        | 0.642                     | В | 0.063                         | NO                               |
| 19. Vermont Av & Jefferson Bl             | РМ             | 0.739 | С                        | 0.894                     | D | 0.155                         | YES                              |
| 20. Normandie Av & Jefferson Bl           | РМ             | 0.726 | С                        | 0.795                     | С | 0.069                         | YES                              |
| 21. Vermont Av & Adams Bl                 | РМ             | 0.818 | D                        | 1.01                      | F | 0.192                         | YES                              |
| 22. Normandie Av & Adams Bl               | РМ             | 0.763 | С                        | 0.862                     | D | 0.099                         | YES                              |
| 23. Vermont Av & I-10 EB Ramps            | PM             | 0.762 | С                        | 0.797                     | С | 0.035                         | NO                               |
| 24. Normandie Av & I-10 EB Ramps          | РМ             | 0.711 | С                        | 0.970                     | Ε | 0.259                         | YES                              |
| 25. Vermont Av & I-10 WB Ramps            | PM             | 0.651 | В                        | 0.74                      | С | 0.089                         | YES                              |
| 26. Normandie Av & I-10 WB Ramps          | РМ             | 0.738 | С                        | 0.723                     | С | -0.015                        | NO                               |

e e e

Š

Charles County

## Post-Event Scenario

Table 8 shows the results for the post-event scenario for the 26 analyzed intersections. The table reflects the difference between the with and without project scenarios following the USC College football game. The with-project scenario effectively takes traffic counts for the worst hour after the game (between 6:30 and 9:30 p.m.). The worst hour is defined as the time period when the traffic volumes are at the heaviest through the 26 intersections. The results show that 25 out of the 26 analyzed intersections operate at LOS D or better after the game. One intersection operates at LOS F, that of Vermont Avenue and Adams Boulevard.

Application of the significance criteria, previously described in this chapter, indicates that the project would create significant traffic impacts at the following six study intersections

- I-110 NB Ramps/Hill Street & Martin Luther King Jr. Boulevard
- Vermont Avenue & Jefferson Boulevard
- Normandie Avenue & Jefferson Boulevard
- Vermont Avenue & Adams Boulevard
- Normandie Avenue & Adams Boulevard
- Vermont Avenue & I-10 WB ramps

As mentioned previously, only one of the six intersections above operates at LOS F and the rest operate at LOS D or better. These results take into account the LADOT traffic management plan implemented on game days to facilitate traffic movement caused by the increase in the number of vehicles on the Coliseum's surrounding street network. The results show that the intersections operate satisfactorily considering the additional traffic generated by the Coliseum by a weekend game.

#### **WEEKDAY CONDITIONS WITH PROJECT**

## **Weekday Cumulative Base Traffic Conditions**

The Cumulative Base peak hour traffic volumes, illustrated in Figure 6, were analyzed to determine the V/C ratio and corresponding LOS for each of the analyzed intersections under these base conditions. Table 9 summarizes these results for the pre-event hour weekday night

TABLE 8
POST-EVENT INTERSECTION LEVEL OF SERVICE ANALYSIS - WEEKEND CONDITIONS

| Intersection                              | Time<br>Period | H     | t Project<br>litions<br>LOS |       | Event<br>Scenario<br>LOS | Project<br>Increase<br>in V/C | Significant<br>Project<br>Impact |
|-------------------------------------------|----------------|-------|-----------------------------|-------|--------------------------|-------------------------------|----------------------------------|
| 1. Figueroa St & Adams Bl                 | РМ             | 0.112 | A                           | 0.609 | В                        | 0.497                         | NO                               |
| 2. Figueroa St & Jefferson Bl             | PM             | 0.411 | Α                           | 0.669 | В                        | 0.258                         | NO                               |
| 3. Flower St & Exposition BI              | РМ             | 0.326 | Α.                          | 0.441 | Α                        | 0.115                         | NO                               |
| 4. Figueroa St & Exposition Bl            | РМ             | 0.798 | С                           | 0.617 | В                        | -0.181                        | NO                               |
| 5. Flower St & 37th St                    | PM             | 0.274 | Α                           | 0.568 | Α                        | 0.294                         | NO                               |
| 6. Figueroa St & State Dr                 | PM             | 0.174 | Α                           | 0.236 | Α                        | 0.062                         | NO                               |
| 7. Figueroa St & 38th St                  | PM             | 0.359 | Α                           | 0.279 | Α                        | -0.08                         | NO                               |
| 8. I-110 HOV Ramps & 39th St              | РМ             | 0.286 | Α                           | 0.071 | Α                        | -0.215                        | NO                               |
| 9. Figueroa St & 39th St                  | РМ             | 0.362 | Α                           | 0.199 | Α                        | -0.163                        | NO                               |
| 10. I-110 NB Ramps/Hill & M.L.King Jr. Bl | PM             | 0.672 | В                           | 0.733 | С                        | 0.061                         | YES                              |
| 11. I-110 SB Ramps & M.L.King Jr. BI      | PM             | 0.302 | Α                           | 0.331 | Α                        | 0.029                         | NO                               |
| 12. Figueroa St & M.L.King Jr. Bl         | PM             | 0.449 | Α                           | 0.35  | Α                        | -0.099                        | NO                               |
| 13. Hoover St & M.L.King Jr. Bl           | PM             | 0.386 | Α                           | 0.477 | Α                        | 0.091                         | NO                               |
| 14. Vermont Av & M.L.King Jr. Bl          | PM             | 0.699 | В                           | 0.606 | В                        | -0.093                        | NO                               |
| 15. Vermont Av & 39th St                  | РМ             | 0.494 | Α                           | 0.525 | Α                        | 0.031                         | NO                               |
| 16. Vermont Av & Exposition Bl            | РМ             | 0.479 | Α                           | 0.518 | Α                        | 0.039                         | NO                               |
| 17. Normandie Av & M.L.King Jr. Bl        | РМ             | 0.631 | В                           | 0.627 | В                        | -0.004                        | NO                               |
| 18. Normandie Av & Exposition Bl          | PM             | 0.579 | Α                           | 0.649 | В                        | 0.07                          | NO                               |
| 19. Vermont Av & Jefferson Bl             | РМ             | 0.739 | С                           | 0.844 | D                        | 0.105                         | YES                              |
| 20. Normandie Av & Jefferson Bl           | РМ             | 0.726 | С                           | 0.895 | D                        | 0.169                         | YES                              |
| 21. Vermont Av & Adams Bl                 | РМ             | 0.818 | D                           | 1.014 | F                        | 0.196                         | YES                              |
| 22. Normandie Av & Adams Bl               | РМ             | 0.763 | С                           | 0.896 | D                        | 0.133                         | YES                              |
| 23. Vermont Av & I-10 EB Ramps            | РМ             | 0.762 | С                           | 0.705 | С                        | -0.057                        | NO                               |
| 24. Normandie Av & I-10 EB Ramps          | РМ             | 0.711 | С                           | 0.671 | В                        | -0.04                         | NO                               |
| 25. Vermont Av & I-10 WB Ramps            | PM             | 0.651 | В                           | 0.894 | D                        | 0.243                         | YES                              |
| 26. Normandie Av & I-10 WB Ramps          | PM             | 0.738 | С                           | 0.583 | Α                        | -0.155                        | NO                               |

scenario. As indicated in Table 9, 19 of the 26 analyzed intersections are projected to operate at LOS D or better during the pre-event peak hour. Five of the remaining intersections operate at LOS E and two operate at LOS F.

It should be noted that LADOT's Automated Traffic Surveillance and Control (ATSAC) system is operational at 24 out of the 26 analyzed intersections. As a result, in accordance with LADOT procedures, capacity values were increased by 7% to reflect the benefit of ATSAC.

#### PROJECT TRAFFIC IMPACT ANALYSIS

The cumulative plus project traffic values were analyzed to determine potential future operating conditions and traffic impacts with the addition of the project generated traffic associated with an weekday NFL football game at the Coliseum. These results are also displayed in Table 9.

As indicated in the table, traffic generated by the project results in a worsening of the LOS at 22 of the 26 intersections. The results show that 21 of the intersections are now projected to operate at LOS E or F. Application of the significance criteria previously described in this chapter indicates that the project would create significant traffic impacts at the following 23 study intersections:

- Figueroa Street and Adams Boulevard
- Figueroa Street and Jefferson Boulevard
- Flower Street and Exposition Boulevard
- Figueroa Street and Exposition Boulevard & 37<sup>th</sup> Street
- Figueroa Street and 38<sup>th</sup> Place/Flower Street
- I-110 HOV Ramps & 39<sup>th</sup> Street
- Figueroa Street and 39<sup>th</sup> Street/Coliseum Drive
- I-110 Northbound Ramps/Hill Street and Martin Luther King Junior Boulevard
- Figueroa Street and Martin Luther King Junior Boulevard
- Hoover Street and Martin Luther King Junior Boulevard
- Vermont Avenue and Martin Luther King Junior Boulevard
- Vermont Avenue and 39<sup>th</sup> Street
- Vermont Avenue and Exposition Boulevard

TABLE 9 WEEKDAY INTERSECTION LEVEL OF SERVICE ANALYSIS **CUMULATIVE BASE AND CUMULATIVE PLUS PROJECT CONDITIONS** 

|                                           | _              | Cumu      |           |          | tive Base    | Project            | Significant       |
|-------------------------------------------|----------------|-----------|-----------|----------|--------------|--------------------|-------------------|
| Intersection                              | Time<br>Period | Ba<br>V/C | se<br>LOS | V/C + Pr | oject<br>LOS | Increase<br>in V/C | Project<br>Impact |
| 1. Figueroa St & Adams Bl                 | PM             | 0.991     | E         | 1,873    | F            | 0.882              | YES               |
| 2. Figueroa St & Jefferson Bl             | PM             | 0.736     | c         | 1,268    | F            | 0.532              | YES               |
| 3. Flower St & Exposition BI              | PM             | 0.520     | Α         | 1,002    | F            | 0.482              | YES               |
| 4. Figueroa St & Exposition Bl            | PM             | 1.031     | F         | 1,432    | F            | 0.401              | YES               |
| 5. Flower St & 37th St                    | РМ             | 0.435     | Α         | 0.566    | A            | 0.131              | NO                |
| 6. Figueroa St & State Dr                 | РМ             | 0.337     | Α         | 0,406    | Α            | 0.069              | NO                |
| 7. Figueroa St & 38th St                  | PM             | 0.771     | С         | 0.964    | Ε            | 0.193              | YES               |
| 8. I-110 HOV Ramps & 39th St              | PM             | 0.282     | Α         | 0.739    | С            | 0.457              | YES               |
| 9. Figueroa St & 39th St                  | PM             | 0.651     | В         | 1.321    | F            | 0.670              | YES               |
| 10. I-110 NB Ramps/Hill & M.L.King Jr. BI | PM             | 0.806     | D         | 1.175    | F            | 0.369              | YES               |
| 11. I-110 SB Ramps & M.L.King Jr. BI      | PM             | 0.484     | Α         | 0.613    | В            | 0.129              | NO                |
| 12. Figueroa St & M.L.King Jr. Bl         | PM             | 1.147     | F         | 1.525    | F            | 0.378              | YES               |
| 13. Hoover St & M.L.King Jr. Bl           | PM             | 0.599     | Α         | 0.984    | E            | 0.385              | YES               |
| 14. Vermont Av & M.L.King Jr. Bl          | PM             | 0.969     | E         | 1.827    | F            | 0.858              | YES               |
| 15. Vermont Av & 39th St                  | PM             | 0.703     | С         | 1.242    | F            | 0.539              | YES               |
| 16. Vermont Av & Exposition Bl            | PM             | 0.877     | D         | 1,431    | F            | 0.554              | YES               |
| 17. Normandie Av & M.L.King Jr. Bl        | PM             | 0.823     | D         | 1.086    | F            | 0.263              | YES               |
| 18. Normandie Av & Exposition Bl          | PM             | 0.797     | С         | 1.066    | F            | 0.269              | YES               |
| 19. Vermont Av & Jefferson Bl             | PM             | 0.924     | E         | 2.078    | F            | 1.154              | YES               |
| 20. Normandie Av & Jefferson Bl           | PM             | 0.794     | С         | 1.277    | F            | 0.483              | YES               |
| 21. Vermont Av & Adams Bl                 | PM             | 0.969     | Е         | 1.629    | F            | 0.660              | YES               |
| 22. Normandie Av & Adams Bl               | PM             | 0.999     | Ε         | 1.643    | F            | 0.644              | YES               |
| 23. Vermont Av & I-10 EB Ramps            | PM             | 0.873     | D         | 1.559    | F            | 0.686              | YES               |
| 24. Normandie Av & I-10 EB Ramps          | PM             | 0.888     | D         | 1.755    | F            | 0.867              | YES               |
| 25. Vermont Av & I-10 WB Ramps            | PM             | 0.816     | D         | 0.912    | E            | 0.096              | YES               |
| 26. Normandie Av & I-10 WB Ramps          | PM             | 0.780     | С         | 0.876    | D            | 0.096              | YES               |









































- Normandie Avenue and Martin Luther King Junior Boulevard
- Normandie Avenue and Exposition Boulevard
- Vermont Avenue and Jefferson Boulevard
- Normandie Avenue and Jefferson Boulevard
- Vermont Avenue and Adams Boulevard
- Normandie Avenue and Adams Boulevard
- Vermont Avenue and I-10 eastbound ramps
- Normandie Avenue and I-10 eastbound ramps
- Vermont Avenue and I-10 westbound ramps
- Normandie Avenue and I-10 westbound ramps

The approach to assignment of vehicle trips to the Coliseum revolved around a mode split of 5% transit and an AVO of 2.70, which are conservative estimates. If these were to increase, then potential impacts would substantially decrease. As this type of event is scheduled to occur occasionally during the weekday evening peak hour, it was decided to take a slightly different approach to project traffic mitigation. Costly physical mitigation measures would not be justified outside of the game day scenarios, as the intersections currently operate to a satisfactory level.

The different approach to project traffic mitigation, discussed in detail under the mitigation measures section of this chapter, involves an incident traffic management plan. This was considered a more prudent, flexible approach to solving the traffic problems in lieu of physical mitigation.

### **MITIGATION MEASURES**

In analyzing the two different scenarios of weekend and weekday games, it was concluded that the weekday games presented the worst traffic conditions of the two. This was due to heavy background flows associated with the p.m. peak hour in Los Angeles.

The weekend traffic analysis considered that the Coliseum played host to the football game of USC Trojans versus Notre Dame. This event had a patronage of 87,944 persons approximately 9,944 persons greater than the maximum, proposed capacity for an NFL game. LADOT has

already applied traffic management measures to cope with the demand associated with the weekend USC games and this is reflected in the weekend results. Therefore, these mitigation measures cope well with traffic issues that can be considered far in excess of those an NFL game would present. Figure 11 displays the turn prohibitions used by LADOT on game days

The worst-case scenario for traffic volumes on the roads surrounding the Coliseum would occur occasionally each year on either a Monday or Thursday evening, when the Coliseum would host an NFL football game. The experience from NFL weekday games elsewhere is that the pre-event hour carries around 50% of the inbound traffic to the stadium; hence, that time frame (in this case 5:00 to 6:00 p.m.) contains the most concentrated traffic volumes. As this type of event is occasional throughout the year, permanent physical mitigation was considered inappropriate and thus the approach chosen was that of incident management similar to that used for the weekend games.

The occasional increase in congestion that may result from an NFL weekday game will require mitigation through the implementation of improved traffic management. Los Angeles Police Department (LAPD) personnel and traffic control officers will be required, in the future, to provide the sufficient level of traffic management needed by such an event. Although there is currently a management plan in place for weekend USC football games, there are elements of this new plan that will enhance the existing weekend management.

In order to mitigate the impacts of the occasional weekday NFL game at the Coliseum, the sponsors of the proposed project will collaborate with LADOT, LAPD, California Department of Transportation, and California Highway Patrol on implementation of an incident traffic management plan.

The management plan consists of numerous mitigation measures designed to help manage traffic and minimize the impact in areas surrounding the Coliseum. The areas where most of the significant impacts occur are along the routes that provide access to the parking lots at the Coliseum and USC:

1

تث

- Figueroa Street
- Martin Luther King Junior Boulevard
- Vermont Avenue
- Normandie Avenue

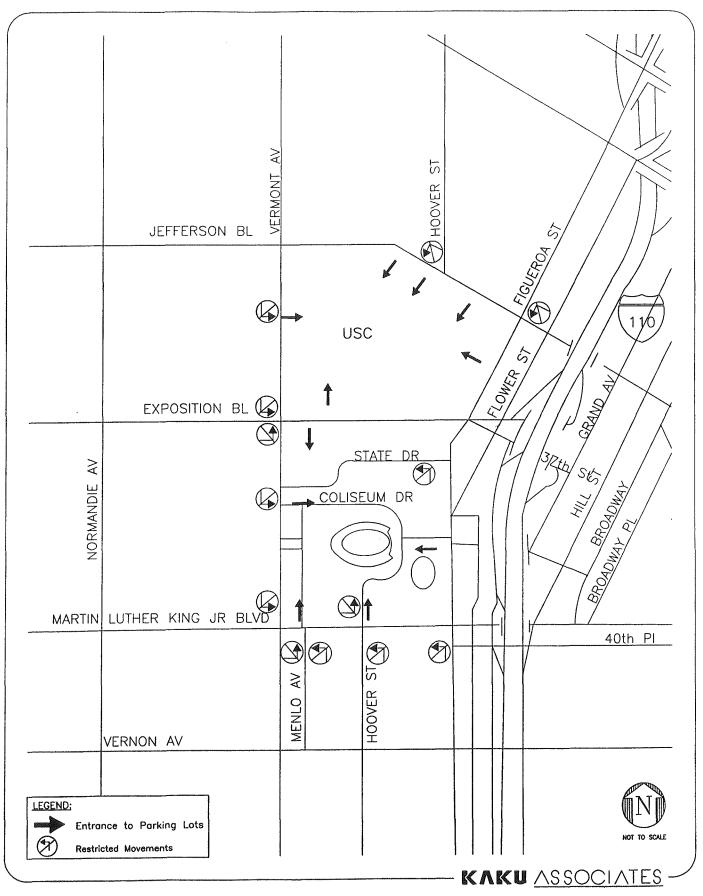



FIGURE 11
PRE EVENT TURN PROHIBITIONS

- Jefferson Boulevard
- Adams Boulevard
- Exposition Boulevard

From 5:00 to 6:00 p.m. the majority of these streets will be very heavily congested, with many intersections operating at LOS F. A series of measures must be put into effect to counteract the increased traffic volume and mitigate the significant impacts. Los Angeles Police and LADOT Traffic Officers will need to be on hand to help implement the management plan. The following steps describe the procedures that are utilized at present or would need to be added or expanded:

- To facilitate movement of vehicles, the LAPD and LADOT staff must have the authority to implement turn restrictions, parking prohibitions, lane closures, barriers/cones, and flexible signage. A temporary command post shall be made available on the site to control and monitor traffic conditions. The area must be split up into zones, with an engineer assigned to each zone. These engineers would have the authority to react to situations and change restrictions if necessary.
- 2. The parking lots currently represent a problematic situation. The access to lots in the Coliseum and USC is very slow. Two factors directly attributable to this are the location of driveways and the management of the parking. This can be resolved by having electronic ticketing to replace parking guards at problem area lots and traffic signs on adjacent Coliseum streets that indicate which lots have spaces available. Coupled with this would be further education on directions from the freeways/arterials to the parking lots. This type of education could be in the form of an advance warning to ticket holders (i.e., on the rear of the ticket stubs). In addition, season and regular ticket holders could be issued speed passes and assigned parking at specific lots.
- 3. Real time radio alerts and broadcasts via Highway Advisory Radio (HAR) are needed. These are portable units and could be located wherever LADOT deems appropriate. These units are particularly useful for incident management and special events such as football games. The units also require very little set up time by trained officers. They can be programmed remotely via cellular telephones, and traditionally have a range of 3-5 miles on an am frequency. Coliseum employees could be trained and authorized to staff the HAR.

- 4. In conjunction with the aforementioned measures, Changeable Message Signs (CMS) can be used to direct vehicles from the freeways and surface streets to the Coliseum/USC parking lots. At least eight or more signs would be needed for results to be noticeable and coordinated. The signs/messages could consist of advance warning for motorists telling them where they can and cannot park/turn. Whenever permit parking is being used, the signs should be able to inform the public that certain lanes should be avoided and some lots only allow permits. This will cut down unnecessary congestion and queuing.
- 5. As part of the game day signage, the CMS could be augmented with the addition of favored routes that direct traffic along travel paths that are not immediately obvious. These routes could be designed and linked by colored arrows that direct drivers to specific locations. Temporary signing would indicate these routes. The routes could provide alternate parking locations such as the lesser-utilized USC lots and any designated overspill parking facilities.
- 6. The Coliseum, the Sports Arena, museums and Exposition Park uses, and other organizations must work in harmony to ensure that large, publicly attended events are not overlapping, thus minimizing possible traffic conflicts.
- 7. There is also a need to encourage the use of carpools on game days. These measures must be incentivized either by reducing the cost of parking or through ticket pricing. This will have the effect of reducing overall vehicle trips.
- 8. Encourage the use of alternate parking sites located away from the Coliseum. These could be in downtown Los Angeles where parking capacity is freed up by 5 p.m. or at a location close to the Coliseum. There are also large reservoirs of parking available in downtown Los Angeles such as the multi-story garage at Venice Boulevard and Grand Avenue. On days when there is no game/event scheduled at the Staples Center or the Los Angeles Convention Center, there is a possibility that the vacant parking lots belonging to those two land uses could be utilized to cope with the demand for the football game at the Coliseum. Shuttle buses that have specific pick-up and drop-off locations, such as in front of the Peristyle, where there is enough room for buses to circulate and load passengers, could provide access to the stadium. This also limits the pedestrian conflict with vehicles as the pedestrians wait in a designated area away from traffic.

9. In conjunction with the mitigation measures above, Figure 11 shows the pre-event turn prohibitions that are recommend for application in either the weekday or weekend scenarios. These are the restrictions currently applied by LADOT for USC weekend football games.

These are a series of suggested mitigation measures that must be used together to combat the significant traffic impacts generated by the project traffic. They are designed to work together to have the maximum effect on the highway network around the Coliseum study area.

### **FUTURE RAIL TRANSIT**

The Exposition Line rail line is a rail transit service that is under the jurisdiction of the MTA (Metropolitan Transportation Authority). The first section of light rail to Venice Boulevard/Robertson Boulevard has been approved for development. As of this date full funding has not been assured, the earliest that the Exposition Line could be in operation is 2010. The planned route uses Flower Street in downtown Los Angeles, where it will share track with the Metro Blue Line and connect with the full Los Angeles metrorail network. It will run by the Staples Center, the Convention Center and on to Los Angeles Trade Tech College. Following this it will proceed to Exposition Park (Coliseum) and the University of Southern California. The benefits that it could provide are numerous. It could allow for easy access to the Coliseum and help drivers utilize parking away from the stadium area. It may also have the effect of increasing the transit mode share, thus relieving the parking demand.

### V. CMP REGIONAL ANALYSIS

Intersection analyses complying with Los Angeles County 2002 Congestion Management Program (CMP) requirements were also completed. The Transportation Impact Analysis (TIA) section of the CMP requirements describes the threshold criteria used to identify potential CMP monitoring locations that needed to be included in the traffic analysis. Based on the CMP criteria, the following locations needed to be analyzed:

- All CMP arterial monitoring intersections, including monitored freeway on- or off-ramp intersections, where the proposed project will add 50 or more trips during either the a.m. or p.m. weekday peak hours (of adjacent street traffic).
- All mainline freeway monitoring locations where the project will add 150 or more trips, in either direction, during either the weekday a.m. or p.m. peak hours.

### CMP SIGNIFICANT TRAFFIC IMPACT CRITERIA

The LACMTA has established its CMP TIA significance criteria indicating that a significant impact occurs when the proposed project's traffic increases demand at a CMP freeway facility or arterial monitoring location by 2% of capacity (i.e., V/C increase > or equal to 0.02), causing the location to operate at LOS F (V/C > 1.00). Under this criterion, a project would not be considered to have a significant impact if the analyzed facility is operating at LOS E or better after the addition of project traffic. If the facility, however, is operating at LOS F with project traffic and the incremental change in the V/C ratio caused by the project is 0.02 or greater, the project would be considered to have a significant impact.

### **WEEKDAY PM CMP FREEWAY ANALYSIS**

Based on the threshold criteria of the CMP, it was determined that the following CMP monitoring locations needed to be included. In accordance with the CMP TIA requirements, the freeway monitoring station I-10 freeway at Budlong Avenue meets the criteria for analysis. In addition, the

I-110 freeway monitoring station at Slauson Avenue also meets the CMP TIA requirements for analysis. There are no arterial monitoring stations in close proximity to the project site.

The significant impact criteria established by the CMP provides that a project would generate significant regional impacts if the projected level of service is LOS F and the increase in V/C ratio caused by the project traffic is equal to or more than 0.02. Table 10 presents the CMP analysis for the analyzed CMP freeway monitoring station. As shown in Table 10 the proposed project would significantly impact both of the CMP monitoring stations on the I-10 and the I-110.

### **Proposed CMP Mitigation Measures**

As mentioned in the previous chapter, the NFL football games at the Coliseum are projected to happen occasionally during the weekday p.m. peak hour. It would again be more appropriate to utilize an incident management plan that incorporates the I-10 and the I-110.

The proposed management plans in Chapter IV cover the aspect of freeways in relation to the arterial streets. The plan advises the use of better education on freeway directions to and from games (see point 2) and it also addresses the possibility of game day signing. This can be achieved using CMS signs on freeways to alert drivers to incident spots or areas with less congestion. Effectively encouraging better route choice amongst attendees (see point 4).

In summation the freeway, along with the arterial streets, will be addressed in an integrated approach. The aim is to facilitate the movement of game day traffic and to relieve as much pressure as is feasible on the street network approaching the Coliseum.

TABLE 10
CMP FREEWAY LEVEL OF SERVICE ANALYSIS - WEEKDAY PM PRE EVENT HOUR

| Freeway |                 |           | Existing Year 2003 |                  |              |              |  |  |  |  |  |
|---------|-----------------|-----------|--------------------|------------------|--------------|--------------|--|--|--|--|--|
| Route   | Location        | Direction | Demand             | Capacity         | D/C          | LOS          |  |  |  |  |  |
| 1-10    | Budlong Avenue  | EB<br>WB  | 18,615<br>17,340   | 12,500<br>12,500 | 1.49<br>1.39 | F(3)<br>F(2) |  |  |  |  |  |
| I-110   | Slausson Avenue | NB<br>SB  | 8,242<br>11,914    | 8,000<br>8,000   | 1.03<br>1.49 | F(0)<br>F(3) |  |  |  |  |  |

#### Continued..

| Freeway |                 |           | Cı               | ımulative Base Co | nditions 20  | 06           | Cumulat        | ive Base + Pr    | oject Conditi | ons 2006     | PROJECT        | SIGNIFICANT    |
|---------|-----------------|-----------|------------------|-------------------|--------------|--------------|----------------|------------------|---------------|--------------|----------------|----------------|
| Route   | Location        | Direction | Demand           | Capacity          | D/C          | LOS          | Demand         | Capacity         | D/C           | LOS          | NCREASE IN D/C | PROJECT IMPACT |
| I-10    | Budlong Avenue  | EB<br>WB  | 19,546<br>18,207 | 12,500<br>12,500  | 1.56<br>1.46 | F(3)<br>F(3) | 21193<br>18207 | 12,500<br>12,500 | 1.70<br>1.46  | F(3)<br>F(3) | 0.13<br>0.00   | YES<br>NO      |
| I-110   | Slausson Avenue | NB<br>SB  | 8,654<br>12,509  | 8,000<br>8,000    | 1.08<br>1.56 | F(0)<br>F(3) | 9615<br>12509  | 8,000<br>8,000   | 1.20<br>1.56  | F(0)<br>F(3) | 0.12<br>0.00   | YES<br>NO      |

### Notes:

Source: "2002 Congestion Management Program for Los Angeles County", Metropolitan Transportation Authority, June 2002

Freeway mainline Levels of Service are based on the Demand to Capacity scale below:

| D/C Ratio     | LOS  |
|---------------|------|
| 0.000 - 0.350 | Α    |
| 0.351 - 0.540 | В    |
| 0.541 - 0.770 | С    |
| 0.771 - 0.930 | D    |
| 0.931 - 1.000 | Ε    |
| 1.001 - 1.250 | F(0) |
| 1.251 - 1.350 | F(1) |
| 1.351 - 1.450 | F(2) |
| > 1.450       | F(3) |

### VI. PARKING ANALYSIS

In the same way that the proposed project and its reduced seating capacity will reduce maximum potential traffic generation for most events, the project will also reduce parking demands. The basis for this statement concerns that fact that the capacity for Coliseum football games is currently at 92,500 persons. The Proposed Project would redevelop the Coiliseum to provide a maximum of 78,000 seats, a reduction of 14,500 seats, which is a large reduction in terms of overall capacity. The project will also reduce the maximum parking demands, as there will be a decrease in vehicles traveling on game days.

The proposed renovation project does not include any changes to existing parking facilities at the Coliseum, at Exposition Park, or on the USC Campus. Figure 12 depicts the supply of off-street parking available for spectators at events in the Coliseum. The total number of existing parking spaces in the Coliseum-Exposition Park-University Park (USC) combined campus is 19.820.

Compared with USC football games and concerts held at the Coliseum, the impact of the reduced seating capacity at the Coliseum for NFL games could be a reduction in the demand for off-site parking, on-street parking in residential areas or in off-street small private lots, as well as a reduction in the amount of congestion associated with people searching for parking when the preferred close-in parking at Exposition Park is full.

In addition to all the existing parking around the Coliseum, the museum is adding a subterranean parking structure (see location 4 on Figure 12). This structure is due for completion by 2004 and is currently under construction at an advanced stage. It will have a final capacity of 2,210 vehicles. It is not anticipated that there would be any change in the operation policy of museum parking. On game days, 50 of the aforementioned 2,210 spaces will be reserved for Museum Foundation members. Therefore, the Coliseum project will not cause an impact on museum parking different from the current situation. Table 11 illustrates typical maximum parking demands for three types of events and the amount of parking demand that will not be satisfied on-site at the Coliseum, Exposition Park, and USC facilities.

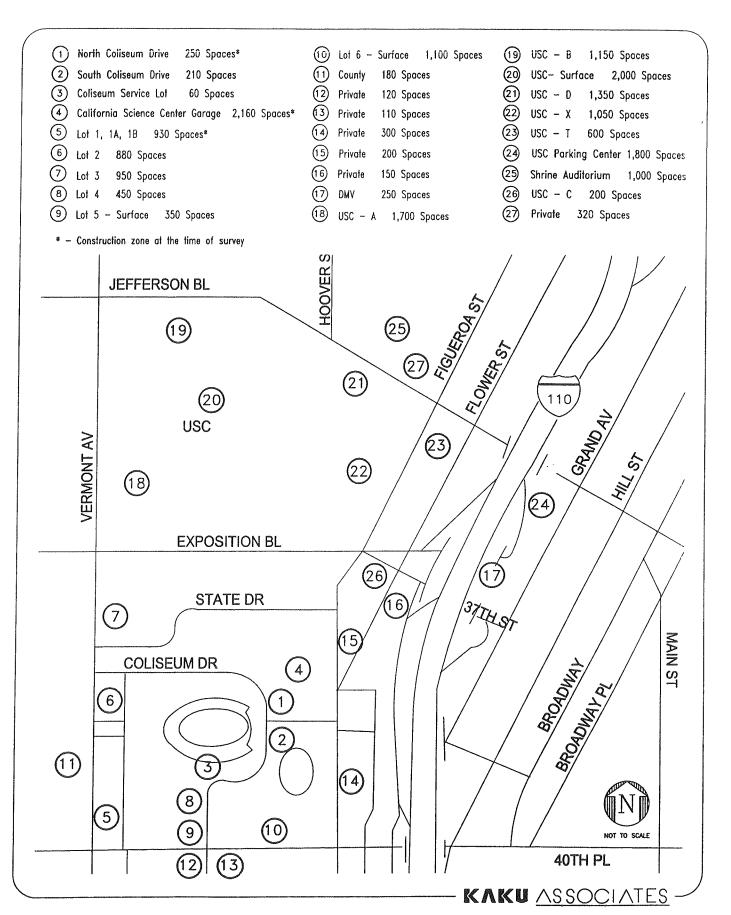



FIGURE 12
PARKING INVENTORY

TABLE 11
PARKING DEMAND SUMMARY

| EVENT    | MAXIMUM<br>ATTENDANCE | MAXIMUM<br>PARKING DEMAND<br>(typical) | PARKING SUPPLY<br>AT EXPOSITION<br>PARK & USC (see<br>note) | MAXIMUM OVERFLOW FROM EXPOSITION PARK & USC | PERCENTAGE OF<br>DEMAND SATIFIED<br>BY INVENTORY |
|----------|-----------------------|----------------------------------------|-------------------------------------------------------------|---------------------------------------------|--------------------------------------------------|
| NFL Game | 78,000                | 25,200                                 | 19,820                                                      | 5,380                                       | 79%                                              |
| USC Game | 78,000                | 25,200                                 | 19,820                                                      | 5,380                                       | 79%                                              |
| Concert  | 92,500                | 27,407                                 | 19,820                                                      | 7,587                                       | 72%                                              |

### Note

Parking supply based on the inventory in Figure 12

The supply of existing parking at Exposition Park and USC would come closer to satisfying all parking demands for an NFL game than either a USC game or a concert, assuming all is made available for use by attendees. For the larger-attendance USC games and concerts, the parking shortfall is greater than that for an NFL game by 1,270 spaces and 3,477 spaces, respectively, at sold out events.

The full complement of non-Coliseum controlled lots may not be available for weekday parking by game time. On game days, these lots may not be completely empty. This could mean that employees of USC and the museum may still be using their spaces as they are at work. Visitors to the surrounding land uses may also be utilizing some of the parking capacity.

This analysis does not mean to indicate that, just as at present, spectators will not still choose to park on-street in residential neighborhoods or in the small private yards/lots around the Coliseum. Those people who, for economic reasons or convenient access/egress reasons, prefer to park in locations where parking is less expensive or free will continue to do so. There is also a variable amount of on-street parking and, as a matter of choice, some parkers will always park in residential areas. Therefore, there will always be some parking intrusion into residential neighborhoods on the immediate periphery of Exposition Park unless regulations are imposed against on-street parking. It is very difficult to monitor all the non-USC/Coliseum parking, as people open up their yards and lawns and allow vehicles to park in them. Retail establishments may also choose to close their parking lots and allow only Coliseum bound vehicles to park there. Figure 13 has been compiled to show the potential areas where yard and lot parking exists in relation to the project site.

In addition to the parking supplied by the Coliseum, USC and the Museum many Coliseum bound spectators may choose to utilize parking away from the stadium to avoid the traffic congestion. There are large reservoirs of parking available in downtown Los Angeles such as the multi-story garage at Venice Boulevard and Grand Avenue. On days when there is no game/event scheduled at the Staples Center or the Los Angeles Convention Center, there is a possibility that the vacant parking lots belonging to those two land uses could also be utilized to cope with the demand for the football game at the Coliseum. Shuttle buses that have specific pick-up and drop-off locations, such as in front of the Peristyle, where there is enough room for buses to circulate and load passengers, could provide access to the stadium.

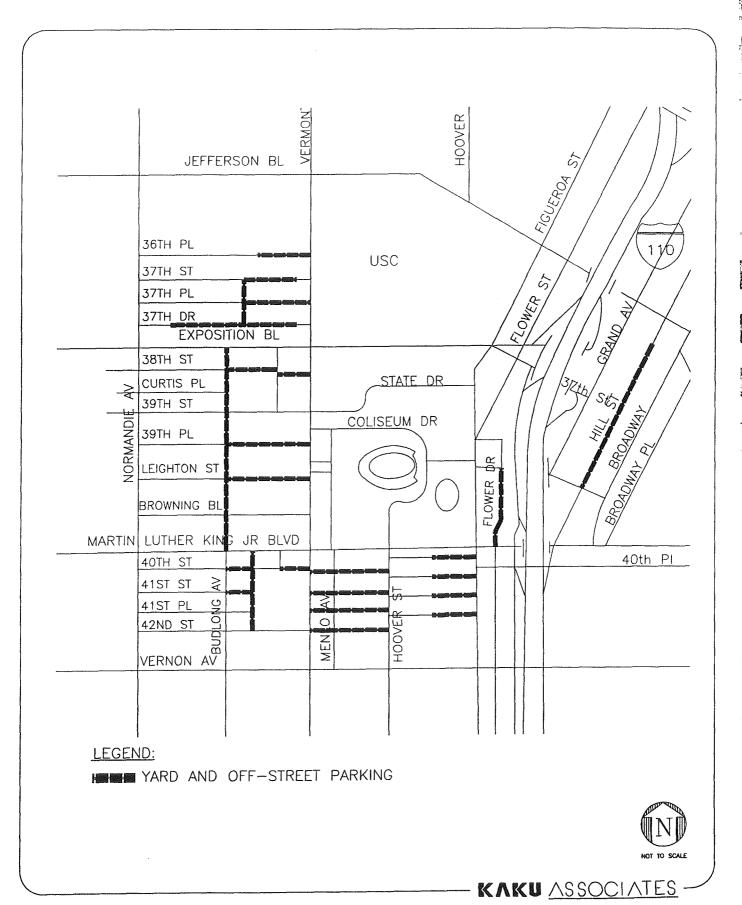



FIGURE 13 LOCATION FOR YARD AND OFF-STREET PARKING

### VII. CONCLUSIONS

This study of traffic and parking for the NFL stadium at the Coliseum has concluded the following:

- Under observed weekend conditions, Coliseum traffic just prior to or following a football game at the Coliseum causes as many as three of the 26 analyzed intersections to operate at level of service (LOS) E or F.
- Under weekday early evening peak hour conditions, without Coliseum traffic but with events at Staples Center and the LA Convention Center, as many as seven of the 26 intersections analyzed operate at LOS E or F.
- For the occasional occurrence of a weekday NFL game, adding projected Coliseum traffic
  to the weekday early evening peak-hour conditions causes as many as 21 of 26
  intersections analyzed to operate at LOS E or F. At 23 of the 26 intersections, project
  traffic would create a significant impact.
- For the occasional weekday event, a collaborative traffic management plan is proposed for implementation by the project sponsor, LADOT, LAPD, Caltrans and CHP. This plan would enhance the traffic management currently employed for weekend events at the Coliseum.
- The existing inventory of 19,820 parking spaces in the Coliseum Exposition Park-USC campus, would satisfy 79% of the maximum demand for parking for an NFL or USC game compared to 72% of demand for a typical concert at the Coliseum.

# APPENDIX A INTERSECTION LANE CONFIGURATIONS

|                      | Existing (2002) Conditions | Cumulative Base | Project Mitigation |
|----------------------|----------------------------|-----------------|--------------------|
| 1. Figueroa St       | Adams BI                   | SAME AS         | SAME AS            |
| & Adams Bl           |                            | EXISTING        | EXISTING           |
| 2. Figueroa St       | Jefferson Bl               | SAME AS         | SAME AS            |
| & Jefferson Bl       |                            | EXISTING        | EXISTING           |
| 3. Flower St         | Exposition BI              | SAME AS         | SAME AS            |
| & Exposition Bl      |                            | EXISTING        | EXISTING           |
| 4. Figueroa St       | St Exposition BI           | SAME AS         | SAME AS            |
| Exposition Bl & 37th |                            | EXISTING        | EXISTING           |
| 5. Flower St         | 37th St                    | SAME AS         | SAME AS            |
| & 37th St            |                            | EXISTING        | EXISTING           |

|                          | Existing (2002) Conditions | Cumulative Base | Project Mitigation |
|--------------------------|----------------------------|-----------------|--------------------|
| 6. Figueroa St           | State Dr                   | SAME AS         | SAME AS            |
| & State Dr               |                            | EXISTING        | EXISTING           |
| 7. Figueroa St           | Figueroa St                | SAME AS         | SAME AS            |
| Flower St & 38th St      |                            | EXISTING        | EXISTING           |
| 8. 110—HOV Ramps         | 39th St                    | SAME AS         | SAME AS            |
| & 39th St                |                            | EXISTING        | EXISTING           |
| 9. Figueroa St           | 39th St                    | SAME AS         | SAME AS            |
| & 39th St                |                            | EXISTING        | EXISTING           |
| 10. Hill St & 110 NB Rai | mps M.L.King BI            | SAME AS         | SAME AS            |
| M.L.King Bl              |                            | EXISTING        | EXISTING           |

Hill St & 110 NB Romps

|                  | Existing (2002) Conditions | Cumulative Base | Project Mitigation |
|------------------|----------------------------|-----------------|--------------------|
| 11. 110 SB Ramps | M.L King Bi                | SAME AS         | SAME AS            |
| & M.L.King Bl    |                            | EXISTING        | EXISTING           |
| 12. Figueroa St  | M.L.King BI                | SAME AS         | SAME AS            |
| & M.L.King Bl    |                            | EXISTING        | EXISTING           |
| 13. Hoover St    | M.L.King BI                | SAME AS         | SAME AS            |
| M.L.King Bl      |                            | EXISTING        | EXISTING           |
| 14. Vermont Av   | M.L.King BI                | SAME AS         | SAME AS            |
| & M.L.King Bl    |                            | EXISTING        | EXISTING           |
| 15. Vermont Av   | 39th St                    | SAME AS         | SAME AS            |
| & 39th St        |                            | EXISTING        | EXISTING           |

|                  | Existing (2002) Conditions  | Cumulative Base | Project Mitigation |
|------------------|-----------------------------|-----------------|--------------------|
| 16. Vermont Av   | Exposition BI  Vermont Av   | SAME AS         | SAME AS            |
| & Exposition Bl  |                             | EXISTING        | EXISTING           |
| 17. Normandie Av | M.L.King Bl                 | SAME AS         | SAME AS            |
| & M.L.King Bl    |                             | EXISTING        | EXISTING           |
| 18. Normandie Av | Exposition BI  Normandie Av | SAME AS         | SAME AS            |
| & Exposition Bl  |                             | EXISTING        | EXISTING           |
| 19. Vermont Av   | Jefferson BI  Vermont Av    | SAME AS         | SAME AS            |
| & Jefferson Bl   |                             | EXISTING        | EXISTING           |
| 20. Normandie Av | Jefferson Bl                | SAME AS         | SAME AS            |
| & Jefferson Bl   |                             | EXISTING        | EXISTING           |

|                  | Existing (2002) Conditions | Cumulative Base | Project Mitigation |
|------------------|----------------------------|-----------------|--------------------|
| 21. Vermont Av   | Adams BI                   | SAME AS         | SAME AS            |
| & Adams Bl       |                            | EXISTING        | EXISTING           |
| 22. Normandie Av | Adams BI Normandie Av      | SAME AS         | SAME AS            |
| & Adams Bl       |                            | EXISTING        | EXISTING           |
| 23. Vermont Av   | 10 EB Ramps Vermont Av     | SAME AS         | SAME AS            |
| & 10 EB Ramps    |                            | EXISTING        | EXISTING           |
| 24. Normadie Av  | 10 EB Ramps Normandie Av   | SAME AS         | SAME AS            |
| & 10 EB Ramps    |                            | EXISTING        | EXISTING           |
| 25. Vermont Av   | 10 WB Ramps  Vermont Av    | SAME AS         | SAME AS            |
| 10 WB Ramps      |                            | EXISTING        | EXISTING           |

Existing (2002) Conditions

Cumulative Base

Project Mitigation

26. Normandie Av 10 WB Ramps 10 WB Romps

SAME AS EXISTING

SAME AS EXISTING

# APPENDIX B INTERSECTION TURNING MOVEMENTS

Weekend Count Data 2:00-5:00 p.m.

## << ACCUTEK >> << 21114 TRIGGER LANE >> << DIAMOND BAR, CA 91765 >> << (909) 595-6199 FAX: (909) 595-6022 >

File Name : 319601 Site Code : 00319601 Start Date : 11/30/2002 Page No : 1

| OLILIVI.     |     |         |        |               |       | 0-   | D-:                 | -4 - 4 T.     |       |      |         |               |       |         | Page             | No :1         |               |
|--------------|-----|---------|--------|---------------|-------|------|---------------------|---------------|-------|------|---------|---------------|-------|---------|------------------|---------------|---------------|
|              |     | S FIGUE | ROA ST |               |       |      | oups Pri<br>S BLVD. | nted- Tur     |       |      | ROA ST  |               |       | ADA SAC | S BLVD.          |               |               |
|              |     |         | bound  | •             |       |      | bound               |               | ,     |      | abound  |               |       |         | oound            |               |               |
| Start Time   |     | Thru    | Left   | App.<br>Total | Right | Thru | Left                | App.<br>Total | Right | Thru | Left    | App.<br>Total | Right | Thru    | Left             | App.<br>Total | Int.<br>Total |
| Factor       | 1.0 | 1.0     | 1.0    |               | 1.0   | 1.0  | 1.0                 |               | 1.0   | 1.0  | 1.0     |               | 1.0   | 1.0     | 1.0              |               |               |
| 02:00 PM     | 39  | 265     | 18     | 322           | 56    | 177  | 71                  | 304           | 13    | 167  | 49      | 229           | 40    | 111     | 21               | 172           | 1027          |
| 02:15 PM     | 52  | 269     | 19     | 340           | 50    | 211  | 66                  | 327           | 13    | 160  | 42      | 215           | 55    | 137     | 21               | 213           | 1095          |
| 02:30 PM     | 50  | 265     | 31     | 346           | 78    | 173  | 84                  | 335           | 23    | 186  | 36      | 245           | 53    | 125     | 18               | 196           | 1122          |
| 02:45 PM     | 41  | 276     | 32     | 349           | 68    | 162  | 78                  | 308           | 25    | 136  | 38      | 199           | 57    | 129     | 19               | 205           | 1061          |
| Total        | 182 | 1075    | 100    | 1357          | 252   | 723  | 299                 | 1274          | 74    | 649  | 165     | 888           | 205   | 502     | 79               | 786           | 4305          |
| 03:00 PM     | 42  | 237     | 26     | 305           | 29    | 200  | 79                  | 308           | 10    | 144  | 55      | 209           | 47    | 136     | 19               | 202           | 1024          |
| 03:15 PM     | 33  | 215     | 21     | 269           | 59    | 223  | 71                  | 353           | . 17  | 175  | 30      | 222           | 62    | 151     | 31               | 244           | 1088          |
| 03:30 PM     | 21  | 177     | 17     | 215           | 51    | 248  | 43                  | 342           | 19    | 189  | 36      | 244           |       | 126     | 10               | 219           | 1020          |
| 03:45 PM     | 12  | 194     | 20     | 226           | 56    | 229  | 31                  | 316           | 11    | 204  | 29      | 244           | 77    | 134     | 26               | 237           | 1023          |
| Total        | 108 | 823     | 84     | 1015          | 195   | 900  | 224                 | 1319          | 57    | 712  | 150     | 919           | 269   | 547     | 86               | 902           | 4155          |
| 04:00 PM     | 16  | 153     | 15     | 184           | 58    | 206  | 39                  | 303           | 14    | 229  | 56      | 299           | 55    | 146     | 23               | 224           | 1010          |
| 04:15 PM     | 15  | 119     | 13     | 147           | 56    | 239  | 28                  | 323           | 27    | 295  | 50      | 372           | 57    | 170     | 21               | 248           | 1090          |
| 04:30 PM     | 13  | 127     | 16     | 156           | 54    | 217  | 19                  | 290           | 16    | 311  | 59      | 386           | 59    | 141     | 17               | 217           | 1049          |
| 04:45 PM     | 12  | 118     | 28     | 158           | 40    | 179  | 32                  | 251           | 19    | 239  | 68      | 326           | 50    | 112     | 22               | 184           | 919           |
| Total        | 56  | 517     | 72     | 645           | 208   | 841  | 118                 | 1167          | 76    | 1074 | 233     | 1383          | 221   | 569     | 83               | 873           | 4068          |
| *** BREAK ** | *   |         |        |               |       |      |                     |               |       |      |         |               |       |         |                  |               |               |
| 06:30 PM     | 16  | 87      | 14     | 117           | 60    | 119  | 24                  | 203           | 15    | 142  | 30      | 187           | . 24  | 68      | 11               | 103           | 610           |
| 06:45 PM     | 18  | 71      | 16     | 105           | 55    | 130  | 16                  | 201           | 16    | 178  | 33      | 227           | 22    | 66      | 4                | 92            | 625           |
| Total        | 34  | 158     | 30     | 222           | 115   | 249  | 40                  | 404           | 31    | 320  | 63      | 414           | 46    | 134     | 15               | 195           | 1235          |
| 07:00 PM     | 11  | 71      | 10     | 92            | 62    | 121  | 18                  | 201           | 15    | 138  | 20      | 173           | 36    | 51      | 14               | 101           | 567           |
| 07:15 PM     | 4   | 93      | 12     | 109           | 37    | 122  | 18                  | 177           | 16    | 113  | 42      | 171           | 30    | 61      | 16               | 107           | 564           |
| 07:30 PM     | 4   | 60      | 17     | 81            | 27    | 109  | 20                  | 156           | 15    | 102  | 33      | 150           | 28    | 59      | 11               | 98            | 485           |
| 07:45 PM     | 6   | 67      | 11     | 84            | 21    | 86   | 17                  | 124           | 11    | 100  | 31      | 142           | 15    | 55      | 10               | 80            | 430           |
| Total        | 25  | 291     | 50     | 366           | 147   | 438  | 73                  | 658           | 57    | 453  | 126     | 636           | 109   | 226     | 51               | 386           | 2046          |
| 08:00 PM     | 2   | 89      | 6      | 97            | 22    | 106  | 24                  | 152           | 17    | 120  | 39      | 176           | 21    | 48      | 18               | 87            | 512           |
| 08:15 PM     | 1   | 98      | 12     | 111           | 27    | 100  | 19                  | 146           | 48    | 206  | 24      | 278           | 28    | 65      | 15               | 108           | 643           |
| 08:30 PM     | 4   | 85      | 14     | 103           | 34    | 91   | 26                  | 151           | 58    | 325  | 58      | 441           | 22    | 105     | 29               | 156           | 851           |
| 08:45 PM     | 5   | 112     | 12     | 129           | 32    | 107  | 31                  | 170           | 64    | 413  | 48      | 525           | 29    | 164     | 28               | 221           | 1045          |
| Total        | 12  | 384     | 44     | 440           | 115   | 404  | 100                 | 619           | 187   | 1064 | 169     | 1420          | 100   | 382     | 90               | 572           | 3051          |
| 09:00 PM     | 4   | 118     | 12     | 134           | 31    | 104  | 22                  | 157           | 68    | 492  | 51      | 611           | 28    | 135     | 39               | 202 :         | 1104          |
| 09:15 PM     | 3   | 130     | 10     | 143           | 38    | 120  | 24                  | 182           | 99    | 528  | 57      | 684           | 27    | 199     | 28               | 254           | 1263          |
| Grand Total  | 424 | 3496    | 402    | 4322          | 1101  | 3779 | 900                 | 5780          | 649   | 5292 | 1014    | 6955          | 1005  | 2694    | 471              | 4170          | 21227         |
| Apprch %     | 9.8 | 80.9    | 9.3    |               | 19.0  | 65.4 | 15.6                |               | 9.3   | 76.1 | 14.6    |               | 24.1  | 64.6    | 11.3             |               |               |
| Total %      | 2.0 | 16.5    | 1.9    | 20.4          | 5.2   | 17.8 | 4.2                 | 27.2          | 3.1   | 24.9 | 4.8     | 32.8          | 4.7   | 12.7    | 2.2              | 19.6          |               |
|              |     | 0.51    |        |               |       |      |                     |               |       |      |         |               |       |         |                  |               |               |
|              |     |         | ROA ST |               |       |      | S BLVD.<br>bound    | ·····         |       |      | EROA ST |               |       |         | S BLVD.<br>bound |               |               |
|              |     |         |        |               |       |      |                     |               |       |      |         |               |       |         |                  |               |               |

| *************************************** |         | S.FIGUE<br>South | EROA S'<br>abound | T.<br>        |          |      | S BLVD.<br>Ibound |               |       |      | ROAS | Γ.                   |       |      | S BLVD.<br>bound |               |               |
|-----------------------------------------|---------|------------------|-------------------|---------------|----------|------|-------------------|---------------|-------|------|------|----------------------|-------|------|------------------|---------------|---------------|
| Start Time                              |         | Thru             | Left              | App.<br>Totaí | Right    | Thru | Left              | App.<br>Total | Right | Thru | Left | App.<br>Total        | Right | Thru | Left             | App.<br>Total | Int.<br>Total |
| Peak Hour Fro                           | m 02:00 | 0 PM to          | 04:45 (           | PM - Pea      | k 1 of 1 |      |                   |               |       |      |      |                      |       |      |                  |               |               |
| Intersection                            | 02:00   | PM               |                   |               |          |      |                   | :             |       |      |      |                      |       |      |                  | ;             |               |
| Volume                                  | 182     | 1075             | 100               | 1357          | 252      | 723  | 299               | 1274          | 74    | 649  | 165  | 888                  | 205   | 502  | 79               | 786           | 4305          |
| Percent                                 | 13.4    | 79.2             | 7.4               |               | 19.8     | 56.8 | 23.5              |               | 8.3   | 73.1 | 18.6 |                      | 26.1  | 63.9 | 10.1             |               |               |
| 02:30<br>Volume                         | 50      | 265              | 31                | 346           | 78       | 173  | 84                | 335           | 23    | 186  | 36   | 245                  | 53    | 125  | 18               | 196           | 1122          |
| Peak Factor                             |         |                  |                   |               |          |      |                   |               |       |      |      |                      |       |      |                  |               | 0.959         |
| High Int.                               | 02:45   | PM               |                   |               | 02:30    | PM   |                   |               | 02:30 | PM   |      |                      | 02:15 | PM   |                  |               |               |
| Volume<br>Peak Factor                   | 41      | 276              | 32                | 349<br>0.972  | 78       | 173  | 84                | 335<br>0.951  | 23    | 186  | 36   | 245<br><b>0</b> .906 | 55    | 137  | 21               | 213<br>0.923  |               |

<< ACCUTEK >> << 21114 TRIGGER LANE >> << DIAMOND BAR, CA 91765 >> << (909) 595-6199 FAX: (909) 595-6022 >

CITY: N/S: E/W: CLIENT: File Name : 319601 Site Code : 00319601 Start Date : 11/30/2002 Page No : 2

ADAMS BLVD.

|                       | 5       | S.FIGUE<br>Southl |         |               |          |      | S BLVD.<br>bound |               | ,     | S.FIGUE<br>North | ROA ST |               |       | ADAMS<br>Eastb |      |                |               |
|-----------------------|---------|-------------------|---------|---------------|----------|------|------------------|---------------|-------|------------------|--------|---------------|-------|----------------|------|----------------|---------------|
| Start Time            | Right   | Thru              | Left    | App.<br>Total | Right    | Thru | Left             | App.<br>Total | Right | Thru             | Left   | App.<br>Total | Right | Thru           | Left | App.<br>Total  | Int.<br>Total |
| Peak Hour Fro         | m 06:30 | PM to             | 09:15 F | PM - Peal     | k 1 of 1 |      |                  |               |       |                  |        |               |       |                |      | ****           |               |
| Intersection          | 08:30   | PM                |         |               |          |      |                  | :             |       |                  |        | ,             |       |                |      | :              |               |
| Volume                | 16      | 445               | 48      | 509.          | 135      | 422  | 103              | 660           | 289   | 1758             | 214    | 2261          | 106   | 603            | 124  | 833            | 4263          |
| Percent               | 3.1     | 87.4              | 9.4     | į             | 20.5     | 63.9 | 15.6             |               | 12.8  | 77.8             | 9.5    | ,             | 12.7  | 72.4           | 14.9 | :              |               |
| 09:15<br>Volume       | 3       | 130               | 10      | 143           | 38       | 120  | 24               | 182           | 99    | 528              | 57     | 684           | 27    | 199            | 28   | 254            | 1263          |
| Peak Factor           |         |                   |         |               |          |      |                  |               |       |                  |        | ,             |       |                |      |                | 0.844         |
| High Int.             | 09:15   | PM                |         |               | 09:15    | PM   |                  |               | 09:15 | PM               |        |               | 09:15 | PM             |      |                |               |
| Volume<br>Peak Factor | 3       | 130               | 10      | 143<br>0.890  | 38       | 120  | 24               | 182<br>0.907  | 99    | 528              | 57     | 684<br>0.826  | 27    | 199            | 28   | 254<br>0.820 ' |               |

3.

S 3

Peak Factor

0.901

### << ACCUTEK >> << 21114 TRIGGER LANE >> << DIAMOND BAR, CA 91765 >> << (909) 595-6199 FAX: (909) 595-6022 >

File Name : 319602 Site Code : 00319602 Start Date : 11/30/2002

Page No : 1

0.808

| CLIENT:                       |       |            |          |               |          | _        |                     | 4               |         |             |         |               |                |           | Page      | No :1         |               |
|-------------------------------|-------|------------|----------|---------------|----------|----------|---------------------|-----------------|---------|-------------|---------|---------------|----------------|-----------|-----------|---------------|---------------|
|                               |       | FIGUER     | ROA ST.  |               | JI       | ******   | ups Prin<br>ON BLVI | ited- Tui<br>D. | ning M  |             | roa st. |               | J              | EFFERS(   | ON BLVD   | ).            |               |
|                               |       | South      | bound    | A             |          | West     | bound               |                 |         | North       | bound   | A             |                | Eastl     | ound      | A             |               |
| Start Time                    | Right | Thru       | Left     | App.<br>Total | Right    | Thru     | Left                | App.<br>Total   | Right   | Thru        | Left    | App.<br>Total | Right          | Thru      | Left      | App.<br>Total | Int.<br>Total |
| Factor                        | 1.0   | 1.0        | 1.0      |               | 1.0      | 1.0      | 1.0                 |                 | 1.0     | 1.0         | 1.0     |               | 1.0            | 1.0       | 1.0       |               | ·otai         |
| 02:00 PM                      | 52    | 231        | 30       | 313           | 40       | 154      | 53                  | 247             | 86      | 260         | 98      | 444           | 24             | 48        | 11        | 83 .          | 1087          |
| 02:15 PM                      | 43    | 202        | 14       | 259           | 49       | 141      | 52                  | 242             | 158     | 299         | 89      | 546           | 42             | 51        | 20        | 113           | 1160          |
| 02:30 PM                      | 50    | 208        | 40       | 298           | 29       | 157      | 39                  | 225             | 100     | 287         | 98      | 485           | 35             | 40        | 9         | 84            | 1092          |
| 02:45 PM                      | 60    | 231        | 43       | 334           | 54       | 164      | 43                  | 261             | 118     | 257         | 59      | 434           | 26             | 50        | 9         | 85            | 1114          |
| Total                         | 205   | 872        | 127      | 1204          | 172      | 616      | 187                 | 975             | 462     | 1103        | 344     | 1909          | 127            | 189       | 49        | 365           | 4453          |
| 03:00 PM                      | 56    | 200        | 42       | 298           | 51       | 172      | 32                  | 255             | 100     | 338         | 2       | 440           | 1              | 71        | 14        | 86            | 1079          |
| 03:15 PM                      | 72    | 179        | 66       | 317           | 41       | 154      | 38                  | 233             | 122     | 331         | 1       | 454           | 2              | 108       | 21        | 131           | 1135          |
| 03:30 PM                      | 57    | 190        | 53       | 300           | 36       | 120      | 19                  | 175             | 42      | 269         | 0       | 311           | 8              | 107       | 29        | 144           | 930           |
| 03:45 PM                      | 48    | 213        | 21       | 282           | 30       | 102      | 17                  | 149             | 43      | 317         | 0       | 360           | 12_            | 67_       | 29        | 108           | 899           |
| Total                         | 233   | 782        | 182      | 1197          | 158      | 548      | 106                 | 812             | 307     | 1255        | 3       | 1565          | 23             | 353       | 93        | 469           | 4043          |
| 04:00 PM                      | 36    | 204        | 0        | 240           | 39       | 129      | 11                  | 179             | 38      | 460         | 0       | 498           | 25             | 98        | 41        | 164           | 1081          |
| 04:15 PM                      | 55    | 224        | 0        | 279           | 41       | 111      | 0                   | 152             | 1       | 572         | 0       | 573           | 12             | 71        | 31        | 114           | 1118          |
| 04:30 PM                      | 63    | 241        | 0        | 304           | 37       | 137      | 0                   | 174             | 0       | 564         | 0       | 564           | 3              | 2         | 5         | 10            | 1052          |
| 04:45 PM                      | 50    | 208        | 1        | 259           | 46       | 149      | 0_                  | 195             | 0       | 490         | 0       | 490           | 5              | 2         | 6         | 13            | 957           |
| Total                         | 204   | 877        | 1        | 1082          | 163      | 526      | 11                  | 700             | 39      | 2086        | 0       | 2125          | 45             | 173       | 83        | 301           | 4208          |
| *** BREAK **                  | *     |            |          |               |          |          |                     |                 |         |             |         |               |                |           |           |               |               |
| 06:30 PM                      | 40    | 110        | 0        | 150           | 18       | 66       | 0                   | 84              | 0       | 281         | 0       | 281           | 21             | 97        | 19        | 137           | 652           |
| 06:45 PM                      | 62    | 79         | 1        | 142           | 24       | 67       | 0                   | 91              | 0       | 275         | 0       | 275           | 28             | 71        | 24        | 123           | 631           |
| Total                         | 102   | 189        | 1        | 292           | 42       | 133      | 0                   | 175             | 0       | 556         | 0       | 556           | 49             | 168       | 43        | 260           | 1283          |
| 07:00 PM                      | 39    | 96         | 0        | 135           | 8        | 51       | 0                   | 59              | 2       | 235         | 9       | 246           | 29             | 75        | 24        | 128           | 568           |
| 07:15 PM                      | 50    | 91         | 1        | 142           | 19       | 57       | 0                   | 76              | 2       | 223         | 7       | 232           | 22             | 62        | 28        | 112           | 562           |
| 07:30 PM                      | 38    | 110        | 0        | 148           | 24       | 57       | 1                   | 82              | 7       | 226         | 1       | 234           | 30             | 58        | 15        | 103           | 567           |
| 07:45 PM                      | 27    | 82         | 1        | 110           | 16       | 52       | 00                  | 68              | 16      | 210         | 1       | 227           | . 9            | 52        | 15        | 76            | 481           |
| Total                         | 154   | 379        | 2        | 535           | 67       | 217      | 1                   | 285             | 27      | 894         | 18      | 939           | 90             | 247       | 82        | 419           | 2178          |
| 08:00 PM                      | 30    | 98         | 4        | 132           | 11       | 18       | 2                   | 31              | 5       | 228         | 8       | 241           | 13             | 52        | 8         | 73            | 477           |
| 08:15 PM                      | 18    | 142        | 8        | 168           | 17       | 29       | 0                   | 46              | 19      | 319         | 2       | 340           | 19             | 31        | 39        | 89            | 643           |
| 08:30 PM                      | 13    | 149        | 27       | 189           | 10       | 19       | 0                   | 29              | 0       | 356         | 0       | 356           | 0              | 44        | 71        | 115           | 689           |
| 08:45 PM<br>Total             | 69    | 176<br>565 | 41<br>80 | 225<br>714    | 20<br>58 | 17<br>83 | 0<br>2              | 37<br>143       | 0<br>24 | 459<br>1362 | 1<br>11 | 460<br>1397   | <u>0</u><br>32 | 54<br>181 | 70<br>188 | 124<br>401    | 846<br>2655   |
|                               | _     |            |          |               |          |          |                     |                 |         |             |         |               |                |           |           | 400           | 074           |
| 09:00 PM                      | 3     | 170        | 49       | 222           | 53       | 13       | 0                   | 66              | 1       | 497         | 0       | 498           | 0              | 141       | 47        | 188           | 974           |
| 09:15 PM                      | 11    | 202        | 49       | 262           | 41       | 25       | 0                   | 66              | 0       | 518         | 0       | 518           | 1              | 165       | 80        | 246           | 1092          |
| Grand Total                   | 981   | 4036       | 491      | 5508          | 754      | 2161     | 307                 | 3222            | 860     | 8271        | 376     | 9507          | 367            | 1617      | 665       | 2649          | 20886         |
| Apprch %                      | 17.8  | 73.3       | 8.9      | 26.4          | 23.4     | 67.1     | 9.5                 | 45.4            | 9.0     | 87.0        | 4.0     | 45.5          | 13.9           | 61.0      | 25.1      | 177           |               |
| Total %                       | 4.7   | 19.3       | 2.4      | 26.4          | 3.6      | 10.3     | 1.5                 | 15.4            | 4.1     | 39.6        | 1.8     | 45.5          | 1.8            | 7.7       | 3.2       | 12.7          |               |
|                               |       | FIGUE      | ROA ST.  |               | <u>_</u> | EFFERS   | ON BLV              | 'D.             |         | FIGUE       | ROA ST. |               |                | EFFERS    | ON BLV    | D.            |               |
|                               |       | South      | bound    |               |          |          | bound               |                 |         |             | bound   | .,            |                | East      | bound     | Ann           | Int.          |
| Start Time                    | Right | Thru       | Left     | App.<br>Total | Right    | Thru     | Left                | App.<br>Total   |         | Thru        | Left    | App.<br>Total |                | Thru      | Left      | App.<br>Total | Total         |
| Peak Hour Fro<br>Intersection |       |            | 04:45 F  | M - Pea       | k 1 of 1 | 1        |                     |                 |         | -           |         |               |                |           |           |               |               |
| Volume                        | 205   | 872        | 127      | 1204          | 172      | 616      | 187                 | 975             | 462     | 1103        | 344     | 1909          | 127            | 189       | 49        | 365           | 4453          |
| Percent                       | 17.0  | 72.4       | 10.5     | 1204          | 17.6     | 63.2     | 19.2                | 3/3             | 24.2    | 57.8        | 18.0    | 1303          | 34.8           |           | 13.4      | 505           | , ,55         |
| 02:15                         |       |            |          |               |          |          |                     |                 |         |             |         |               |                |           |           |               |               |
| Volume                        | 43    | 202        | 14       | 259           | 49       | 141      | 52                  | 242             | 158     | 299         | 89      | 546           | 42             | 51        | 20        | 113           | 1160          |
| Peak Factor                   |       |            |          |               |          |          |                     |                 |         |             |         |               |                |           |           |               | 0.960         |
| High Int.                     | 02:45 | PM         |          |               | 02:45    | PM       |                     |                 | 02:15   | PM          |         |               | 02:15          | PM        |           |               |               |
| Volume                        | 60    | 231        | 43       | 334           | 54       | 164      | 43                  | 261<br>n 934    | 158     |             | 89      | 546<br>0.874  | 42             |           | 20        | 113<br>0.808  |               |

0.934

0.874

### << ACCUTEK >> << 21114 TRIGGER LANE >> << DIAMOND BAR, CA 91765 >> << (909) 595-6199 FAX: (909) 595-6022 >

File Name : 319602 Site Code : 00319602 Start Date : 11/30/2002 Page No : 2

| •               |         |         | ROA ST. | ,             | J        | EFFERS | ON BLV | D.            |       | FIGUE | ROA ST. |               | J     | EFFERS | ON BLV | D          |               |
|-----------------|---------|---------|---------|---------------|----------|--------|--------|---------------|-------|-------|---------|---------------|-------|--------|--------|------------|---------------|
|                 |         | South   | bound   |               | ·        | West   | bound  |               |       | North | bound   |               |       | Eastl  | oound  | :          |               |
| Start Time      | Right   | Thru    | Left    | App.<br>Total | Right    | Thru   | Left   | App.<br>Total | Right | Thru  | Left    | App.<br>Total | Right | Thru . | Left   | App. Total | Int.<br>Total |
| Peak Hour Fro   | m 06:3( | ) PM to | 09:15 F | PM - Pea      | k 1 of 1 |        |        |               |       |       |         |               |       |        |        | 1000       | Total         |
| Intersection    | 08:30   | PM      |         |               |          |        |        |               |       |       |         |               |       |        |        |            |               |
| Volume          | 35      | 697     | 166     | 898           | 124      | 74     | 0      | 198           | 1     | 1830  | 1       | 1832 :        | 1     | 404    | 268    | 673        | 3601          |
| Percent         | 3.9     | 77.6    | 18.5    |               | 62.6     | 37.4   | 0.0    |               | 0.1   | 99.9  | 0.1     |               | 0.1   | 60.0   | 39.8   |            | 3001          |
| 09:15<br>Volume | 11      | 202     | 49      | 262           | 41       | 25     | 0      | 66            | 0     | 518   | 0       | 518           | 1     | 165    | 80     | 246        | 1092          |
| Peak Factor     |         |         |         |               |          |        |        |               |       |       |         |               |       |        |        |            | 0.824         |
| High Int.       | 09:15   | PM      |         |               | 09:00    | PM     |        |               | 09:15 | PM    |         |               | 09:15 | PM     |        |            | 0.027         |
| Volume          | 11      | 202     | 49      | 262           | 53       | 13     | 0      | 66            | 0     | 518   | 0       | 518           | 1     | 165    | 80     | 246        |               |
| Peak Factor     |         |         |         | 0.857         |          |        |        | 0.750         |       |       |         | 0.884         |       |        |        | 0.684      |               |

# << ACCUTEK >> << 21114 TRIGGER LANE >> << DIAMOND BAR, CA 91765 >> << (909) 595-6199 FAX: (909) 595-6022 >

File Name : 319603 Site Code : 00319603 Start Date : 11/30/2002 Page No : 1

| LIENI:      |          |        |                 |               |            | Gra              | nune Pri        | nted- Tur     | nina Mo | vement  |                             |      |       |         | Page             | No :1         |     |
|-------------|----------|--------|-----------------|---------------|------------|------------------|-----------------|---------------|---------|---------|-----------------------------|------|-------|---------|------------------|---------------|-----|
|             |          |        |                 |               |            | GIC              | Jupa i iii      | ileu- Tui     |         |         | F RAMP                      | -    |       |         | <del></del>      |               |     |
|             | ,        |        | ER ST.<br>bound |               | . E.       | XPOSITI<br>Westl | ON BLV<br>bound | D.            | SC      | North   | DUND(no<br>bound)<br>ibound | ot a | E.    |         | ION BLV<br>cound | D             |     |
| Start Time  | Right    | Thru , | Left            | App.<br>Total | Right      | Thru             | Left            | App.<br>Total | Right   |         | Left                        | App. | Right | Thru    | Left             | App.<br>Total | Inf |
| Factor      | 1.0      | 1.0    | 1.0             |               | 1.0        | 1.0              | 1.0             |               | 1.0     | 1.0     | 1.0                         |      | 1.0   | 1.0     | 1.0              |               |     |
| 02:00 PM    | 133      | 52     | 0               | 185           | 0          | 112              | 13              | 125           | . 0     | 126     | 37                          | 163  | 0     | 0       | 0                | 0             | 47  |
| 02:15 PM    | 94       | 38     | 0               | 132           | 0          | 116              | 15              | 131           | 0       | 141     | 54                          | 195  | 0     | 0       | 0                | 0             | 45  |
| 02:30 PM    | 107      | 81     | 1               | 189           | 0          | 77               | 7               | 84            | 0       | 160     | 42                          | 202  | 0     | 0       | 0                | 0             | 47  |
| 02:45 PM    | 70       | 40     | 0               | 110           | 0          | 45               | 14              | 59            | 0       | 159     | 35                          | 194  | 0     | 0       | 0                | 0             | 36  |
| Total       | 404      | 211    | 1               | 616           | 0          | 350              | 49              | 399           | 0       | 586     | 168                         | 754  | 0     | 0       | 0                | 0             | 176 |
| 03:00 PM    | 62       | 78     | 0               | 140           | 0          | 78               | 9               | 87            | 0       | 138     | 26                          | 164  | 0     | 0       | 0                | 0             | 39  |
| 03:15 PM    | 56       | 61     | 0               | 117           | 0          | 86               | 12              | 98            | 0       | 152     | 36                          | 188  | 0     | 0       | 0                | 0 .           | 40  |
| 03:30 PM    | 41       | 58     | 1               | 100           | 1          | 64               | 6               | 71            | 0       | 157     | 32                          | 189  | 0     | 0       | 0                | 0             | 36  |
| 03:45 PM    | 35       | 32     | 1_              | 68            | 0          | 73               | 11              | 84            | 0       | 126_    | 39                          | 165  | 0     | 0       | 0_               | 0             | 31  |
| Total       | 194      | 229    | 2               | 425           | 1          | 301              | 38              | 340           | 0       | 573     | 133                         | 706  | 0     | 0       | 0                | 0             | 147 |
| 04:00 PM    | 69       | 51     | 1               | 121           | 0          | 70               | 18              | 88            |         | 151     | 35                          | 186  |       | 0       | 0                | 0             | 39  |
| 04:15 PM    | 49       | 73     | 0               | 122           | •          | 102              | 13              | 115           | 0       | 206     | 36                          | 242  |       | 0       | 0                | 0 :           | 47  |
| 04:30 PM    | 103      | 69     | 0               | 172           |            | 98               | 14              | 112           | 0       | 159     | 38                          | 197  | 0     | 0       | 0                | 0             | 48  |
| 04:45 PM    | 74       | 36     | 3               | 113           | <u>: 0</u> | 66               | 10              | 76            |         | 130     | 40                          | 170  |       | 0       | 0                | 0             | 35  |
| Total       | 295      | 229    | 4               | 528           | . 0        | 336              | 55              | 391           | 0       | 646     | 149                         | 795  | 0     | 0       | 0                | 0             | 171 |
| ** BREAK ** | <b>*</b> |        |                 |               |            |                  |                 |               |         |         |                             |      |       |         |                  |               |     |
| 06:30 PM    | 46       | 24     | 0               | 70            | 0          | 54               | 1               | 55            | 0       | 78      | 8                           | 86   | 0     | 0       | 0                | 0             | 21  |
| 06:45 PM    | 40       | 21     | 0               | 61            | 0          | 50               | 3               | 53            | 0       | 87      | 9                           | 96   | 0     | 0       | 0                | 0             | 21  |
| Total       | 86       | 45     | 0               | 131           | 0          | 104              | 4               | 108           | 0       | 165     | 17                          | 182  | 0     | 0       | 0                | 0             | 42  |
| 07:00 PM    | 24       | 19     | 0               | 43            | 0          | <b>6</b> 5       | 6               | 71            | 0       | 80      | 19                          | 99   | 0     | 0       | 0                | 0             | 21  |
| 07:15 PM    | 42       | 20     | 0               | 62            | 0          | 56               | 2               | 58            | 0       | 87      | 10                          | 97   |       | 0       | 0                | 0             | 21  |
| 07:30 PM    | 28       | 20     | 0               | 48            | 0          | 55               | 6               | 61            |         | 54      | 13                          | 67   | 0     | 0       | 0                | 0             | 17  |
| 07:45 PM    | 42       | 12     | 0               | 54            |            | 57_              | 0               | 57            | 0       | 61      | 10                          | 71   |       | 0       | 0                | 0             | 18  |
| Total       | 136      | 71     | 0               | 207           | . 0        | 233              | 14              | 247           | 0       | 282     | 52                          | 334  | 0     | 0       | 0                | 0             | 78  |
| 08:00 PM    | 39       | 20     | 0               | 59            | 0          | 42               | 3               | 45            |         | 67      | 10                          | 77   | 0     | 0       | 0                | 0             | 18  |
| 08:15 PM    | 43       | 23     | 0               | 66            | 0          | 40               | 11              | 51            |         | 94      | 11                          | 105  | 0     | 0       | 0                | 0             | 22  |
| 08:30 PM    | 35       | 54     | 0               | 89            | -          | 31               | 34              | 65            | 0       | 193     | 15                          | 208  | 0     | 0       | 0                | 0             | 36  |
| 08:45 PM    | 44       | 37     | 0_              | 81            | 0          | 55               | 22              | 77            | 0       | 238     | 16                          | 254  | 0     | 0       | 0                | 0             | 41  |
| Total       | 161      | 134    | 0               | 295           | 0          | 168              | 70              | 238           | 0       | 592     | 52                          | 644  | 0     | 0       | 0                | 0             | 117 |
| 09:00 PM    | 63       | 24     | 0               | 87            | 0          | 39               | 28              | 67            | 0       | 253     | 20                          | 273  | 0     | 0       | 0                | 0             | 42  |
| 09:15 PM    | 63       | 36     | 0               | 99            | 0          | 42               | 24              | 66            | 0       | 270     | 10                          | 280  | 0     | 0       | 0                | 0             | 44  |
| Grand Total | 1402     | 979    | 7               | 2388          | 1          | 1573             | 282             | 1856          | 0       | 3367    | 601                         | 3968 | 0     | 0       | 0                | 0 .           | 82: |
| Apprch %    | 58.7     | 41.0   | 0.3             | 70 4          | 0.1        | 84.8             | 15.2            | 22.0          | 0.0     | 84.9    | 15.1                        | 40.7 | 0.0   | 0.0     | 0.0              | 0.0           |     |
| Total %     | 17.1     | 11.9   | 0.1             | 29.1          | 0.0        | 19.2             | 3.4             | 22.6          | 0.0     | 41.0    | 7.3                         | 48.3 | 0.0   | 0.0     | 0.0              | 0.0           |     |
|             | 1        |        |                 |               | 1          |                  |                 |               | 1       | 110 O   | FF RAME                     | 5    | i     |         |                  |               |     |
|             | 1        | E1 014 | ÆD 0**          |               | 1          |                  |                 | 150           |         | A 10 01 | O 10 10 1                   | -4 - | ! .   | - ۷000: | CON DU           | VD.           |     |

| :<br>:                | i<br>1<br>1 |       | /ER ST.<br>nbound |               | E        |      | ION BL\ | VD.           |       | OUTHB(<br>North | F RAMF<br>DUND(no<br>bound)<br>abound |               | :<br>: E | XPOSIT<br>Eastl | ION BL\ | /D .          |               |
|-----------------------|-------------|-------|-------------------|---------------|----------|------|---------|---------------|-------|-----------------|---------------------------------------|---------------|----------|-----------------|---------|---------------|---------------|
| Start Time            | Right       | Thru  | Left              | App.<br>Total | Right    | Thru | Left    | App.<br>Total | Right | Thru            | Left                                  | App.<br>Total | Right    | Thru            | Left    | App.<br>Total | Int.<br>Total |
| Peak Hour Fro         | m 02:00     | PM to | 04:45             | PM - Pea      | k 1 of 1 |      |         |               |       |                 |                                       |               |          |                 |         |               |               |
| Intersection          | 02:00       | PM    |                   |               |          |      |         |               |       |                 |                                       |               |          |                 |         |               |               |
| Volume                | 404         | 211   | 1                 | 616           | 0        | 350  | 49      | <b>39</b> 9   | 0     | 586             | 168                                   | 754           | 0        | 0               | 0       | 0             | 1769          |
| Percent               | 65.6        | 34.3  | 0.2               |               | 0.0      | 87.7 | 12.3    |               | 0.0   | 77.7            | 22.3                                  |               | 0.0      | 0.0             | 0.0     |               |               |
| 02:30<br>Volume       | 107         | 81    | 1                 | 189           | 0        | 77   | 7       | 84            | 0     | 160             | 42                                    | 202           | 0        | 0               | 0       | 0             | 475           |
| Peak Factor           |             |       |                   |               |          |      |         |               | :     |                 |                                       |               |          |                 |         |               | 0.931         |
| High Int.             | 02:30       | PM    |                   |               | 02:15    | PM   |         |               | 02:30 | PM              |                                       |               | 1:45:0   | 00 PM           |         |               |               |
| Volume<br>Peak Factor | 107         | 81    | 1                 | 189<br>0.815  | 0        | 116  | 15      | 131<br>0.761  | 0     | 160             | 42                                    | 202<br>0.933  |          |                 |         |               |               |

# << ACCUTEK >> << 21114 TRIGGER LANE >> << DIAMOND BAR, CA 91765 >> << (909) 595-6199 FAX: (909) 595-6022 >

File Name : 319603 Site Code : 00319603 Start Date : 11/30/2002

Page No : 2

|                 |         |         | ER ST.  |               | E.       |      | ION BLV<br>bound | D.            | !     | 110 OFF<br>OUTHBO<br>Northb<br>Northb | UND(no<br>ound) |               | E     | XPOSITI<br>Eastb |      | D               |               |  |
|-----------------|---------|---------|---------|---------------|----------|------|------------------|---------------|-------|---------------------------------------|-----------------|---------------|-------|------------------|------|-----------------|---------------|--|
| Start Time      | Right   | Thru    | Left    | App.<br>Total | Right    | Thru | Left :           | App.<br>Total | Right | Thru                                  | Left !          | App.<br>Total | Right | Thru             | Left | App.  <br>Total | Int.<br>Total |  |
| Peak Hour Fro   | m 06:30 | 9 PM to | 09:15 F | M - Pea       | k 1 of 1 |      |                  |               |       |                                       |                 |               |       |                  |      |                 |               |  |
| Intersection    | 08:30   | PM      |         |               |          |      |                  |               |       |                                       |                 |               |       |                  |      |                 |               |  |
| Volume          | 205     | 151     | 0       | 356           | 0        | 167  | 108              | 275           | 0     | 954                                   | 61              | 1015          | 0     | 0                | 0    | 0               | 1646          |  |
| Percent         | 57.6    | 42.4    | 0.0     |               | 0.0      | 60.7 | 39.3             |               | 0.0   | 94.0                                  | 6.0             |               | 0.0   | 0.0              | 0.0  |                 |               |  |
| 09:15<br>Volume | 63      | 36      | 0       | 99            | 0        | 42   | 24               | 66            | 0     | 270                                   | 10              | 280           | 0     | 0                | 0    | 0               | 445           |  |
| Peak Factor     |         |         |         |               |          |      |                  |               |       |                                       |                 |               |       |                  |      |                 | 0.925         |  |
| High Int.       | 09:15   | PM      |         |               | 08:45    | PM   |                  |               | 09:15 | PM                                    |                 |               |       |                  |      |                 |               |  |
| Volume          | 63      | 36      | 0       | 99            | 0        | 55   | 22               | 77            | 0     | 270                                   | 10              | 280           |       |                  |      |                 |               |  |
| Peak Factor     |         |         |         | 0.899         |          |      |                  | 0.893         |       |                                       |                 | 0.906         |       |                  |      |                 |               |  |

W. Cake

ng w

---

187

# << ACCUTEK >> << 21114 TRIGGER LANE >> << DIAMOND BAR, CA 91765 >> << (909) 595-6199 FAX: (909) 595-6022 >

File Name : 319605 Site Code : 00319605 Start Date : 11/30/2002 Page No : 1

| JLICIVI:    |       |        |         |                                         |       | C-      | ouna De   |               | miner Ad- |       |         |                 |       |          | Page   | No : 1        |               |
|-------------|-------|--------|---------|-----------------------------------------|-------|---------|-----------|---------------|-----------|-------|---------|-----------------|-------|----------|--------|---------------|---------------|
|             |       | FIGUER | ROA ST. | • • • • • • • • • • • • • • • • • • • • | E     | XPOSITI | oups Prir | ned-Tur<br>D. | ning Mo   |       | ROA ST. |                 | F     | KPOSITIO | ON BLV | ).            |               |
|             | :     | South  | bound   |                                         |       |         | bound     |               |           |       | bound   | •               |       | Eastb    |        |               |               |
| Start Time  |       | Thru   | Left    | App.<br>Total                           | Right | Thru    | Left      | App.<br>Total | Right     | Thru  | Left    | App. i<br>Total |       | Thru     | Left : | App.<br>Total | Int.<br>Total |
| Factor      | 1.0   | 1.0    | 1.0     |                                         | 1.0   | 1.0     | 1.0       |               | 1.0       | 1.0   | 1.0     | ;               |       | 1.0 :    | 1.0    |               |               |
| 02:00 PM    | 90    | 197    | 36      | 323                                     | 96    | 198     | 0         | 294           | 13        | 310   | 0       | 323             |       | 56       | 48     | 124           | 1064          |
| 02:15 PM    | 139   | 168    | 36      | 343                                     | 97    | 181     | 0         | 278           | 12        | 306   | 0       | 318             |       | 106      | 50     | 187           | 1126          |
| 02:30 PM    | 54    | 179    | 33      | 266                                     | 123   | 127     | 2         | 252           | 25        | 270   | 0       | 295             | 26    | 84       | 43     | 153           | 966           |
| 02:45 PM    | 4     | 182    | 29      | 215                                     | 109   | 10      | 6         | 125           | 35        | 273   | 1       | 309             | 26    | 89       | 23     | 138           | 787           |
| Total       | 287   | 726    | 134     | 1147                                    | 425   | 516     | 8         | 949           | 85        | 1159  | 1       | 1245            | 103   | 335      | 164    | 602           | 3943          |
| 03:00 PM    | 1     | 176    | 23      | 200                                     | 176   | 4       | 9         | 189           | 25        | 160   | 1       | 186             | 12    | 102      | 28     | 142           | 717           |
| 03:15 PM    | 0     | 196    | 39      | 235                                     | 168   | 5       | 0         | 173           | 15        | 179   | 1       | 195             | 12    | 79       | 30     | 121           | 72            |
| 03:30 PM    | 0     | 175    | 50      | 225                                     | 149   | 2       | 1         | 152           | 15        | 140   | 1       | 156             | 10    | 76       | 24     | 110           | 643           |
| 03:45 PM    | 4     | 226    | 44      | 274                                     | 149   | 5       | 0         | 154           | 17        | 184   | 0       | 201             | 6     | 97       | 32     | 135           | 764           |
| Total       | 5     | 773    | 156     | 934                                     | 642   | 16      | 10        | 668           | 72        | 663   | 3       | 738             | 40    | 354      | 114    | 508           | 2848          |
| 04:00 PM    | 0     | 247    | 24      | 271                                     | 210   | 9       | 2         | 221           | . 2       | 179   | 2       | 183             | 2     | 73       | 10     | 85            | 760           |
| 04:15 PM    | 3     | 253    | 40      | 296                                     | 195   | 7       | 2         | 204           | 17        | 280   | 0       | 297             | 9     | 101      | 36     | 146           | 94:           |
| 04:30 PM    | 0     | 199    | 29      | 228                                     | 245   | 9       | 0         | 254           | 15        | 255   | 0       | 270             | 9     | 66       | 15     | 90            | 843           |
| 04:45 PM    | 0     | 186    | 38      | 224                                     | 179   | 7       | 1         | 187           | 22        | 242   | 0       | 264             | 3     | 69       | 34     | 106           | 78            |
| Total       | 3     | 885    | 131     | 1019                                    | 829   | 32      | 5         | 866           | 56        | 956   | 2       | 1014            | 23    | 309      | 95     | 427           | 332           |
| ** BREAK ** | *     |        | >=      |                                         |       |         |           |               |           |       |         |                 |       |          |        |               |               |
| 06:30 PM    | 0     | 96     | 21      | 117                                     | 96    | 0       | 7         | 103           | 6         | 137   | 2       | 145             | 13    | 60       | 15     | 88            | 45            |
| 06:45 PM    |       | 72     | 28      | 101                                     | 104   | 0       | 3         | 107           | 8         | 143   | 1       | 152             | 12    | 69       | 18     | 99            | 45            |
| Total       | 1     | 168    | 49      | 218                                     | 200   | 0       | 10        | 210           | 14        | 280   | 3       | 297             | 25    | 129      | 33     | 187           | 91            |
| 07:00 PM    | 1     | 63     | 31      | 95                                      | 104   | 1       | 9         | 114           | 8         | 128   | 2       | 138             | 13    | 78       | 11     | 102           | 44            |
| 07:15 PM    | 3     | 79     | 21      | 103                                     | 94    | 0       | 5         | 99            | 6         | 113   | 1       | 120             | 13    | 66       | 14     | 93            | 41            |
| 07:30 PM    | 5     | 94     | 28      | 127                                     | 77    | 1       | 9         | 87            | 3         | 121   | 0       | 124             | 11    | 43       | 9      | 63            | 40            |
| 07:45 PM    | 3     | 57     | 18      | 78                                      | 78    | 0       | 9         | 87            | 8         | 112   | 0       | 120             | 8     | 63       | 10     | 81            | 36            |
| Total       | 12    | 293    | 98      | 403                                     | 353   | 2       | 32        | 387           | 25        | 474   | 3       | 502             | 45    | 250      | 44     | 339           | 163           |
| 08:00 PM    | 3     | 84     | 29      | 116                                     | 84    | 2       | 4         | 90            | 25        | 113   | 1       | 139             | 4     | 47       | 12     | 63            | 40            |
| 08:15 PM    | 3     | 95     | 43      | 141                                     | 82    | 2       | 0         | 84            | 49        | 150   | 1       | 200             | 0     | 35       | 5      | 40            | 46            |
| 08:30 PM    | 5     | 77     | 55      | 137                                     | 67    | 2       | 0         | 69            | 48        | 158   | 1       | 207             | 0     | 19       | 8      | 27            | 44            |
| 08:45 PM    | 6     | 94     | 53      | 153                                     | 86    | 0       | 0         | 86            | 36        | 230   | 0       | 266             | 1     | 70       | 8      | 79_           | 58            |
| Total       | 17    | 350    | 180     | 547                                     | 319   | 6       | 4         | 329           | 158       | 651   | 3       | 812             | 5     | 171      | 33     | 209           | 189           |
| 09:00 PM    | 10    | 106    | 43      | 159                                     | 96    | 8       | 7         | 111           | 44        | 206   | 0       | 250             | 2     | 77       | 17     | 96            | 61            |
| 09:15 PM    | 5     | 103    | 57      | 165                                     | 109   | 2       | 0         | 111           | 54        | 249   | 1       | 304             | 4     | 73       | 16     | 93            | 67            |
| Grand Total | 340   | 3404   | 848     | 4592                                    | 2973  | 582     | 76        | 3631          | 508       | 4638  | 16      | 5162            | 247   | 1698     | 516    | 2461          | 1584          |
| Apprch %    | 7.4   | 74.1   | 18.5    |                                         | 81.9  | 16.0    | 2.1       |               | 9.8       | 89.8  | 0.3     |                 | 10.0  | 69.0     | 21.0   |               |               |
| Total %     | 2.1   | 21.5   | 5.4     | 29.0                                    | 18.8  | 3.7     | 0.5       | 22.9          | 3.2       | 29.3  | 0.1     | 32.6            | 1.6   | 10.7     | 3.3    | 15.5          |               |
|             |       | FIGUEF |         |                                         | E     |         | ION BLV   | D.            |           | FIGUE | ROA ST. |                 | E     | XPOSITI  | ON BLV | D.            |               |
|             |       | South  | bound   |                                         |       | West    | bound     |               |           |       | bound   |                 |       | Eastt    | oound  |               |               |
| Start Time  | Right | Thru   | Left    | App.<br>Total                           | Right | Thru    | Left      | App.<br>Total | Right     | Thru  | Left    | App.<br>Total   | Right | Thru     | Left   | App.<br>Total | Int<br>Tota   |

|                 |         | South | nbound |               |          | West | oound |               |       | North | bound |               |       | Easti | bound |               | *************************************** |
|-----------------|---------|-------|--------|---------------|----------|------|-------|---------------|-------|-------|-------|---------------|-------|-------|-------|---------------|-----------------------------------------|
| Start Time      |         |       | Left   | App.<br>Total | Right    | Thru | Left  | App.<br>Total | Right | Thru  | Left  | App.<br>Total | Right | Thru  | Left  | App.<br>Total | Int.<br>Total                           |
| Peak Hour Fro   | m 02:00 | PM to | 04:45  | PM - Pea      | k 1 of 1 |      |       |               |       |       |       |               |       |       |       |               |                                         |
| Intersection    | 02:00   | PM    |        |               |          |      |       |               |       |       |       |               |       |       |       |               |                                         |
| Volume          | 287     | 726   | 134    | 1147          | 425      | 516  | 8     | 949           | 85    | 1159  | 1     | 1245          | 103   | 335   | 164   | 602           | 3943                                    |
| Percent         | 25.0    | 63.3  | 11.7   |               | 44.8     | 54.4 | 0.8   |               | 6.8   | 93.1  | 0.1   |               | 17.1  | 55.6  | 27.2  |               |                                         |
| 02:15<br>Volume | 139     | 168   | 36     | 343           | 97       | 181  | 0     | 278           | 12    | 306   | 0     | 318           | · 31  | 106   | 50    | 187           | 1126                                    |
| Peak Factor     |         |       |        |               |          |      |       |               |       |       |       |               |       |       |       |               | 0.875                                   |
| High Int.       | 02:15   | PM    |        |               | 02:00    | PM   |       |               | 02:00 | PM    |       |               | 02:15 | PM    |       |               | 0.0.0                                   |
| Volume          | 139     | 168   | 36     | 343           | 96       | 198  | 0     | 294           | 13    | 310   | 0     | 323           | 31    | 106   | 50    | 187           |                                         |
| Peak Factor     |         |       |        | 0.836         |          |      |       | 0.807         |       |       |       | 0.964         |       |       |       | 0.805         |                                         |

<< ACCUTEK >> << 21114 TRIGGER LANE >> << DIAMOND BAR, CA 91765 >> << (909) 595-6199 FAX: (909) 595-6022 >

CITY: N/S: E/W: CLIENT:

FLOWER ST.

Southbound

File Name : 319604 Site Code : 00319604 Start Date : 11/30/2002 Page No : 1

37TH ST.

Eastbound

Groups Printed- Turning Movement

Westbound

FLOWER ST.

Northbound

|               |       | South | <u>bouna</u> |               |           | westb | ouna   |               |             | North  | oouna  | :             |       | Eastbo | ouna  |               |                                         |
|---------------|-------|-------|--------------|---------------|-----------|-------|--------|---------------|-------------|--------|--------|---------------|-------|--------|-------|---------------|-----------------------------------------|
| Start Time    | Right | Thru  | Left         | App.<br>Total | Right     | Thru  | Left   | App.<br>Total | Right       | Thru . | Left   | App.<br>Total | Right | Thru   | Left  | App.<br>Total | Int.<br>Total                           |
| Factor        | 1.0   | 1.0   | 1.0          |               | 1.0       | 1.0   | 1.0    |               | 1.0         | 1.0    | 1.0    |               | 1.0   | 1.0    | 1.0   |               | *************************************** |
| 02:00 PM      | 0     | 114   | 100          | 214           | 0         | 0     | 0      | 0 .           |             | 0      | 0      | 61            | 25    | 82     | 0     | 107           | 382                                     |
| 02:15 PM      | 0     | 98    | 114          | 212           | 0         | ő     | ő      | 0 :           |             | 0      | Ö      | 68            | 38    | 122    | ő     | 160           | 440                                     |
| 02:30 PM      | 0     | 141   |              |               |           |       |        |               |             |        |        |               |       |        |       |               |                                         |
|               |       |       | 120          | 261           | 0         | 0     | 0      | 0             | 63          | 0      | 0      | 63            | 27    | 117    | 0     | 144           | 468                                     |
| 02:45 PM      | 0     | 104   | 135          | 239           | 0_        | 0     | 00     | 0             | 58          | 0      | 0      | 58            | 24    | 126    | 0     | 150           | 447                                     |
| Total         | 0     | 457   | 469          | 926           | 0         | 0     | 0      | 0             | 250         | 0      | 0      | 250           | 114   | 447    | 0     | 561           | 1737                                    |
| 03:00 PM      | 0     | 130   | 105          | 235           | 0         | 0     | 0      | 0             | 81          | 0      | 0      | 81            | 35    | 113    | 0     | 148           | 464                                     |
| 03:15 PM      | 0     | 132   | 131          | 263           | 0         | ő     | 0      | 0 :           | 98          | 0      | ő      | 98            | 21    | 112    | ő     | 133           | 494                                     |
| 03:30 PM      | 0     | 120   | 109          | 229           |           | -     | -      | -             |             |        |        | 75            |       | 124    |       | 138           |                                         |
|               |       |       |              |               | 0         | 0     | 0      | 0             | 75          | 0      | 0      |               | 14    |        | 0     |               | 442                                     |
| 03:45 PM      | 0_    | 117   | 107          | 224           | 0         | 0     | 0      | 0             | 67          | 0      | 0      | 67            | 20    | 130    | 0     | 150           | 441                                     |
| Total         | 0     | 499   | 452          | 951           | 0         | 0     | 0      | 0             | 321         | 0      | 0      | 321           | 90    | 479    | 0     | 569           | 1841                                    |
| 04:00 PM      | 0     | 123   | 132          | 255           | 0         | 0     | 0      | 0             | 65          | 0      | 0      | 65            | 4     | 88     | 0     | 92            | 412                                     |
| 04:15 PM      | 0     | 155   | 142          | 297           | 0         | 0     | 0      | 0 .           | 70          | 0      | 0      | 70            | 14    | 119    | 0     | 133           | 500                                     |
| 04:30 PM      | 0     | 123   | 125          | 248           | Ö         | Õ     | ŏ      | 0.            |             | ŏ      | Ö      | 48            | 12    | 96     | Ō     | 108           | 404                                     |
| 04:45 PM      | ő     | 78    | 121          | 199           | ő         | 0     | 0      | 0             | 19          | Ö      | ő      | 19            | 17    | 113    | ő     | 130           | 348                                     |
| Total         | 0     | 479   | 520          | 999           | . 0       | 0     | 0      | 0             |             | 0      | 0      | 202           | 47    | 416    | 0     | 463           | 1664                                    |
| *** BREAK **  |       | ., 2  |              |               |           | ŭ     | J      |               | 202         | Ū      | ŭ      |               | .,    | ,,,,   | -     |               | 1001                                    |
| DICERIO       |       |       |              |               |           |       |        |               |             |        |        |               |       |        |       |               |                                         |
| 06:30 PM      | 0     | 24    | 78           | 102           | 0         | 0     | 0      | 0             | 11          | 0      | 0      | 11            | 8     | 83     | 0     | 91            | 204                                     |
| 06:45 PM      | 0     | 28    | 73           | 101           | 0         | 0     | 0      | 0             | 6           | 0      | 0      | 6             | 10    | 99     | 0     | 109           | 216                                     |
| Total         | 0     | 52    | 151          | 203           | 0         | 0     | 0      | 0             | 17          | 0      | 0      | 17            | 18    | 182    | 0     | 200           | 420                                     |
|               |       |       |              |               |           |       |        |               |             |        |        | _             | _     |        | _     |               |                                         |
| 07:00 PM      | 0     | 22    | 76           | 98            | 0         | 0     | 0      | 0             | 9           | 0      | 0      | 9 .           | 7     | 113    | 0     | 120           | 227                                     |
| 07:15 PM      | 0     | 34    | 74           | 108           | 0         | 0     | 0      | 0             | . 5         | 0      | 0      | 5             | 4     | 82     | 0     | 86            | 199                                     |
| 07:30 PM      | 0     | 23    | 64           | 87            | 0         | 0     | 0      | 0             | 9           | 0      | 0      | 9             | 7     | 65     | 0     | 72            | 168                                     |
| 07:45 PM      | 0     | 25    | 54           | 79            | 0         | 0     | 0      | 0             | 17          | 0      | 0      | 17            | 10    | 79     | 0     | 89            | 185                                     |
| Total         | 0     | 104   | 268          | 372           | 0         | 0     | 0      | 0             |             | 0      | 0      | 40            | 28    | 339    | 0     | 367           | 779                                     |
| 08:00 PM      | 0     | 35    | 68           | 103           | 0         | 0     | 0      | 0             | 21          | 0      | 0      | 21            | 21    | 67     | 0     | 88            | 212                                     |
| 08:15 PM      | 0     | 34    | 107          |               |           |       |        |               |             |        | 0      | 81            | 20    | 102    | Ö     | 122           | 344                                     |
|               |       |       |              | 141           | 0         | 0     | 0      | 0             | 81          | 0      | _      |               |       |        |       |               |                                         |
| 08:30 PM      | 0     | 62    | 232          | 294           | 0         | 0     | 0      | 0             | 103         | 0      | 0      | 103           | 1     | 108    | 0     | 109           | 506                                     |
| 08:45 PM      | 0     | 36    | 271          | 307           | 0         | 0     | 0      | 0             | 82          | 0      | 0      | 82            | 10    | 128    | 0     | 138           | 527                                     |
| Total         | 0     | 167   | 678          | 845           | 0         | 0     | 0      | 0             | 287         | 0      | 0      | 287           | 52    | 405    | 0     | 457           | 1589                                    |
| · 09:00 PM    | 0     | 42    | 271          | 313           | 0         | 0     | 0      | 0             | 120         | 0      | 0      | 120           | 14    | 131    | 0     | 145           | 578                                     |
| 09:15 PM      | 0     | 71    | 270          | 341           | ő         | ő     | ő      | ő             | 97          | ŏ      | Ö      | 97            | 4     | 172    | 0     | 176           | 614                                     |
| Grand Total   | 0     | 1871  | 3079         | 4950          | 0         | 0     | 0      | 0             | 1334        | 0      | 0      | 1334          | 367   | 2571   | Ö     | 2938          | 9222                                    |
|               |       |       |              | 4930          | -         | -     | -      | U             | 100.        |        |        | 1334          |       |        |       | 2550          | 7222                                    |
| Apprch %      | 0.0   | 37.8  | 62.2         |               | 0.0       | 0.0   | 0.0    |               | 0           | 0.0    | 0.0    |               | 12.5  | 87.5   | 0.0   |               |                                         |
| Total %       | 0.0   | 20.3  | 33.4         | 53.7          | 0.0       | 0.0   | 0.0    | 0.0           | 14.5        | 0.0    | 0.0    | 14.5          | 4.0   | 27.9   | 0.0   | 31.9          |                                         |
|               |       | 70    |              |               |           |       |        | ·····         |             |        |        |               |       |        |       |               |                                         |
|               |       |       | /ER ST.      |               |           | Wast  | bound  |               |             |        | ER ST. |               |       |        | H ST. | ,             |                                         |
| Start Time    | Right |       | Left         | App.          |           | Thru  | Left : | App.          | Right       |        | Left   | App.          | Right |        | Left  | App.          | Int.                                    |
| Peak Hour Fro | ·     |       |              | Total         |           |       |        | Total         |             |        |        | Total         |       |        |       | Total         | Total                                   |
| Intersection  |       |       | U-1,-13      | Pec           | AN I UI I | •     |        |               |             |        |        |               |       |        |       |               |                                         |
| Volume        | 02.50 |       | 401          | 000           | 0         | 0     | 0      | 0             | 200         | 0      | 0      | 300           | 107   | 468    | 0     | 575           | 1873                                    |
| volume        |       |       | 491          | 998           | 0         | 0     | 0      | 0             | 300<br>100. | 0      | 0      | 300           |       |        |       | 3/3           | 10/3                                    |
| Percent       | 0.0   | 50.8  | 49.2         |               | 0.0       | 0.0   | 0.0    |               | 0           | 0.0    | 0.0    |               | 18.6  | 81.4   | 0.0   |               |                                         |
| 03:15         | 0     | 132   | 131          | 263           | 0         | 0     | 0      | 0             | 98          | 0      | 0      | 98            | 21    | 112    | 0     | 133           | 494                                     |
| Volume        | 0     |       | 131          | 203           | J         | v     | U      | U             | 50          | v      | v      | 20            |       |        | •     |               |                                         |
| Peak Factor   |       |       |              |               |           |       |        |               |             |        |        |               |       |        |       |               | 0.948                                   |
| High Int.     | 03:15 | PM    |              |               | 1:45:0    | 00 PM |        |               | 03:15       |        |        |               | 02:45 |        |       |               |                                         |
| Volume        | 0     | 132   | 131          | 263           | 0         | 0     | 0      | 0             | 98          | 0      | 0      | 98            | 24    | 126    | 0     | 150           |                                         |
| Peak Factor   |       |       |              | 0.949         |           |       |        |               |             |        |        | 0.765         | •     |        |       | 0.958         |                                         |
|               |       |       |              |               |           |       |        |               |             |        |        |               |       |        |       |               |                                         |

<< ACCUTEK >> << 21114 TRIGGER LANE >> << DIAMOND BAR, CA 91765 >> << (909) 595-6199 FAX: (909) 595-6022 >

CITY: N/S: E/W: CLIENT:

File Name : 319604 Site Code : 00319604 Start Date : 11/30/2002 Page No : 2

|                       |         |         | /ER ST. |               |          |      |       |               |           |       | ER ST. |               |       | 3717  |      |               |               |
|-----------------------|---------|---------|---------|---------------|----------|------|-------|---------------|-----------|-------|--------|---------------|-------|-------|------|---------------|---------------|
|                       |         | South   | nbound  |               |          | West | bound |               |           | North | bound  |               | _     | Eastb | ound |               |               |
| Start Time            | Right   | Thru    | Left    | App.<br>Total | Right    | Thru | Left  | App.<br>Total | Right     | Thru  | Left   | App.<br>Total | Right | Thru  | Left | App.<br>Total | Int.<br>Total |
| Peak Hour Fro         | m 06:30 | 3 PM to | 09:15   | PM - Pea      | k 1 of 1 |      |       |               |           |       |        |               |       |       |      |               |               |
| Intersection          | 08:30   | PM      |         |               |          |      |       |               |           |       |        |               |       |       |      |               |               |
| Volume                | 0       | 211     | 1044    | 1255          | 0        | 0    | 0     | 0             | 402       | 0     | 0      | 402           | 29    | 539   | 0    | 568           | 2225          |
| Percent               | 0.0     | 16.8    | 83.2    |               | 0.0      | 0.0  | 0.0   |               | 100.<br>0 | 0.0   | 0.0    |               | 5.1   | 94.9  | 0.0  |               |               |
| 09:15<br>Volume       | 0       | 71      | 270     | 341           | 0        | 0    | 0     | 0             | 97        | 0     | 0      | 97            | 4     | 172   | 0    | 176           | 614           |
| Peak Factor           |         |         |         |               |          |      |       |               |           |       |        |               |       |       |      |               | 0.906         |
| High Int.             | 09:15   | PM      |         |               |          |      |       |               | 09:00     | PM    |        |               | 09:15 | PM    |      |               |               |
| Volume<br>Peak Factor | 0       | 71      | 270     | 341<br>0.920  | 0        | 0    | 0     | 0             | 120       | 0     | 0      | 120<br>0.838  | : 4   | 172   | 0    | 176<br>0.807  |               |

<< ACCUTEK >> << 21114 TRIGGER LANE >> << DIAMOND BAR, CA 91765 >> << (909) 595-6199 FAX: (909) 595-6022 > CITY: N/S: E/W: CLIENT:

File Name : 319606 Site Code : 00319606 Start Date : 11/30/2002

| CLIENT:      |     |       |         |               |       | C.   | ouna Dai | ntod Tu       | rnina Na  |       |         |               |       |       | Page    |               | 11/30/2002    |
|--------------|-----|-------|---------|---------------|-------|------|----------|---------------|-----------|-------|---------|---------------|-------|-------|---------|---------------|---------------|
|              |     | FIGUE | ROA ST. |               |       | GI   | oups Pn  | nted- Tur     | ming ivic |       | ROA ST. |               |       | STATE | DRIVE   |               |               |
|              |     | South | bound   |               |       | West | bound    |               |           |       | bound   |               |       |       | bound   |               |               |
| Start Time   |     | Thru  | Left    | App.<br>Total | Right | Thru | Left     | App.<br>Total | Right     | Thru  | Left    | App.<br>Total | Right | Thru  | Left    | App.<br>Total | Int.<br>Total |
| Factor       | 1.0 | 1.0   | 1.0     |               | 1.0   | 1.0  | 1.0      |               | 1.0       | 1.0   | 1.0     |               | 1.0   | 1.0   | 1.0     |               |               |
| 02:00 PM     | 0   | 280   | 0       | 280           | 0     | 0    | 0        | 0             | 0         | 305   | 0       | 305           | 0     | 0     | 0       | 0             | 585           |
| 02:15 PM     | 0   | 220   | 0       | 220           | 0     | 0    | 0        | 0             | 0         | 319   | 0       | 319           | 0     | 0     | 0       | 0             | 539           |
| 02:30 PM     | 0   | 203   | 0       | 203           | 0     | 0    | 0        | 0             | 0         | 274   | 1       | 275           | 0     | 0     | 0       | 0             | 478           |
| 02:45 PM     | 1.  | 185   | 0       | 186           | 0     | 0    | 0        | 0             | 0         | 304   | 0       | 304           | 0     | 0     | 0       | 0             | 490           |
| Total        | 1   | 888   | 0       | 889           | 0     | 0    | 0        | 0             | 0         | 1202  | 1       | 1203          | 0     | 0     | 0       | 0             | 2092          |
| 03:00 PM     | 1   | 225   | 0       | 226           | 0     | 0    | 0        | 0             | 0         | 168   | 0       | 168           | 1     | 0     | 0       | 1             | 395           |
| 03:15 PM     | 0   | 225   | 0       | 225           | 0     | 0    | 0        | 0             | 0         | 221   | 0       | 221           | 0     | 0     | 1       | 1             | 447           |
| 03:30 PM     | 0   | 198   | 0       | 198           | 0     | 0    | 0        | 0             | 0         | 152   | 0       | 152           | , 0   | 0     | 0       | 0             | 350           |
| 03:45 PM     | 0   | 220   | 0       | 220           | 0     | 0_   | 0        | 0             | 0         | 184   | 0       | 184           | 1     | 0     | 0       | 1             | 405           |
| Total        | 1   | 868   | 0       | 869           | 0     | 0    | 0        | 0             | 0         | 725   | 0       | 725           | 2     | 0     | 1       | 3             | 1597          |
| 04:00 PM     | 0   | 221   | 0       | 221           | 0     | 0    | 0        | 0             | 0         | 201   | 1       | 202           | 0     | 0     | 0       | 0             | 423           |
| 04:15 PM     | 0   | 235   | 0       | 235           | Ö     | ŏ    | ő        | Ö             | ő         | 257   | Ô       | 257           | 2     | 0     | 1       | 3             | 495           |
| 04:30 PM     | 0   | 210   | 0       | 210           | 0     | 0    | Ō        | 0             | 0         | 250   | Õ       | 250           | 0     | 0     | Ō       | 0             | 460           |
| 04:45 PM     | 0   | 195   | 0       | 195           | 0     | 0    | 0        | 0             | 0         | 267   | 0       | 267           | 0     | Õ     | Ö       | ő             | 462           |
| Total        | 0   | 861   | 0       | 861           | 0     | 0    | 0        | 0             | 0         | 975   | 1       | 976           | 2     | 0     | 1       | 3             | 1840          |
| *** BREAK ** | *   |       |         |               |       |      |          |               |           |       |         |               |       |       |         |               |               |
| 06:30 PM     | 2   | 119   | 0       | 121           | 0     | 0    | 0        | 0             | 0         | 151   | 0       | 151           | 0     | 0     | 2       | 2             | 274           |
| 06:45 PM     | 1   | 94    | 0       | 95            | 0     | 0    | 0        | 0             | 0         | 146   | 1       | 147           | 2     | 0     | 0       | 2             | 244           |
| Total        | 3   | 213   | 0       | 216           | 0     | 0    | 0        | 0             | 0         | 297   | 1       | 298           | 2     | 0     | 2       | 4             | 518           |
| 07:00 PM     | 0   | 96    | 0       | 96            | 0     | 0    | 0        | 0             | 0         | 135   | 0       | 135           | 0     | 0     | 1       | 1             | 232           |
| 07:15 PM     | 0   | 108   | 0       | 108           | 0     | 0    | 0        | 0             | 0         | 122   | 0       | 122           | 0     | 0     | 0       | 0             | 230           |
| 07:30 PM     | 1   | 124   | 0       | 125           | 0     | 0    | 0        | 0             | 0         | 122   | 0       | 122           | 0     | 0     | 0       | 0             | 247           |
| 07:45 PM     | 0   | 85    | 0       | 85            | 0     | 0    | 0        | 0             | 0         | 124   | 0       | 124           | 1     | 0     | 1       | 2_            | 211           |
| Total        | 1   | 413   | 0       | 414           | 0     | 0    | 0        | 0             | 0         | 503   | 0       | 503           | 1     | 0     | 2       | 3             | 920           |
| 08:00 PM     | 0   | 100   | 0       | 100           | 0     | 0    | 0        | 0             | 0         | 141   | 0       | 141           | 2     | 0     | 0       | 2             | 243           |
| 08:15 PM     | 0   | 103   | 0       | 103           | 0     | 0    | 0        | 0             | 0         | 197   | 0       | 197           | 1     | 0     | 0       | 1             | 301           |
| 08:30 PM     | 0   | 69    | 0       | 69            | 0     | 0    | 0        | 0             | 0         | 219   | 0       | 219           | 2     | 0     | 2       | 4             | 292           |
| 08:45 PM     | 0   | 118   | 0       | 118           | 0     | 0_   | 0        | 0             | 0         | 232   | .0      | 232           | 3     | 0     | 9       | 12            | 362           |
| Total        | 0   | 390   | 0       | 390           | 0     | 0    | 0        | 0             | 0         | 789   | 0       | 789           | 8     | 0     | 11      | 19            | 1198          |
| 09:00 PM     | 0   | 135   | 0       | 135           | 0     | 0    | 0        | 0             | 0         | 187   | 0       | 187           | 0     | 0     | 2       | 2             | 324           |
| 09:15 PM     | 0   | 147   | 0       | 147           | 0     | 0    | 0        | 0             | 0         | 225   | 0       | 225           | 2     | 0     | 7       | 9             | 381           |
| Grand Total  | 6   | 3915  | 0       | 3921          | 0     | 0    | 0        | 0             | 0         | 4903  | 3       | 4906          | 17    | 0     | 26      | 43            | 8870          |
| Apprch %     | 0.2 | 99.8  | 0.0     | 44-           | 0.0   | 0.0  | 0.0      |               | 0.0       | 99.9  | 0.1     |               | 39.5  | 0.0   | 60.5    |               |               |
| Total %      | 0.1 | 44.1  | 0.0     | 44.2          | 0.0   | 0.0  | 0.0      | 0.0           | 0.0       | 55.3  | 0.0     | 55.3          | 0.2   | 0.0   | 0.3     | 0.5           |               |
|              |     | FIGUE | ROA ST. |               |       |      |          |               |           | FIGUE | ROA ST. |               |       | CTATE | E DRIVE |               |               |
|              |     |       | bound   |               |       | West | bound    |               |           |       | nbound  |               |       |       | bound   |               |               |

|                 |         |       | nbound |               |          | West | bound |               |       |      | ROA ST |               |        |      | bound |               |               |
|-----------------|---------|-------|--------|---------------|----------|------|-------|---------------|-------|------|--------|---------------|--------|------|-------|---------------|---------------|
| Start Time      |         | Thru  | Left   | App.<br>Total | Right    | Thru | Left  | App.<br>Total | Right | Thru | Left   | App.<br>Total | Right  | Thru | Left  | App.<br>Total | Int.<br>Total |
| Peak Hour Fro   | m 02:00 | PM to | 04:45  | PM - Pea      | k 1 of 1 |      |       |               |       |      |        |               |        |      |       |               |               |
| Intersection    | 02:00   | PM    |        |               |          |      |       |               |       |      |        |               |        |      |       |               |               |
| Volume          | 1       | 888   | 0      | 889           | . 0      | 0    | 0     | 0             | 0     | 1202 | 1      | 1203          | 0      | 0    | 0     | 0             | 2092          |
| Percent         | 0.1     | 99.9  | 0.0    |               | 0.0      | 0.0  | 0.0   |               | 0.0   | 99.9 | 0.1    |               | 0.0    | 0.0  | 0.0   |               |               |
| 02:00<br>Volume | 0       | 280   | 0      | 280           | 0        | 0    | 0     | 0             | 0     | 305  | 0      | 305           | 0      | 0    | 0     | 0             | 585           |
| Peak Factor     |         |       |        |               |          |      |       |               |       |      |        |               |        |      |       |               | 0.894         |
| High Int.       | 02:00   | PM    |        |               | 1:45:0   | 0 PM |       |               | 02:15 | PM   |        |               | 1:45:0 | 0 PM |       |               |               |
| Volume          | 0       | 280   | 0      | 280           | 0        | 0    | 0     | 0             | 0     | 319  | 0      | 319           |        |      |       |               |               |
| Peak Factor     |         |       |        | 0.794         |          |      |       |               |       |      |        | 0.943         |        |      |       |               |               |

<< ACCUTEK >> << 21114 TRIGGER LANE >> << DIAMOND BAR, CA 91765 >> << (909) 595-6199 FAX: (909) 595-6022 >

CITY: N/S: E/W: CLIENT: File Name : 319606 Site Code : 00319606 Start Date : 11/30/2002 Page No : 2

|                       | FIGUEROA ST.<br>Southbound |           |         |               | Westbound |      |      |               | FIGUEROA ST.<br>Northbound |           |      |               | STATE DRIVE<br>Eastbound |      |      |               |               |
|-----------------------|----------------------------|-----------|---------|---------------|-----------|------|------|---------------|----------------------------|-----------|------|---------------|--------------------------|------|------|---------------|---------------|
| Start Time            | Right                      | Thru      | Left    | App.<br>Total | Right     | Thru | Left | App.<br>Total | Right                      | Thru      | Left | App.<br>Total | Right                    | Thru | Left | App.<br>Total | Int.<br>Total |
| Peak Hour Fro         | m 06:30                    | OPM to    | 09:15 F | PM - Pea      | k 1 of 1  |      |      |               |                            |           |      |               |                          |      |      |               |               |
| Intersection          | 08:30                      | PM        |         |               |           |      |      |               |                            |           |      |               |                          |      |      |               |               |
| Volume                | 0                          | 469       | 0       | 469           | 0         | 0    | 0    | 0             | 0                          | 863       | 0    | 863           | 7                        | 0    | 20   | 27            | 1359          |
| Percent               | 0.0                        | 100.<br>0 | 0.0     |               | 0.0       | 0.0  | 0.0  |               | 0.0                        | 100.<br>0 | 0.0  |               | 25.9                     | 0.0  | 74.1 |               |               |
| 09:15<br>Volume       | 0                          | 147       | 0       | 147           | 0         | 0    | 0    | 0             | 0                          | 225       | 0    | 225           | 2                        | 0    | 7    | 9             | 381           |
| Peak Factor           |                            |           |         |               |           |      |      |               |                            |           |      |               |                          |      |      |               | 0.892         |
| High Int.             | 09:15 PM                   |           |         |               |           |      |      |               | 08:45 PM                   |           |      | 08:45 PM      |                          |      |      |               |               |
| Volume<br>Peak Factor | 0                          | 147       | 0       | 147<br>0.798  | 0         | 0    | 0    | 0             | 0                          | 232       | 0    | 232<br>0.930  | 3                        | 0    | 9    | 12<br>0.563   |               |

CLIENT:

KAKU ASSOCIATES

PROJECT:

L.A. COLISEUM COINTS

DATE:

SATURDAY, NOVEMBER 30, 2002

PERIOD:

2:00 PM TO 5:00 PM

INTERSECTION N/S FIGUEROA ST/ FLOWER ST.

EW 38TH PL

FILE NUMBER:

1-PM

| 15 MINUTE | 2    | 3/38TH | 3F   | 4FI  | 5    | 6    | 4F   | 7F   | 7/38TH | 8    |
|-----------|------|--------|------|------|------|------|------|------|--------|------|
| TOTALS    | SBTH | SBLT   | SBLT | WBRT | WBTH | WBLT | WBRT | NBTR | NBRT   | NBTH |
|           |      |        |      |      |      |      |      |      |        |      |
| 200-215   | 177  | 7      | 10   | 8    | 67   | 8    | 8    | 8    | 67     | 139  |
| 215-230   | 165  | 6      | 7    | 13   | 74   | 4    | 10   | 10   | 75     | 133  |
| 230-245   | 152  | 2      | 8    | 10   | 85   | 3    | 14   | 9    | 64     | 128  |
| 245-300   | 177  | 7      | 10   | 8    | 65   | 2    | 11   | 12   | 82     | 161  |
| 300-315   | 167  | 8      | 8    | 15   | 111  | 11   | 17   | 16   | 65     | 135  |
| 315-330   | 185  | 6      | 7    | 10   | 75   | 13   | 7    | 8    | 76     | 138  |
| 330-345   | 187  | 8      | 6    | 16   | 102  | 10   | 11   | 7    | 85     | 149  |
| 345-400   | 175  | 8      | 10   | 18   | 95   | 7    | 13   | 11   | 62     | 159  |
| 400-415   | 185  | 8      | 12   | 20   | 85   | 4    | 12   | 13   | 72     | 170  |
| 415-430   | 195  | 7      | 8    | 20   | 94   | 7    | 15   | 13   | 51     | 168  |
| 430-445   | 175  | 3      | 6    | 22   | 105  | 3    | 13   | 15   | 42     | 160  |
| 445-500   | 167  | 2      | 6    | 18   | 74   | 5    | 12   | 9    | 46     | 142  |

| 1 HOUR  | 2    | 3/38TH | 3F   | 4FI  | 5    | 6    | 4F   | 7F   | 7/38TH | 8    |        |
|---------|------|--------|------|------|------|------|------|------|--------|------|--------|
| TOTALS  | SBTH | SBLT   | SBLT | WBRT | WBTH | WBLT | WBRT | NBTR | NBRT   | NBTH | TOTALS |
|         |      |        |      |      |      |      |      |      |        |      |        |
| 200-300 | 671  | 22     | 35   | 39   | 291  | 17   | 43   | 39   | 288    | 561  | 2006   |
| 215-315 | 661  | 23     | 33   | 46   | 335  | 20   | 52   | 47   | 286    | 557  | 2060   |
| 230-330 | 681  | 23     | 33   | 43   | 336  | 29   | 49   | 45   | 287    | 562  | 2088   |
| 245-345 | 716  | 29     | 31   | 49   | 353  | 36   | 46   | 43   | 308    | 583  | 2194   |
| 300-400 | 714  | 30     | 31   | 59   | 383  | 41   | 48   | 42   | 288    | 581  | 2217   |
| 315-415 | 732  | 30     | 35   | 64   | 357  | 34   | 43   | 39   | 295    | 616  | 2245   |
| 330-430 | 742  | 31     | 36   | 74   | 376  | 28   | 51   | 44   | 270    | 646  | 2298   |
| 345-445 | 730  | 26     | 36   | 80   | 379  | 21   | 53   | 52   | 227    | 657  | 2261   |
| 400-500 | 722  | 20     | 32   | 80   | 358  | 19   | 52   | 50   | 211    | 640  | 2184   |

CLIENT:

KAKU ASSOCIATES

PROJECT:

L.A. COLISEUM COINTS

DATE:

SATURDAY, NOVEMBER 30, 2002

PERIOD:

2:00 PM TO 5:00 PM

INTERSECTION

N/S I-110 NB OFF AND SB ON RAMP

EW 39TH ST.

FILE NUMBER:

4-PM

| - 6 |           | T    |      |      |      |      |                                         |      |      |      |          |      |      |
|-----|-----------|------|------|------|------|------|-----------------------------------------|------|------|------|----------|------|------|
| 1   | 15 MINUTE | 1    | 2    | 3    | 4    | 5    | 6                                       | 7    | 8    | 9    | 10       | 11   | 12   |
| Į   | TOTALS    | SBRT | SBTH | SBLT | WBRT | WBTH | WBLT                                    | NBRT | NBTH | NBLT | EBRT     | EBTH | EBLT |
|     |           |      |      |      |      |      | *************************************** |      |      |      | <u> </u> |      |      |
|     | 200-215   | 0    | 0    | 0    | 0    | 51   | 7                                       | 31   | 0    | 155  | 7        | 37   | 0    |
|     | 215-230   | 0    | 0    | 0    | 0    | 53   | 13                                      | 29   | 0    | 132  | 17       | 49   | 0    |
|     | 230-245   | 0    | 0    | 0    | 0    | 42   | 4                                       | 25   | 0    | 152  | 9        | 26   | 0    |
|     | 245-300   | 0    | 0    | 0    | 0    | 51   | 8                                       | 17   | 0    | 146  | 4        | 70   | 0    |
|     | 300-315   | 0    | 0    | 0    | 0    | 52   | 10                                      | 21   | 0    | 136  | 9        | 60   | 0    |
|     | 315-330   | 0    | 0    | 0    | 0    | 51   | 14                                      | 24   | 0    | 115  | 17       | 75   | 0    |
|     | 330-345   | 0    | 0    | 0    | 0    | 67   | 12                                      | 45   | 0    | 119  | 18       | 88   | 0    |
|     | 345-400   | 0    | 0    | 0    | 0    | 65   | 9                                       | 48   | 0    | 107  | 9        | 59   | 0    |
|     | 400-415   | 0    | 0    | 0    | 0    | 66   | 11                                      | 55   | 0    | 101  | 11       | 66   | 0    |
|     | 415-430   | 0    | 0    | 0    | 0    | 84   | 20                                      | 29   | 0    | 77   | 18       | 69   | 0    |
|     | 430-445   | 0    | 0    | 0    | 0    | 77   | 11                                      | 18   | 0    | 87   | 11       | 59   | 0    |
|     | 445-500   | 0    | 0    | 0    | 0    | 75   | 16                                      | 15   | 0    | 91   | 14       | 46   | 0    |
|     |           |      |      |      |      |      |                                         |      |      |      |          |      | U    |

| ſ | 1 HOUR  | 1    | 2        | 3    | 4                                     | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | I      |
|---|---------|------|----------|------|---------------------------------------|------|------|------|------|------|------|------|------|--------|
|   | TOTALS  | SBRT | SBTH     | SBLT | WBRT                                  | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTALS |
| - |         |      | <u> </u> |      | · · · · · · · · · · · · · · · · · · · | L    | L    |      |      |      |      |      |      | TOTALO |
|   | 200-300 | 0    | 0        | 0    | 0                                     | 197  | 32   | 102  | 0    | 585  | 37   | 182  | 0    | 1135   |
|   | 215-315 | 0    | 0        | 0    | 0                                     | 198  | 35   | 92   | 0    | 566  | 39   | 205  | 0    | 1135   |
|   | 230-330 | 0    | 0        | 0    | 0                                     | 196  | 36   | 87   | 0    | 549  | 39   | 231  | 0    | 1138   |
|   | 245-345 | 0    | 0        | 0    | 0                                     | 221  | 44   | 107  | 0    | 516  | 48   | 293  | 0    | 1229   |
|   | 300-400 | 0    | 0        | 0    | 0                                     | 235  | 45   | 138  | 0    | 477  | 53   | 282  | 0    | 1230   |
|   | 315-415 | 0    | 0        | 0    | 0                                     | 249  | 46   | 172  | 0    | 442  | 55   | 288  | 0    | 1252   |
|   | 330-430 | 0    | 0        | 0    | 0                                     | 282  | 52   | 177  | 0    | 404  | 56   | 282  | 0    | 1253   |
|   | 345-445 | 0    | 0        | 0    | 0                                     | 292  | 51   | 150  | 0    | 372  | 49   | 253  | 0    | 1167   |
|   | 400-500 | 0    | 0        | 0    | 0                                     | 302  | 58   | 117  | 0    | 356  | 54   | 240  | 0    | 1127   |

25

CLIENT:

KAKU ASSOCIATES

PROJECT:

L.A. COLISEUM COINTS

DATE:

SATURDAY, NOVEMBER 30, 2002

PERIOD:

2:00 PM TO 5:00 PM

INTERSECTION

N/S FIGUEROA ST.

EAV

39TH ST/COLISEUM DR.

FILE NUMBER:

2-PM

| ſ | 15 MINUTE | 4    | 2    | 3    | 4          | 5    | 6    | 7    | 8    | 9    | 40   |      | 40   |
|---|-----------|------|------|------|------------|------|------|------|------|------|------|------|------|
|   |           |      |      |      |            |      |      |      |      |      | 10   | 11   | 12   |
| ŧ | TOTALS    | SBRT | SBTH | SBLT | WBRT       | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT |
|   |           |      |      |      |            |      |      |      |      |      |      |      |      |
|   | 200-215   | 7    | 139  | 28   | 52         | 10   | 98   | 51   | 125  | 1    | 0    | 10   | 0    |
|   | 215-230   | 8    | 175  | 19   | 42         | 8    | 88   | 48   | 138  | 0    | 0    | 8    | 0    |
|   | 230-245   | 10   | 142  | 22   | 94         | 7    | 101  | 44   | 151  | 1    | 0    | 9    | 0    |
|   | 245-300   | 19   | 190  | 21   | 65         | 8    | 91   | 40   | 161  | 0    | 5    | 11   | 2    |
|   | 300-315   | 15   | 167  | 25   | 95         | 21   | 61   | 43   | 153  | 1    | 2    | 10   | 0    |
|   | 315-330   | 8    | 129  | 20   | 70         | 11   | 99   | 48   | 159  | 1    | 1    | 7    | 1    |
|   | 330-345   | 11   | 158  | 30   | 64         | 16   | 94   | 46   | 157  | 0    | 1    | 8    | 2    |
|   | 345-400   | 5    | 183  | 22   | <b>5</b> 5 | 20   | 111  | 39   | 167  | 0    | 0    | 5    | 1    |
|   | 400-415   | 8    | 196  | 25   | 45         | 15   | 104  | 48   | 170  | 2    | 0    | 6    | 0    |
|   | 415-430   | 4    | 188  | 33   | 48         | 17   | 97   | 40   | 162  | 1    | 0    | 9    | 0    |
|   | 430-445   | 19   | 175  | 19   | 71         | 11   | 79   | 46   | 165  | 0    | 1    | 11   | 1    |
|   | 445-500   | 5    | 167  | 22   | 40         | 9    | 67   | 38   | 144  | 0    | 0    | 5    | 0    |
|   |           |      |      |      |            |      |      |      |      |      |      |      |      |

| 1 HOUR  | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 4.4                                     | 12   | 1      |
|---------|------|------|------|------|------|------|------|------|------|------|-----------------------------------------|------|--------|
| 1       |      |      |      |      |      |      |      |      |      | 10   |                                         | 12   |        |
| TOTALS  | SBRT | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH                                    | EBLT | TOTALS |
|         |      |      |      |      |      |      |      |      |      |      | *************************************** |      |        |
| 200-300 | 44   | 646  | 90   | 253  | 33   | 378  | 183  | 575  | 2    | 5    | 38                                      | 2    | 2249   |
| 215-315 | 52   | 674  | 87   | 296  | 44   | 341  | 175  | 603  | 2    | 7    | 38                                      | 2    | 2321   |
| 230-330 | 52   | 628  | 88   | 324  | 47   | 352  | 175  | 624  | 3    | 8    | 37                                      | 3    | 2341   |
| 245-345 | 53   | 644  | 96   | 294  | 56   | 345  | 177  | 630  | 2    | 9    | 36                                      | 5    | 2347   |
| 300-400 | 39   | 637  | 97   | 284  | 68   | 365  | 176  | 636  | 2    | 4    | 30                                      | 4    | 2342   |
| 315-415 | 32   | 666  | 97   | 234  | 62   | 408  | 181  | 653  | 3    | 2    | 26                                      | 4    | 2368   |
| 330-430 | 28   | 725  | 110  | 212  | 68   | 406  | 173  | 656  | 3    | 1    | 28                                      | 3    | 2413   |
| 345-445 | 36   | 742  | 99   | 219  | 63   | 391  | 173  | 664  | 3    | 1    | 31                                      | 2    | 2424   |
| 400-500 | 36   | 726  | 99   | 204  | 52   | 347  | 172  | 641  | 3    | 1    | 31                                      | 1    | 2313   |

CLIENT:

KAKU ASSOCIATES

PROJECT:

L.A. COLISEUM COINTS

DATE:

SATURDAY, NOVEMBER 30, 2002

PERIOD:

2:00 PM TO 5:00 PM

INTERSECTION

N/S I-110 NB OFF-RAMP/ HILL ST.

EW

M.L. KING BLVD.

FILE NUMBER:

6-PM

| 15 MINUTE | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12                                     |
|-----------|------|------|------|------|------|------|------|------|------|------|------|----------------------------------------|
| TOTALS    | SBRT | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT                                   |
|           |      |      |      |      |      |      |      |      |      |      |      | ······································ |
| 200-215   | 16   | 67   | 16   | 28   | 153  | 3    | 64   | 85   | 22   | 21   | 142  | 28                                     |
| 215-230   | 28   | 45   | 17   | 35   | 128  | 2    | 36   | 97   | 18   | 33   | 140  | 34                                     |
| 230-245   | 16   | 36   | 19   | 62   | 162  | 6    | 28   | 111  | 16   | 38   | 158  | 42                                     |
| 245-300   | 25   | 75   | 25   | 45   | 142  | 5    | 66   | 103  | 26   | 36   | 166  | 52                                     |
| 300-315   | 17   | 66   | 16   | 36   | 128  | 2    | 48   | 137  | 21   | 35   | 156  | 34                                     |
| 315-330   | 27   | 7    | 31   | 19   | 128  | 16   | 50   | 177  | 9    | 61   | 167  | 19                                     |
| 330-345   | 10   | 12   | 40   | 0    | 12   | 0    | 61   | 204  | 0    | 60   | 152  | 21                                     |
| 345-400   | 0    | 10   | 31   | 0    | 15   | 0    | 39   | 151  | 0    | 63   | 150  | 21                                     |
| 400-415   | 0    | 4    | 30   | 0    | 2    | 0    | 37   | 142  | 0    | 87   | 134  | 40                                     |
| 415-430   | 0    | 4    | 43   | 0    | 3    | 0    | 37   | 115  | 0    | 67   | 124  | 26                                     |
| 430-445   | 0    | 9    | 37   | 0    | 5    | 0    | 32   | 86   | 0    | 82   | 129  | 26                                     |
| 445-500   | 0    | 4    | 32   | 0    | 10   | 0    | 33   | 55   | 0    | 43   | 123  | 16                                     |

| 1 HOUR  | 1    | 2    | 3    | 4    | 5    | 6    | 7    | <u>.</u> 8 | 9    | 10   | 11   | 12   | 1      |
|---------|------|------|------|------|------|------|------|------------|------|------|------|------|--------|
| TOTALS  | SBRT | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH       | NBLT | EBRT | EBTH | EBLT | TOTALS |
|         |      |      |      |      |      |      |      |            |      |      |      |      | ll     |
| 200-300 | 85   | 223  | 77   | 170  | 585  | 16   | 194  | 396        | 82   | 128  | 606  | 156  | 2718   |
| 215-315 | 86   | 222  | 77   | 178  | 560  | 15   | 178  | 448        | 81   | 142  | 620  | 162  | 2769   |
| 230-330 | 85   | 184  | 91   | 162  | 560  | 29   | 192  | 528        | 72   | 170  | 647  | 147  | 2867   |
| 245-345 | 79   | 160  | 112  | 100  | 410  | 23   | 225  | 621        | 56   | 192  | 641  | 126  | 2745   |
| 300-400 | 54   | 95   | 118  | 55   | 283  | 18   | 198  | 669        | 30   | 219  | 625  | 95   | 2459   |
| 315-415 | 37   | 33   | 132  | 19   | 157  | 16   | 187  | 674        | 9    | 271  | 603  | 101  | 2239   |
| 330-430 | 10   | 30   | 144  | 0    | 32   | 0    | 174  | 612        | 0    | 277  | 560  | 108  | 1947   |
| 345-445 | 0    | 27   | 141  | 0    | 25   | 0    | 145  | 494        | 0    | 299  | 537  | 113  | 1781   |
| 400-500 | 0    | 21   | 142  | 0    | 20   | 0    | 139  | 398        | 0    | 279  | 510  | 108  | 1617   |

23

CLIENT:

KAKU ASSOCIATES

PROJECT:

L.A. COLISEUM COINTS

DATE:

SATURDAY, NOVEMBER 30, 2002

PERIOD:

2:00 PM TO 5:00 PM

INTERSECTION

N/S FLOWER ST.

E/W M.L. KING BLVD.

FILE NUMBER:

5-PM

| 15 MINUTE | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |
|-----------|------|------|------|------|------|------|------|------|------|------|------|------|
| TOTALS    | SBRT | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT |
|           |      |      |      |      |      |      |      |      |      |      |      |      |
| 200-215   | 67   | 8    | 40   | 0    | 218  | 14   | 0    | 0    | 0    | 58   | 212  | 0    |
| 215-230   | 99   | 5    | 48   | 0    | 193  | 26   | 0    | 0    | 0    | 69   | 203  | 0    |
| 230-245   | 129  | 0    | 42   | 0    | 149  | 20   | 0    | 0    | 0    | 51   | 229  | 0    |
| 245-300   | 63   | 1    | 26   | 0    | 120  | 21   | 0    | 0    | 0    | 38   | 200  | 0    |
| 300-315   | 117  | 0    | 54   | 0    | 157  | 22   | 0    | 0    | 0    | 36   | 220  | 0    |
| 315-330   | 95   | 0    | 17   | 0    | 142  | 17   | 0    | 0    | 0    | 77   | 201  | 0    |
| 330-345   | 142  | 0    | 21   | 0    | 23   | 3    | 0    | 0    | 0    | 18   | 218  | 0    |
| 345-400   | 125  | 0    | 33   | 0    | 2    | 3    | 0    | 0    | 0    | 44   | 212  | 0    |
| 400-415   | 110  | 0    | 50   | 0    | 3    | 0    | 0    | 0    | 0    | 40   | 196  | 0    |
| 415-430   | 91   | 0    | 37   | 0    | 3    | 0    | 0    | 0    | 0    | 67   | 193  | 0    |
| 430-445   | 120  | 0    | 40   | 0    | 8    | 0    | 0    | 0    | 0    | 76   | 209  | 0    |
| 445-500   | 56   | 0    | 19   | 0    | 17   | 0    | 0    | 0    | 0    | 75   | 197  | 0    |

| Γ | 1 HOUR  | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |        |
|---|---------|------|------|------|------|------|------|------|------|------|------|------|------|--------|
| L | TOTALS  | SBRT | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTALS |
|   |         |      |      |      |      |      |      |      |      |      |      |      |      |        |
|   | 200-300 | 358  | 14   | 156  | 0    | 680  | 81   | 0    | 0    | 0    | 216  | 844  | 0    | 2349   |
|   | 215-315 | 408  | 6    | 170  | 0    | 619  | 89   | 0    | 0    | 0    | 194  | 852  | 0    | 2338   |
|   | 230-330 | 404  | 1    | 139  | 0    | 568  | 80   | 0    | 0    | 0    | 202  | 850  | 0    | 2244   |
|   | 245-345 | 417  | 1    | 118  | 0    | 442  | 63   | 0    | 0    | 0    | 169  | 839  | 0    | 2049   |
|   | 300-400 | 479  | 0    | 125  | 0    | 324  | 45   | 0    | 0    | 0    | 175  | 851  | 0    | 1999   |
|   | 315-415 | 472  | 0    | 121  | 0    | 170  | 23   | 0    | 0    | 0    | 179  | 827  | 0    | 1792   |
|   | 330-430 | 468  | 0    | 141  | 0    | 31   | 6    | 0    | 0    | 0    | 169  | 819  | 0    | 1634   |
|   | 345-445 | 446  | 0    | 160  | 0    | 16   | 3    | 0    | 0    | 0    | 227  | 810  | 0    | 1662   |
|   | 400-500 | 377  | 0    | 146  | 0    | 31   | 0    | 0    | 0    | 0    | 258  | 795  | 0    | 1607   |

CLIENT:

KAKU ASSOCIATES

PROJECT:

L.A. COLISEUM COINTS

DATE:

SATURDAY, NOVEMBER 30, 2002

PERIOD:

2:00 PM TO 5:00 PM

INTERSECTION

FIGUEROA ST. N/S M.L.KINGBLVD.

FILE NUMBER:

3-PM

ΕΛV

| 15 MINUTE | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8        | 9    | 10   | 11   | 12   |
|-----------|------|------|------|------|------|------|------|----------|------|------|------|------|
| TOTALS    | SBRT | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH     | NBLT | EBRT | ЕВТН | EBLT |
|           |      |      |      |      |      |      |      | <u>-</u> |      |      |      |      |
| 200-215   | 91   | 93   | 16   | 20   | 204  | 11   | 28   | 93       | 1    | 19   | 138  | 41   |
| 215-230   | 97   | 91   | 28   | 18   | 216  | 16   | 39   | 108      | 2    | 15   | 152  | 46   |
| 230-245   | 107  | 73   | 37   | 30   | 213  | 19   | 47   | 97       | 3    | 23   | 132  | 43   |
| 245-300   | 103  | 106  | 52   | 63   | 151  | 25   | 60   | 111      | 3    | 49   | 178  | 59   |
| 300-315   | 96   | 103  | 40   | 94   | 143  | 21   | 42   | 93       | 6    | 31   | 176  | 39   |
| 315-330   | 95   | 115  | 33   | 60   | 138  | 30   | 46   | 92       | 2    | 24   | 137  | 31   |
| 330-345   | 85   | 115  | 53   | 82   | 103  | 36   | 55   | 105      | 0    | 23   | 157  | 33   |
| 345-400   | 81   | 129  | 80   | 52   | 83   | 13   | 56   | 98       | 0    | 12   | 140  | 37   |
| 400-415   | 85   | 130  | 62   | 47   | 78   | 12   | 66   | 106      | 0    | 18   | 155  | 42   |
| 415-430   | 100  | 134  | 48   | 24   | 63   | 10   | 47   | 109      | 0    | 15   | 170  | 38   |
| 430-445   | 94   | 113  | 65   | 30   | 57   | 8    | 39   | 90       | 2    | 28   | 159  | 48   |
| 445-500   | 85   | 120  | 43   | 17   | 48   | 7    | 28   | 85       | 1    | 22   | 137  | 56   |

| Γ  | 1 HOUR  | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | _    | 40   |      | 4.0  | 1        |
|----|---------|------|------|------|------|------|------|------|------|------|------|------|------|----------|
| 1  | TOTALS  | SBRT | SBTH |      |      |      |      |      |      | 9    | 10   | 11   | 12   |          |
| i. | TOTALS  | SBRI | SBIM | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTALS,  |
|    |         |      |      |      |      |      |      |      |      |      |      |      |      |          |
|    | 200-300 | 398  | 363  | 133  | 131  | 784  | 71   | 174  | 409  | 9    | 106  | 600  | 189  | 3367     |
|    | 215-315 | 403  | 373  | 157  | 205  | 723  | 81   | 188  | 409  | 14   | 118  | 638  | 187  | 349€     |
|    | 230-330 | 401  | 397  | 162  | 247  | 645  | 95   | 195  | 393  | 14   | 127  | 623  | 172  |          |
|    | 245-345 | 379  | 439  | 178  | 299  | 535  | 112  | 203  | 401  | 11   | 127  | 648  | 162  |          |
|    | 300-400 | 357  | 462  | 206  | 288  | 467  | 100  | 199  | 388  | 8    | 90   | 610  | 140  |          |
|    | 315-415 | 346  | 489  | 228  | 241  | 402  | 91   | 223  | 401  | 2    | 77   | 589  | 143  | <b>W</b> |
|    | 330-430 | 351  | 508  | 243  | 205  | 327  | 71   | 224  | 418  | 0    | 68   | 622  | 150  |          |
|    | 345-445 | 360  | 506  | 255  | 153  | 281  | 43   | 208  | 403  | 2    | 73   | 624  | 165  |          |
|    | 400-500 | 364  | 497  | 218  | 118  | 246  | 37   | 180  | 390  | 3    | 83   | 621  | 184  |          |

.....



Phone: (626) 564-1944 Fax: (626) 564-0969

#### INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:

KAKU ASSOCIATES

PROJECT:

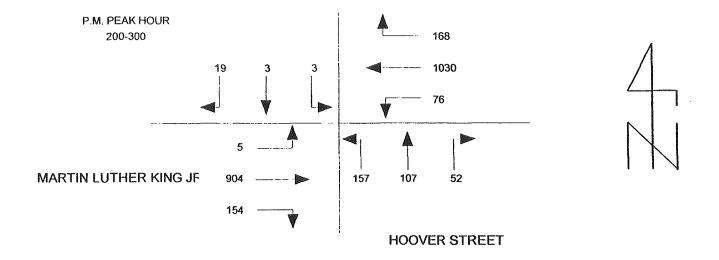
LOS ANGELES COLISEUM TRAFFIC COUNTS

DATE:

SATURDAY, NOVEMBER 30th, 2002

PERIOD:

2:00 PM TO 5:00 PM


INTERSECTION: N/S

HOOVER STREET

EW

MARTIN LUTHER KING JR. BOULEVARD

| 46 1411 0 | O 1 1 1 1 T C | `    |      |      |      |      |      |      |      |      |      |      |       |
|-----------|---------------|------|------|------|------|------|------|------|------|------|------|------|-------|
| 15 MIN C  | OUNTS         |      |      |      |      |      |      |      |      |      |      |      |       |
| 1         | 1             | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| PERIOD    | SBRT          | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 200-215   | 3             | 0    | 0    | 77   | 239  | 15   | 21   | 35   | 33   | 42   | 214  | 2    | 681   |
| 215-230   | 5             | 1    | 3    | 68   | 276  | 34   | 10   | 56   | 41   | 35   | 240  | 0    | 769   |
| 230-245   | 8             | 1    | 0    | 12   | 259  | 18   | 16   | 11   | 36   | 26   | 225  | 0    | 612   |
| 245-300   | 3             | 1    | 0    | 11   | 256  | 9    | 5    | 5    | 47   | 51   | 225  | 3    | 616   |
| 300-315   | 5             | 3    | 0    | 10   | 251  | 17   | 2    | 7    | 45   | 39   | 239  | 1    | 619   |
| 315-330   | 10            | 4    | 0    | 17   | 178  | 19   | 2    | 14   | 38   | 45   | 248  | 0    | 575   |
| 330-345   | 3             | 0    | 2    | 18   | 217  | 29   | 4    | 11   | 33   | 55   | 229  | 1    | 602   |
| 345-400   | 9             | 2    | 0    | 13   | 229  | 63   | 1    | 3    | 28   | 37   | 236  | 2    | 623   |
| 400-415   | 4             | 5    | 0    | 8    | 147  | 47   | 9    | 16   | 29   | 61   | 205  | 2    | 533   |
| 415-430   | 5             | 1    | 1    | 15   | 309  | 35   | 7    | 5    | 47   | 46   | 215  | 0    | 686   |
| 430-445   | 0             | 3    | 2    | 8    | 252  | 19   | 17   | 7    | 46   | 32   | 234  | 1    | 621   |
| 445-500   | 5             | 0    | 0    | 10   | 195  | 29   | 14   | 8    | 34   | 28   | 181  | 1    | 505   |
| HOUR TO   | OTALS         |      |      |      |      |      |      |      |      |      |      |      |       |
|           | 1             | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| TIME      | SBRT          | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 200-300   | 19            | 3    | 3    | 168  | 1030 | 76   | 52   | 107  | 157  | 154  | 904  | 5    | 2678  |
| 215-315   | 21            | 6    | 3    | 101  | 1042 | 78   | 33   | 79   | 169  | 151  | 929  | 4    | 2616  |
| 230-330   | 26            | 9    | 0    | 50   | 944  | 63   | 25   | 37   | 166  | 161  | 937  | 4    | 2422  |
| 245-345   | 21            | 8    | 2    | 56   | 902  | 74   | 13   | 37   | 163  | 190  | 941  | 5    | 2412  |
| 300-400   | 27            | 9    | 2    | 58   | 875  | 128  | 9    | 35   | 144  | 176  | 952  | 4    | 2419  |
| 315-415   | 26            | 11   | 2    | 56   | 771  | 158  | 16   | 44   | 128  | 198  | 918  | 5    |       |
| 330-430   | 21            | 8    | 3    | 54   | 902  | 174  | 21   | 35   | 137  | 199  | 885  | 5    |       |
| 345-445   | 18            | 11   | 3    | 44   | 937  | 164  | 34   | 31   | 150  | 176  | 890  | 5    | 2463  |
| 400-500   | 14            | 9    | 3    | 41   | 903  | 130  | 47   | 36   | 156  | 167  | 835  | 4    | 2345  |



1

### INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:

KAKU ASSOCIATES

PROJECT:

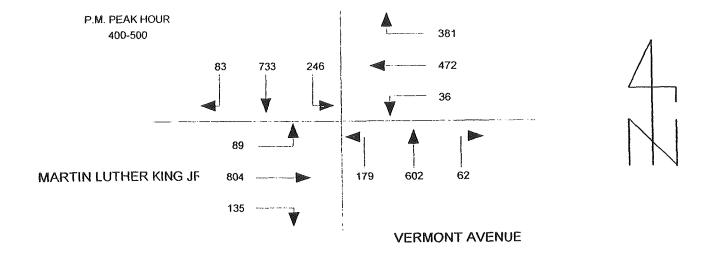
LOS ANGELES COLISEUM TRAFFIC COUNTS

DATE:

SATURDAY, NOVEMBER 30th, 2002

PERIOD:

2:00 PM TO 5:00 PM


INTERSECTION: N/S

**VERMONT AVENUE** 

E/W

MARTIN LUTHER KING JR. BOULEVARD

| 4E BAINI C | OLINITO | `    |      |      |         |      | ,~~  |      |      |      |      |      |       |
|------------|---------|------|------|------|---------|------|------|------|------|------|------|------|-------|
| 15 MIN C   | OUNTS   |      | 31   | 41   | <u></u> | 6    | 7    | 8    | 9    | 101  | 11   | 12   |       |
|            | 0007    | 2    | 3    | 4    | 5       | - [  | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| PERIOD     | SBRT    | SBTH | SBLT | WBRT | WBTH    | WBLT | 10   | 129  | 32   | 14   | 212  | 30   | 837   |
| 200-215    | 8       | 100  | 73   | 92   | 125     | 12   |      | 142  | 26   | 27   | 196  | 38   | 931   |
| 215-230    | 28      | 119  | 65   | 129  | 134     | 9    | 18   |      |      |      |      |      |       |
| 230-245    | 15      | 138  | 79   | 84   | 78      | 10   | 12   | 127  | 42   | 31   | 194  | 32   | 842   |
| 245-300    | 23      | 115  | 84   | 103  | 95      | 10   | 9    | 134  | 39   | 45   | 208  | 32   | 897   |
| 300-315    | 20      | 141  | 87   | 85   | 66      | 6    | 10   | 158  | 31   | 48   | 212  | 29   | 893   |
| 315-330    | 21      | 134  | 66   | 92   | 71      | 4    | 10   | 176  | 36   | 30   | 193  | 24   | 857   |
| 330-345    | 29      | 107  | 88   | 85   | 53      | 5    | 13   | 131  | 28   | 24   | 208  | 24   | 795   |
| 345-400    | 25      | 133  | 78   | 99   | 65      | 5    | 11   | 127  | 48   | 37   | 223  | 21   | 872   |
| 400-415    | 21      | 172  | 79   | 69   | 62      | 3    | 11   | 174  | 49   | 30   | 211  | 30   | 911   |
| 415-430    | 19      | 182  | 46   | 126  | 111     | 11   | 11   | 177  | 48   | 33   | 188  | 20   | 972   |
| 430-445    | 18      | 178  | 54   | 105  | 151     | 11   | 17   | 120  | 48   | 31   | 193  | 21   | 947   |
| 445-500    | 25      | 201  | 67   | 81   | 148     | 11   | 23   | 131  | 34   | 41   | 212  | 18   | 992   |
| HOUR T     | OTALS   |      |      |      |         |      |      |      |      |      |      |      |       |
|            | 1       | 2    | 3    | 4    | 5       | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| TIME       | SBRT    | SBTH | SBLT | WBRT | WBTH    | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 200-300    | 74      | 472  | 301  | 408  | 432     | 41   | 49   | 532  | 139  | 117  | 810  | 132  | 3507  |
| 215-315    | 86      | 513  | 315  | 401  | 373     | 35   | 49   | 561  | 138  | 151  | 810  | 131  | 3563  |
| 230-330    | 79      | 528  | 316  | 364  | 310     | 30   | 41   | 595  | 148  | 154  | 807  | 117  | 3489  |
| 245-345    | 93      | 497  | 325  | 365  | 285     | 25   | 42   | 599  | 134  | 147  | 821  | 109  | 3442  |
| 300-400    | 95      | 515  | 319  | 361  | 255     | 20   | 44   | 592  | 143  | 139  | 836  | 98   |       |
| 315-415    | 96      | 546  | 311  | 345  | 251     | 17   | 45   | 608  | 161  | 121  | 835  | 99   | 3435  |
| 330-430    | 94      | 594  | 291  | 379  | 291     | 24   | 46   | 609  | 173  | 124  | 830  | 95   | 3550  |
| 345-445    | 83      | 665  | 257  | 399  | 389     | 30   | 50   | 598  | 193  | 131  | 815  | 92   | 3702  |
| 400-500    | 83      | 733  | 246  | 381  | 472     | 36   | 62   | 602  | 179  | 135  | 804  | 89   | 3822  |





Phone: (626) 564-1944

Fax: (626) 564-0969

# INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:

KAKU ASSOCIATES

PROJECT:

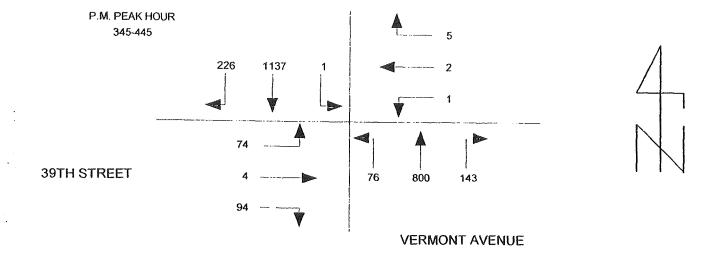
LOS ANGELES COLISEUM TRAFFIC COUNTS

DATE:

SATURDAY, NOVEMBER 30th, 2002

PERIOD:

2:00 PM TO 5:00 PM


INTERSECTION: N/S

**VERMONT AVENUE** 

Ε/W

39TH STREET

| 15 MIN C         | COUNT | S    |      |       |      |      |             |          |      |      |      |      |       |
|------------------|-------|------|------|-------|------|------|-------------|----------|------|------|------|------|-------|
| 10 171111 0      | 1     | 2    | 3    | 4     | 5    |      | <del></del> |          |      |      |      |      |       |
| PERIOD           | SBRT  | SBTH | SBLT | WBRT  | - 1  | 6    | 7           | 8        | 9    | 10   | 11   | 12   |       |
| 200-215          | 35    | 226  |      | VVORT | WBTH | WBLT | NBRT        | NBTH     | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 215-230          | 44    | 244  | 2    | 1     | 1    | 0    | 11          | 237      | 27   | 18   | 3    | 6    | 567   |
| 230-245          | 56    | 230  | 0    | 0     | 0    | 0    | 9           | 235      | 32   | 23   | 3    | 10   | 600   |
| 245-300          | 60    |      | 0    | 0     | 0    | 0    | 7           | 235      | 28   | 33   | 3    | 17   | 609   |
| 300-315          | 1     | 227  | 2    | 1     | 0    | 0    | 9           | 236      | 25   | 26   | 0    | 31   | 617   |
| 315-330          | 50    | 233  | 0    | 0     | 0    | 1    | 9           | 244      | 24   | 21   | 6    | 8    | 596   |
|                  | 71    | 224  | 2    | 2     | 0    | 1    | 11          | 258      | 28   | 27   | 4    | 12   | 640   |
| 330-345          | 75    | 212  | 2    | 3     | 0    | 0    | 5           | 215      | 27   | 22   | 2    | 18   | 581   |
| 345-400          | 66    | 272  | 1    | 1     | 1    | 1    | 7           | 226      | 16   | 30   | 0    | 21   | 642   |
| 400-415          | 55    | 310  | 0    | 2     | 1    | 0    | 12          | 231      | 29   | 15   | 2    | 12   | 669   |
| 415-430          | 57    | 250  | 0    | 1     | 0    | 0    | 40          | 205      | 17   | 28   | 2    | 20   | 620   |
| 430-445          | 48    | 305  | 0    | 1     | 0    | 0    | 84          | 138      | 14   | 21   | 0    | 21   | 632   |
| 445-500          | 41    | 263  | 0    | 2     | 1    | 0    | 51          | 193      | 28   | 8    | 1    | 16   | 604   |
| HOUR TO          | OTALS |      |      |       |      |      |             | <u>-</u> |      |      |      | :    |       |
|                  | 1     | 2    | 3    | 4     | 5    | 6    | 7           | 8        | 9    | 10   | 11   | 12   |       |
| TIME             | SBRT  | SBTH | SBLT | WBRT  | WBTH | WBLT | NBRT        | NBTH     | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 200-300          | 195   | 927  | 4    | 2     | 1    | 0    | 36          | 943      | 112  | 100  | 9    | 64   | 2393  |
| 215-315          | 210   | 934  | 2    | 1     | 0    | 1    | 34          | 950      | 109  | 103  | 12   | 66   | 2422  |
| 2 <b>30-3</b> 30 | 237   | 914  | 4    | 3     | 0    | 2    | 36          | 973      | 105  | 107  | 13   | 68   | 2462  |
| <b>245-3</b> 45  | 256   | 896  | 6    | 6     | 0    | 2    | 34          | 953      | 104  | 96   | 12   | 69   | 2434  |
| 300-400          | 262   | 941  | 5    | 6     | 1    | 3    | 32          | 943      | 95   | 100  | 12   | 59   | 2459  |
| 315-415          | 267   | 1018 | 5    | 8     | 2    | 2    | 35          | 930      | 100  | 94   | 8    | 63   | 2532  |
| 330-430          | 253   | 1044 | 3    | 7     | 2    | 1    | 64          | 877      | 89   | 95   | 6    | 71   | 2512  |
| 345-445          | 226   | 1137 | 1    | 5     | 2    | 1    | 143         | 800      | 76   | 94   | 4    | 74   | 2563  |
| 400-500          | 201   | 1128 | 0    | 6     | 2    | 0    | 187         | 767      | 88   | 72   | 5    | 69   | 2525  |



Phone: (626) 564-1944

Fax: (626) 564-0969

82.4

# INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:

KAKU ASSOCIATES

PROJECT:

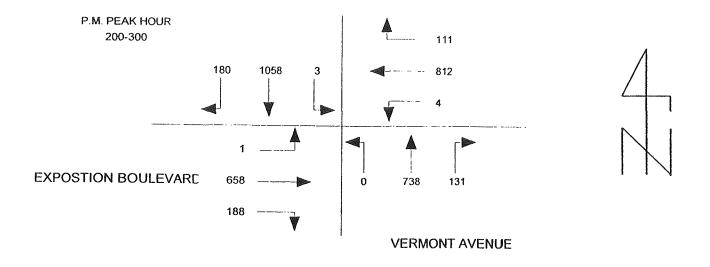
LOS ANGELES COLISEUM TRAFFIC COUNTS

DATE:

SATURDAY, NOVEMBER 30th, 2002

PERIOD:

2:00 PM TO 5:00 PM


INTERSECTION: N/S

**VERMONT AVENUE** 

ΕW

**EXPOSTION BOULEVARD** 

| 15 MIN C  | OLINITO | 3    |      |      |      |      |      | ~ ~ ~ ~ |          |      |      |      |       |
|-----------|---------|------|------|------|------|------|------|---------|----------|------|------|------|-------|
| 10 101114 | 1       |      |      |      |      | - 1  |      |         |          |      |      |      |       |
| PERIOD    | SBRT    | 2    | 3    | 4    | 5    | 6    | 7    | 8       | 9        | 10   | 11   | 12   |       |
|           |         | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH    | NBLT     | EBRT | EBTH | EBLT | TOTAL |
| 200-215   | 46      | 255  | 1    | 40   | 168  | 1    | 27   | 196     | 0        | 51   | 199  | 1    | 985   |
| 215-230   | 48      | 272  | 0    | 28   | 255  | 1    | 32   | 192     | 0        | 42   | 146  | 0    | 1016  |
| 230-245   | 35      | 257  | 1    | 33   | 313  | 1    | 37   | 172     | 0        | 45   | 152  | 0    | 1046  |
| 245-300   | 51      | 274  | 1    | 10   | 76   | 1    | 35   | 178     | 0        | 50   | 161  | 0    | 837   |
| 300-315   | 56      | 301  | 0    | 4    | 13   | 1    | 12   | 213     | 0        | 50   | 145  | 0    | 795   |
| 315-330   | 59      | 297  | 0    | 12   | 8    | 2    | 9    | 276     | 0        | 40   | 127  | Ō    | 830   |
| 330-345   | 57      | 335  | 2    | 6    | 7    | 1    | 6    | 213     | 0        | 28   | 106  | 0    | 761   |
| 345-400   | 46      | 330  | 0    | 13   | 13   | 0    | 4    | 222     | 0        | 28   | 113  | 0    | 769   |
| 400-415   | 55      | 336  | 1    | 2    | 11   | 1    | 1    | 210     | 0        | 31   | 54   | 32   | 734   |
| 415-430   | 55      | 352  | 1    | 6    | 3    | 0    | 2    | 188     | 0        | 24   | 111  | 0    | 742   |
| 430-445   | 75      | 346  | 6    | 8    | 7    | 2    | 8    | 141     | 0        | 23   | 115  | 0    | 731   |
| 445-500   | 70      | 312  | 0    | 4    | 4    | 1    | 5    | 114     | 0        | 47   | 33   | 25   | 615   |
| HOUR TO   | DTALS   |      |      |      |      |      |      | L       | <u> </u> |      |      |      | 0.10  |
|           | 1       | 2    | 3    | 4    | 5    | 6    | 7    | 8       | 9        | 10   | 11   | 12   |       |
| TIME      | SBRT    | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH    | NBLT     | EBRT | EBTH | EBLT | TOTAL |
| 200-300   | 180     | 1058 | 3    | 111  | 812  | 4    | 131  | 738     | 0        | 188  | 658  | 1    | 3884  |
| 215-315   | 190     | 1104 | 2    | 75   | 657  | 4    | 116  | 755     | 0        | 187  | 604  | 0    | 3694  |
| 230-330   | 201     | 1129 | 2    | 59   | 410  | 5    | 93   | 839     | 0        | 185  | 585  | 0    | 3508  |
| 245-345   | 223     | 1207 | 3    | 32   | 104  | 5    | 62   | 880     | 0        | 168  | 539  | 0    | 3223  |
| 300-400   | 218     | 1263 | 2    | 35   | 41   | 4    | 31   | 924     | 0        | 146  | 491  | 0    | 3155  |
| 315-415   | 217     | 1298 | 3    | 33   | 39   | 4    | 20   | 921     | 0        | 127  | 400  | 32   | 3094  |
| 330-430   | 213     | 1353 | 4    | 27   | 34   | 2    | 13   | 833     | 0        | 111  | 384  | 32   | 3094  |
| 345-445   | 231     | 1364 | 8    | 29   | 34   | 3    | 15   | 761     | 0        | 106  | 393  | 32   | 2976  |
| 400-500   | 255     | 1346 | 8    | 20   | 25   | 4    | 16   | 653     | 0        | 125  | 313  | 57   | 2822  |



CLIENT:

KAKU ASSOCIATES

PROJECT:

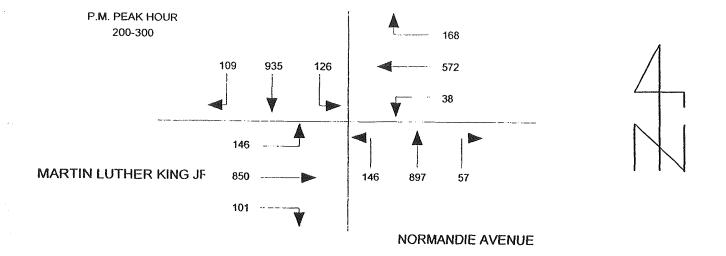
LOS ANGELES COLISEUM TRAFFIC COUNTS

DATE:

SATURDAY, NOVEMBER 30th, 2002

PERIOD:

2:00 PM TO 5:00 PM


INTERSECTION: N/S

NORMANDIE AVENUE

ΕW

MARTIN LUTHER KING JR. BOULEVARD

| 15 MIN C | OUNTS | <br>3    |      | VI.CO. |      |      |      |      |      | ·    |      |      |       |
|----------|-------|----------|------|--------|------|------|------|------|------|------|------|------|-------|
|          | 1     | 2        | 3    | 4      | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| PERIOD   | SBRT  | SBTH     | SBLT | WBRT   | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | ЕВТН | EBLT | TOTAL |
| 200-215  | 29    | 251      | 34   | 49     | 164  | 7    | 10   | 207  | 39   | 30   | 220  | 37   | 1077  |
| 215-230  | 32    | 214      | 29   | 42     | 148  | 6    | 13   | 256  | 35   | 25   | 202  | 31   | 1077  |
| 230-245  | 26    | 216      | 29   | 38     | 134  | 15   | 19   | 217  | 34   | 20   | 216  | 35   | 999   |
| 245-300  | 22    | 254      | 34   | 39     | 126  | 10   | 15   | 217  | 38   | 26   | 212  | 43   | 1036  |
| 300-315  | 34    | 262      | 39   | 41     | 129  | 13   | 19   | 212  | 34   | 32   | 220  | 36   | 1030  |
| 315-330  | 26    | 178      | 26   | 24     | 90   | 11   | 15   | 243  | 36   | 30   | 206  | 35   | 920   |
| 330-345  | 27    | 265      | 38   | 24     | 109  | 11   | 18   | 215  | 42   | 25   | 207  | 26   | 1007  |
| 345-400  | 26    | 223      | 29   | 32     | 105  | 11   | 17   | 225  | 39   | 25   | 233  | 33   | 998   |
| 400-415  | 31    | 288      | 24   | 37     | 107  | 9    | 16   | 202  | 42   | 34   | 197  | 37   | 1024  |
| 415-430  | 32    | 225      | 20   | 22     | 148  | 25   | 14   | 196  | 43   | 30   | 204  | 36   | 995   |
| 430-445  | 24    | 260      | 30   | 42     | 169  | 20   | 14   | 191  | 29   | 32   | 205  | 38   | 1054  |
| 445-500  | 39    | 192      | 29   | 32     | 179  | 18   | 18   | 202  | 33   | 26   | 203  | 34   | 1004  |
| HOUR TO  | OTALS | <b>1</b> | ·    |        |      | l    |      |      |      |      |      |      | 1000  |
|          | 1     | 2        | 3    | 4      | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| TIME     | SBRT  | SBTH     | SBLT | WBRT   | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 200-300  | 109   | 935      | 126  | 168    | 572  | 38   | 57   | 897  | 146  | 101  | 850  | 146  | 4145  |
| 215-315  | 114   | 946      | 131  | 160    | 537  | 44   | 66   | 902  | 141  | 103  | 850  | 145  | 4139  |
| 230-330  | 108   | 910      | 128  | 142    | 479  | 49   | 68   | 889  | 142  | 108  | 854  | 149  | 4026  |
| 245-345  | 109   | 959      | 137  | 128    | 454  | 45   | 67   | 887  | 150  | 113  | 845  | 140  | 4034  |
| 300-400  | 113   | 928      | 132  | 121    | 433  | 46   | 69   | 895  | 151  | 112  | 866  | 130  | 3996  |
| 315-415  | 110   | 954      | 117  | 117    | 411  | 42   | 66   | 885  | 159  | 114  | 843  | 131  | 3949  |
| 330-430  | 116   | 1001     | 111  | 115    | 469  | 56   | 65   | 838  | 166  | 114  | 841  | 132  | 4024  |
| 345-445  | 113   | 996      | 103  | 133    | 529  | 65   | 61   | 814  | 153  | 121  | 839  | 144  | 4071  |
| 400-500  | 126   | 965      | 103  | 133    | 603  | 72   | 62   | 791  | 147  | 122  | 810  | 145  | 4079  |





Phone: (626) 564-1944 Fax: (

Fax: (626) 564-0969

## INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:

KAKU ASSOCIATES

PROJECT:

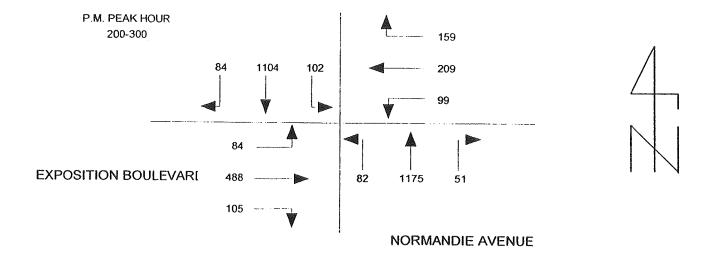
LOS ANGELES COLISEUM TRAFFIC COUNTS

DATE:

SATURDAY, NOVEMBER 30th, 2002

PERIOD:

2:00 PM TO 5:00 PM


INTERSECTION: N/S

NORMANDIE AVENUE

Ε/W

**EXPOSITION BOULEVARD** 

| 15 MIN C  | OUNT         | S    |      |      |      |      |      |      |      |      |      |      |       |
|-----------|--------------|------|------|------|------|------|------|------|------|------|------|------|-------|
| 10 101114 | 1            | 2    | 3    | 4    | -    |      | -1   |      |      |      |      |      |       |
| PERIOD    | SBRT         | SBTH | SBLT | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | ŀ     |
| 200-215   | 18           | 257  |      | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 215-230   | 21           |      | 26   | 49   | 65   | 29   | 8    | 300  | 20   | 28   | 117  | 25   | 942   |
| 230-245   |              | 259  | 22   | 49   | 46   | 24   | 17   | 297  | 22   | 20   | 120  | 18   | 915   |
|           | 22           | 282  | 27   | 38   | 70   | 29   | 14   | 291  | 23   | 27   | 131  | 17   | 971   |
| 245-300   | 23           | 306  | 27   | 23   | 28   | 17   | 12   | 287  | 17   | 30   | 120  | 24   | 914   |
| 300-315   | 18           | 298  | 34   | 13   | 32   | 10   | 16   | 290  | 22   | 28   | 110  | 10   | 881   |
| 315-330   | 15           | 323  | 29   | 13   | 29   | 19   | 11   | 292  | 23   | 22   | 93   | 20   | 889   |
| 330-345   | 13           | 280  | 30   | 23   | 25   | 14   | 14   | 239  | 30   | 20   | 100  | 18   | 806   |
| 345-400   | 20           | 335  | 19   | 20   | 32   | 14   | 10   | 268  | 23   | 21   | 120  | 21   | 903   |
| 400-415   | 29           | 324  | 22   | 22   | 38   | 15   | 15   | 254  | 23   | 16   | 96   | 24   | 878   |
| 415-430   | 20           | 290  | 23   | 15   | 18   | 18   | 11   | 239  | 24   | 16   | 80   | 15   | 769   |
| 430-445   | 23           | 296  | 12   | 22   | 24   | 17   | 17   | 266  | 21   | 26   | 103  | 15   | 842   |
| 445-500   | 19           | 271  | 15   | 15   | 29   | 11   | 12   | 295  | 33   | 27   | 89   | 22   | 838   |
| HOUR TO   | <b>OTALS</b> |      |      |      |      |      |      |      |      | 1    |      |      |       |
|           | 1            | 2    | 3    | 4    | 5    | 6    | 71   | 8    | 9    | 10   | 11   | 12   |       |
| TIME      | SBRT         | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 200-300   | 84           | 1104 | 102  | 159  | 209  | 99   | 51   | 1175 | 82   | 105  | 488  | 84   | 3742  |
| 215-315   | 84           | 1145 | 110  | 123  | 176  | 80   | 59   | 1165 | 84   | 105  | 481  | 69   | 3681  |
| 230-330   | 78           | 1209 | 117  | 87   | 159  | 75   | 53   | 1160 | 85   | 107  | 454  | 71   | 3655  |
| 245-345   | 69           | 1207 | 120  | 72   | 114  | 60   | 53   | 1108 | 92   | 100  | 423  | 72   | 3490  |
| 300-400   | 66           | 1236 | 112  | 69   | 118  | 57   | 51   | 1089 | 98   | 91   | 423  | 69   | 3479  |
| 315-415   | 77           | 1262 | 100  | 78   | 124  | 62   | 50   | 1053 | 99   | 79   | 409  | 83   | 3476  |
| 330-430   | 82           | 1229 | 94   | 80   | 113  | 61   | 50   | 1000 | 100  | 73   | 396  | 78   | 3356  |
| 345-445   | 92           | 1245 | 76   | 79   | 112  | 64   | 53   | 1027 | 91   | 79   | 399  | 75   | 3392  |
| 400-500   | 91           | 1181 | 72   | 74   | 109  | 61   | 55   | 1054 | 101  | 85   | 368  | 76   | 3327  |



Prepared by: Southland Car Counters

Prepared For:

**KAKU Associates** 

Client's Project Name

| Saturday,        | Nover  | mber 30, | 2002   |       | Cli   | ent's Re | f: P30   | 84      |        | Projec | t No  | 02-1     | 514-002 |
|------------------|--------|----------|--------|-------|-------|----------|----------|---------|--------|--------|-------|----------|---------|
| N-S Stree        | 1      | Vermon   | t Ave. |       | E-W   | Street   | Jeffe    | rson Bl | vd.    | A      | rea:  | Los Ange | eles    |
|                  | No     | orthBo   | ound   | So    | uthBo | und      | E        | astBoi  | ınd    | W      | 'estB | ound     |         |
|                  | NL     | NT       | NR     | SL    | ST    | SR       | EL       | ET      | ER     | WL     | WT    | WR       | Total   |
| Lanes:           | 1      | 2        | 1      | 1     | 2     | 1        | 1        | 1.5     | .5     | 1      | 2     | 1        |         |
| 2:00 PM          | 7      | 151      | 72     | 34    | 264   | 12       | 40       | 109     | 22     | 75     | 140   | 22       | 948     |
| 2:15 PM          | 9      | 164      | 91     | 39    | 282   | 16       | 41       | 115     | 26     | 84     | 145   | 23       | 1035    |
| 2:30 PM          | 15     | 191      | 71     | 39    | 255   | 16       | 26       | 120     | 23     | 73     | 207   | 30       | 1066    |
| 2:45 PM          | 20     | 182      | 49     | 50    | 247   | 12       | 26       | 95      | 20     | 81     | 161   | 37       | 980     |
| 3:00 PM          | 19     | 208      | 62     | 45    | 250   | 12       | 29       | 82      | 21     | 81     | 201   | 24       | 1034    |
| 3:15 PM          | 16     | 221      | 67     | 45    | 283   | 18       | 37       | 125     | 38     | 75     | 203   | 25       | 1153    |
| 3:30 PM          | 19     | 217      | 64     | 42    | 346   | 25       | 36       | 119     | 39     | 86     | 191   | 25       | 1209    |
| 3:45 PM          | 21     | 217      | 63     | 41    | 360   | 29       | 35       | 92      | 41     | 84     | 188   | 27       | 1198    |
| 4:00 PM          | 16     | 209      | 104    | 37    | 338   | 34       | 32       | 84      | 26     | 111    | 147   | 32       | 1170    |
| 4:15 PM          | 13     | 146      | 69     | 29    | 326   | 37       | 29       | 86      | 33     | 110    | 201   | 41       | 1120    |
| 4:30 PM          | 11     | 128      | 56     | 28    | 317   | 42       | 28       | 87      | 40     | 107    | 227   | 46       | 1117    |
| 4:45 PM          | 11     | 198      | 89     | 23    | 278   | 31       | 31       | 74      | 47     | 107    | 240   | 44       | 1173    |
| Totals:          | 177    | 2232     | 857    | 452   | 3546  | 284      | 390      | 1188    | 376    | 1074   | 2251  | 376      | 13203   |
| MD Peak I        | Hour l | Begins a | t 3:   | 15 PM |       | 15 N     | lin. Pea | nk: 3   | :30 PM |        |       |          |         |
| Peak<br>Volumes: | 72     | 864      | 298    | 165   | 1327  | 106      | 140      | 420     | 144    | 356    | 729   | 109      | 4730    |

Intersection Control: Signalized

Prepared by: Southland Car Counters

Prepared For:

**KAKU Associates** 

Client's Project Name

Saturday, November 30, 2002

Client's Ref: P3084

Project No

02-1514-001

| Saturday, I      | Vover  | nber 30, | 2002     |      | Cli   | ent's Re | <i>f:</i> P30 | 84       |        | Projec | t No   | 02-1    | 514-001 |
|------------------|--------|----------|----------|------|-------|----------|---------------|----------|--------|--------|--------|---------|---------|
| N-S Street       | '      | Norman   | die Ave. |      | E-W   | Street   | Jeffe         | rson Blv | rd.    | A      | rea: L | os Ange | eles    |
|                  | No     | orthBo   | ound     | So   | uthBo | und      | $E \epsilon$  | astBoi   | ınd    | W      | estBo  | und     |         |
|                  | NL     | NT       | NR       | SL   | ST    | SR       | EL            | ET       | ER     | WL     | WT     | WR      | Total   |
| Lanes:           |        |          |          |      |       |          |               |          |        |        |        |         |         |
| 2:00 PM          | 26     | 231      | 29       | 22   | 256   | 11       | 19            | 121      | 29     | 61     | 117    | 11      | 933     |
| 2:15 PM          | 29     | 253      | 33       | 26   | 271   | 8        | 17            | 132      | 27     | 65     | 134    | 9       | 1004    |
| 2:30 PM          | 31     | 297      | 36       | 19   | 289   | 10       | 21            | 125      | 31     | 75     | 126    | 10      | 1070    |
| 2:45 PM          | 27     | 267      | 31       | 21   | 265   | 9        | 16            | 113      | 28     | 67     | 112    | 8       | 964     |
| 3:00 PM          | 20     | 284      | 39       | 25   | 278   | 13       | 20            | 105      | 33     | 70     | 107    | 13      | 1007    |
| 3:15 PM          | 19     | 223      | 32       | 17   | 251   | 9        | 15            | 97       | 26     | 75     | 98     | 11      | 873     |
| 3:30 PM          | 22     | 304      | 40       | 20   | 337   | 16       | 22            | 123      | 23     | 78     | 119    | 15      | 1119    |
| 3:45 PM          | 25     | 285      | 35       | 23   | 313   | 17       | 24            | 119      | 24     | 81     | 125    | 11      | 1082    |
| 4:00 PM          | 31     | 268      | 29       | 25   | 324   | 18       | 20            | 108      | 19     | 73     | 138    | 9       | 1062    |
| 4:15 PM          | 33     | 240      | 27       | 18   | 269   | 15       | 21            | 112      | 21     | 69     | 146    | 12      | 983     |
| 4:30 PM          | 30     | 255      | 34       | 15   | 256   | 20       | 23            | 129      | 25     | 75     | 129    | 14      | 1005    |
| 4:45 PM          | 24     | 241      | 29       | 17   | 238   | 18       | 17            | 111      | 22     | 71     | 121    | 9       | 918     |
| Totals:          | 317    | 3148     | 394      | 248  | 3347  | 164      | 235           | 1395     | 308    | 860    | 1472   | 132     | 12020   |
| MD Peak I        | lour i | Begins a | t 3:3    | 0 PM |       | 15 N     | lin. Pea      | ak: 3    | :30 PM |        |        |         |         |
| Peak<br>Volumes: | 111    | 1097     | 131      | 86   | 1243  | 66       | 87            | 462      | 87     | 301    | 528    | 47      | 4246    |

Intersection Control: Signalized; At 7:40 PM EB Jefferson was closed to all traffic

Prepared by: Southland Car Counters

Prepared For:

KAKU Associates

Client's Project Name

| Saturday, I      | Nover  | mber 30, | 2002   |       | Cli   | ent's Re   | f: P30   | 84       |        | Project | t No   | 02-1    | 514-004 |
|------------------|--------|----------|--------|-------|-------|------------|----------|----------|--------|---------|--------|---------|---------|
| N-S Street       | !      | Vermon   | t Ave. |       | E-W   | Street     | Adar     | ns Blvd. |        | Ai      | rea: L | os Ange | eles    |
|                  | No     | orthBo   | ound   | So    | uthBo | und        | E        | astBoi   | ınd    | W       | estBo  | und     |         |
|                  | NL     | NT       | NR     | SL    | ST    | SR         | EL       | ET       | ER     | WL      | WT     | WR      | Total   |
| Lanes:           | 1      | 2        | 1      | 1     | 2     | 0          | 1        | 2        | 0      | 1       | 2      | 0       |         |
| 2:00 PM          | 29     | 138      | 30     | 33    | 302   | 13         | 38       | 87       | 19     | 38      | 68     | 24      | 819     |
| 2:15 PM          | 36     | 122      | 51     | 29    | 231   | 11         | 35       | 74       | 34     | 32      | 69     | 31      | 755     |
| 2:30 PM          | 27     | 153      | 50     | 42    | 321   | 19         | 39       | 147      | 28     | 37      | 151    | 26      | 1040    |
| 2:45 PM          | 39     | 175      | 62     | 53    | 343   | 35         | 42       | 184      | 27     | 45      | 165    | 28      | 1198    |
| 3:00 PM          | 41     | 189      | 69     | 58    | 266   | 46         | 56       | 132      | 29     | 50      | 168    | 29      | 1133    |
| 3:15 PM          | 32     | 186      | 48     | 60    | 338   | 35         | 35       | 124      | 28     | 48      | 192    | 32      | 1158    |
| 3:30 PM          | 48     | 183      | 52     | 71    | 395   | 24         | 37       | 113      | 32     | 56      | 186    | 27      | 1224    |
| 3:45 PM          | 36     | 191      | 55     | 69    | 368   | 32         | 41       | 81       | 31     | 51      | 206    | 33      | 1194    |
| 4:00 PM          | 32     | 199      | 35     | 54    | 320   | 34         | 44       | 113      | 23     | 58      | 192    | 29      | 1133    |
| 4:15 PM          | 35     | 162      | 28     | 41    | 244   | 22         | 37       | 103      | 12     | 50      | 182    | 45      | 961     |
| 4:30 PM          | 22     | 173      | 39     | 44    | 248   | 35         | 45       | 117      | 24     | 62      | 209    | 53      | 1071    |
| 4:45 PM          | 31     | 232      | 48     | 52    | 266   | <b>3</b> 3 | 42       | 101      | 30     | 32      | 176    | 51      | 1094    |
| Totals:          | 408    | 2103     | 567    | 606   | 3642  | 339        | 491      | 1376     | 317    | 559     | 1964   | 408     | 12780   |
| MD Peak I        | Hour l | Begins a | t 2:4  | 45 PM |       | 15 N       | lin. Pea | ık: 3    | :30 PM |         |        |         |         |
| Peak<br>Volumes: | 160    | 733      | 231    | 242   | 1342  | 140        | 170      | 553      | 116    | 199     | 711    | 116     | 4713    |

Intersection Control: Signalized; Officer directing traffic at 8:00 PM

#### Prepared by: Southland Car Counters

Prepared For:

KAKU Associates

Client's Project Name

Saturday, November 30, 2002

Client's Ref: P3084

Project No

02-1514-003

| Saturday,        | Nove     | mber 30,  | 2002     |      | Cli   | ent's Re | <i>t:</i> P30 | 184      |        | Projec | t No  | 02-1     | 514-003 |
|------------------|----------|-----------|----------|------|-------|----------|---------------|----------|--------|--------|-------|----------|---------|
| N-S Street       | <i>t</i> | Norman    | die Ave. |      | E-W   | Street   | Adai          | ns Blvd. |        | Aı     | rea:  | Los Ange | eles    |
|                  | N        | orthBo    | ound     | So   | uthBo | und      | E             | astBoi   | und    | W      | estBo | ound     |         |
|                  | NL       | NT        | NR       | SL   | ST    | SR       | EL            | ET       | ER     | WL     | WT    | WR       | Total   |
| Lanes:           | _1       | 2         | 0        | 1    | 2     | 0        | 1             | 2        | 0      | 1      | 2     | 0        |         |
| 2:00 PM          | 11       | 248       | 23       | 19   | 241   | 22       | 24            | 173      | 25     | 30     | 139   | 32       | 987     |
| 2:15 PM          | 9        | 276       | 21       | 22   | 238   | 19       | 19            | 161      | 20     | 32     | 153   | 25       | 995     |
| 2:30 PM          | 19       | 303       | 27       | 25   | 261   | 26       | 31            | 150      | 27     | 26     | 175   | 40       | 1110    |
| 2:45 PM          | 14       | 259       | 20       | 21   | 292   | 24       | 23            | 124      | 21     | 39     | 156   | 29       | 1022    |
| 3:00 PM          | 18       | 225       | 24       | 27   | 229   | 29       | 17            | 184      | 16     | 24     | 143   | 21       | 957     |
| 3:15 PM          | 9        | 211       | 19       | 25   | 297   | 23       | 31            | 203      | 15     | 40     | 137   | 28       | 1038    |
| 3:30 PM          | 22       | 287       | 26       | 19   | 289   | 24       | 25            | 198      | 19     | 32     | 169   | 25       | 1135    |
| 3:45 PM          | 18       | 251       | 19       | 17   | 290   | 19       | 29            | 213      | 18     | 34     | 145   | 18       | 1071    |
| 4:00 PM          | 11       | 270       | 23       | 22   | 305   | 22       | 34            | 224      | 21     | 33     | 189   | 20       | 1174    |
| 4:15 PM          | 18       | 249       | 18       | 25   | 261   | 32       | 36            | 184      | 29     | 39     | 179   | 24       | 1094    |
| 4:30 PM          | 14       | 263       | 26       | 20   | 246   | 30       | 31            | 163      | 23     | 34     | 159   | 30       | 1039    |
| 4:45 PM          | 12       | 232       | 23       | 22   | 212   | 25       | 22            | 152      | 22     | 28     | 163   | 28       | 941     |
| Totals:          | 175      | 3074      | 269      | 264  | 3161  | 295      | 322           | 2129     | 256    | 391    | 1907  | 320      | 12563   |
| MD Peak I        | lour l   | Begins at | f 3:30   | 0 PM |       | 15 N     | lin. Pea      | nk: 4    | :00 PM |        |       |          |         |
| Peak<br>Volumes: | 69       | 1057      | 86       | 83   | 1145  | 97       | 124           | 819      | 87     | 138    | 682   | 87       | 4474    |

Intersection Control: Signalized

Prepared by: Southland Car Counters

Prepared For:

KAKU Associates

Client's Project Name

| Saturday, N      | lovembe | er 30, | 2002   |       | Cli   | ent's Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f: P308   | 34     |         | Project | ł No  | 02-1    | 1514-007 |
|------------------|---------|--------|--------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|---------|---------|-------|---------|----------|
| N-S Street       | Vei     | rmon   | t Ave. |       | E-W   | Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I-10 I    | EB Ran | nps     | Aı      | ea: 1 | Los Ang | eles     |
|                  | Nort    | hBo    | ound   | So    | uthBo | und                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ea        | stBo   | und     | W       | estBo | und     |          |
|                  | NL      | NT     | NR     | SL    | ST    | SR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EL        | ET     | ER      | WL      | WT    | WR      | Total    |
| Lanes:           |         | 2      | 0      | 2     | 2     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .5        | .5     | 1       |         |       |         |          |
| 2:00 PM          | 1       | 82     | 30     | 91    | 203   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48        | 2      | 156     |         |       |         | 712      |
| 2:15 PM          | 1       | 154    | 22     | 161   | 264   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38        | 1      | 150     |         |       |         | 790      |
| 2:30 PM          | 2       | 208    | 40     | 114   | 299   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 62        | 3      | 123     |         |       |         | 849      |
| 2:45 PM          | 1       | 194    | 39     | 117   | 303   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32        | 0      | 115     |         |       |         | 800      |
| 3:00 PM          | 1       | 189    | 48     | 139   | 286   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35        | 3      | 116     |         |       |         | 816      |
| 3:15 PM          | 2       | 209    | 36     | 144   | 265   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57        | 1      | 128     |         |       |         | 840      |
| 3:30 PM          | 2       | 210    | 35     | 117   | 252   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 103       | 4      | 183     |         |       |         | 904      |
| 3:45 PM          |         | 182    | 24     | 101   | 243   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 96        | 6      | 147     |         |       |         | 799      |
| 4:00 PM          |         | 197    | 34     | 136   | 247   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75        | 3      | 119     |         |       |         | 811      |
| 4:15 PM          | 2       | 235    | 46     | 112   | 257   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 81        | 1      | 88      |         |       |         | 820      |
| 4:30 PM          | 2       | 217    | 99     | 131   | 236   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 103       | 1      | 69      |         |       |         | 856      |
| 4:45 PM          | ,       | 252    | 23     | 112   | 233   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 71        | 2      | 65      |         |       |         | 758      |
| Totals:          | 24      | 129    | 476    | 1475  | 3088  | Attachement of the second of the State Sta | 801       | 27     | 1459    |         |       |         | 9755     |
| MD Peak H        | our Beg | jins a | t 2:   | 45 PM |       | 15 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lin. Peal | k: 3   | 3:30 PM |         |       |         |          |
| Peak<br>Volumes: | {       | 302    | 158    | 517   | 1106  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 227       | 8      | 542     |         |       |         | 3360     |

Intersection Control: Signalized

Prepared by: Southland Car Counters

Prepared For:

KAKU Associates

Client's Project Name

| Saturday, No | vember 30   | 2002     |       | Clie  | ent's Re | <i>f:</i> P308 | 4     |         | Project | No                                      | 02-1     | 514-005 |
|--------------|-------------|----------|-------|-------|----------|----------------|-------|---------|---------|-----------------------------------------|----------|---------|
| N-S Street   | Normai      | idie Ave | 2.    | E-W   | Street   | I-10 E         | B Rai | nps     | Ar      | ea:                                     | Los Ange | eles    |
|              | NorthB      | ound     | So    | uthBo | und      | Eas            | stBo  | und     | W       | estB                                    | ound     |         |
| ٨            | IL NT       | NR       | SL    | ST    | SR       | EL             | ET    | ER      | WL      | WT                                      | WR       | Total   |
| Lanes:       | 2           | _ 1      | 1     | 2     |          | 1.3            | .3_   | .3      |         |                                         |          |         |
| 2:00 PM      | 249         | 64       | 103   | 195   |          | 46             |       | 38      |         |                                         |          | 695     |
| 2:15 PM      | 268         | 72       | 109   | 219   |          | 52             |       | 35      |         |                                         |          | 755     |
| 2:30 PM      | 265         | 65       | 108   | 238   |          | 58             |       | 64      |         |                                         |          | 798     |
| 2:45 PM      | 221         | 26       | 109   | 247   |          | 99             |       | 140     |         |                                         |          | 842     |
| 3:00 PM      | 282         | 36       | 131   | 238   |          | 105            |       | 136     |         |                                         |          | 928     |
| 3:15 PM      | 229         | 40       | 98    | 204   |          | 137            |       | 143     |         |                                         |          | 851     |
| 3:30 PM      | 207         | 43       | 83    | 220   |          | 149            |       | 172     |         |                                         |          | 874     |
| 3:45 PM      | 201         | 53       | 109   | 230   |          | 39             |       | 91      |         |                                         |          | 723     |
| 4:00 PM      | 283         | 46       | 92    | 265   |          | 39             |       | 82      |         |                                         |          | 807     |
| 4:15 PM      | 239         | 43       | 102   | 261   |          | 48             |       | 52      |         |                                         |          | 745     |
| 4:30 PM      | 246         | 44       | 91    | 252   |          | 36             |       | 59      |         |                                         |          | 728     |
| 4:45 PM      | 228         | 47       | 84    | 262   |          | 39             |       | 53      |         |                                         |          | 713     |
| Totals:      | 2918        | 579      | 1219  | 2831  | -        | 847            |       | 1065    |         | *************************************** |          | 9459    |
| MD Peak Ho   | ur Begins a | at 2:    | 45 PM |       | 15 N     | lin. Peak      | • • • | 3:00 PM |         |                                         |          |         |

Intersection Control: Signalized

939

145

421

909

490

591

3495

1

Peak

Volumes:

Prepared by: Southland Car Counters

Prepared For:

KAKU Associates

Client's Project Name

| Saturday, I      | Nover  | mber 30, | 2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | Cli   | ent's Re | <i>f:</i> P308 | 4      |         | Project | No    | 02-1     | 514-008 |
|------------------|--------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|----------|----------------|--------|---------|---------|-------|----------|---------|
| N-S Street       | !      | Vermoni  | Ave.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | E-W   | Street   | I-10 H         | VB Rai | mps     | Ar      | ea: 1 | Los Ange | eles    |
|                  | No     | orthBa   | ound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | So   | uthBo | und      | Ea             | stBol  | und     | W       | estBo | und      |         |
|                  | NL     | NT       | NR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SL   | ST    | SR       | EL             | ET     | ER      | WL      | WT    | WR       | Total   |
| Lanes:           | 2      | 2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 2     | 0        |                |        |         | .5      | .5    | 1        |         |
| 2:00 PM          | 34     | 175      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 174   | 24       |                |        |         | 82      | 0     | 50       | 539     |
| 2:15 PM          | 60     | 297      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 463   | 27       |                |        |         | 104     | 1     | 119      | 1071    |
| 2:30 PM          | 21     | 135      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 208   | 33       |                |        |         | 90      | 0     | 50       | 537     |
| 2:45 PM          | 31     | 167      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 308   | 80       |                |        |         | 93      | 0     | 118      | 797     |
| 3:00 PM          | 39     | 211      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 396   | 75       |                |        |         | 114     | 0     | 82       | 917     |
| 3:15 PM          | 33     | 191      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 285   | 78       |                |        |         | 56      | 0     | 75       | 718     |
| 3:30 PM          | 46     | 250      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 271   | 92       |                |        |         | 57      | 0     | 87       | 803     |
| 3:45 PM          | 27     | 227      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 257   | 71       |                |        |         | 114     | 0     | 181      | 877     |
| 4:00 PM          | 61     | 265      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 333   | 119      |                |        |         | 83      | 0     | 154      | 1015    |
| 4:15 PM          | 30     | 223      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 264   | 46       |                |        |         | 57      | 0     | 72       | 692     |
| 4:30 PM          | 65     | 288      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 325   | 106      |                |        |         | 62      | 1     | 88       | 935     |
| 4:45 PM          | 83     | 270      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 287   | 78       |                |        |         | 66      | 0     | 104      | 888     |
| Totals:          | 530    | 2699     | THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS O |      | 3571  | 829      |                |        |         | 978     | 2     | 1180     | 9789    |
| MD Peak I        | lour l | Begins a | t 4:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 PM |       | 15 A     | ⁄lin. Peak     | : 4    | I:00 PM |         |       |          |         |
| Peak<br>Volumes: | 239    | 1046     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 1209  | 349      |                |        |         | 268     | 1     | 418      | 3530    |

Intersection Control: Signalized;

Prepared by: Southland Car Counters

Prepared For:

KAKU Associates

Client's Project Name

| Saturday,        |        |          |          |      |            |        | <i>f</i> : P308 |        |            | Project |       |          | 514-006     |
|------------------|--------|----------|----------|------|------------|--------|-----------------|--------|------------|---------|-------|----------|-------------|
| N-S Stree        | 1 .    | Norman   | die Ave. |      | <i>E-W</i> | Street | <i>I-10 V</i>   | VB Rai | mps<br>——— | Ar      | ea:   | Los Ange | eles<br>——— |
|                  | Ne     | orthBo   | ound     | So   | uthBo      | und    | Ea              | stBo   | und        | We      | estBa | ound     |             |
|                  | NL     | NT       | NR       | SL   | ST         | SR     | EL              | ET     | ER         | WL      | WT    | WR       | Total       |
| Lanes:           | 1      | 2        |          |      | 2          | 1      |                 |        |            | 1.3     | .3    | .3       |             |
| 2:00 PM          | 63     | 230      |          |      | 264        | 37     |                 |        |            | 34      | 0     | 49       | 677         |
| 2:15 PM          | 75     | 246      |          |      | 287        | 53     |                 |        |            | 37      | 1     | 66       | 765         |
| 2:30 PM          | 61     | 263      |          |      | 299        | 56     |                 |        |            | 57      | 0     | 86       | 822         |
| 2:45 PM          | 52     | 271      |          |      | 308        | 58     |                 |        |            | 69      | 2     | 97       | 857         |
| 3:00 PM          | 57     | 330      |          |      | 316        | 58     |                 |        |            | 67      | 1     | 102      | 931         |
| 3:15 PM          | 48     | 321      |          |      | 246        | 45     |                 |        |            | 62      | 0     | 111      | 833         |
| 3:30 PM          | 51     | 305      |          |      | 262        | 38     |                 |        |            | 55      | 0     | 102      | 813         |
| 3:45 PM          | 64     | 184      |          |      | 286        | 41     |                 |        |            | 58      | 1     | 87       | 721         |
| 4:00 PM          | 66     | 251      |          |      | 315        | 38     |                 |        |            | 56      | 1     | 90       | 817         |
| 4:15 PM          | 65     | 219      |          |      | 336        | 39     |                 |        |            | 43      | 0     | 82       | 784         |
| 4:30 PM          | 58     | 227      |          |      | 302        | 37     |                 |        |            | 51      | 0     | 89       | 764         |
| 4:45 PM          | 60     | 204      |          |      | 308        | 33     |                 |        |            | 46      | 0     | 83       | 734         |
| Totals:          | 720    | 3051     |          |      | 3529       | 533    |                 |        |            | 635     | 6     | 1044     | 9518        |
| MD Peak I        | Hour i | Begins a | t 2:30   | ) PM |            | 15 N   | lin. Peak       | :: 3   | 3:00 PM    |         |       |          |             |
| Peak<br>Volumes: | 218    | 1185     |          |      | 1169       | 217    |                 |        |            | 255     | 3     | 396      | 3443        |

Intersection Control: Signalized

Volumes:

Weekend Count Data 6:30-9:30 p.m.

# << ACCUTEK >> << 21114 TRIGGER LANE >> << DIAMOND BAR, CA 91765 >> << (909) 595-6199 FAX (909) 595-6022</pre>

CITY: N/S: E/W: CLIENT: 

 << DIAMOND BAR, CA 91765 >>
 File Name : 319601

 << (909) 595-6199 FAX: (909) 595-6022 >
 Site Code : 00319601

 Start Date : 11/30/2002

Page No : 1

| JUICH I            |                         |         |         |               |       | 0         |         | 4 - d T       | -: 84    | 4      |         |               |            |       | Page    | NO : 1         |               |
|--------------------|-------------------------|---------|---------|---------------|-------|-----------|---------|---------------|----------|--------|---------|---------------|------------|-------|---------|----------------|---------------|
|                    |                         | S.FIGUE | ROA ST. |               |       | ADAMS     |         | itea- Tur     | ning Mov |        | ROA ST  |               |            | ADAMS | BLVD.   |                |               |
|                    |                         | South   |         |               |       | West      |         |               |          | North  |         |               |            | Eastb |         |                |               |
| Start Time         | Right                   | Thru    | Left    | App.<br>Total | Right | Thru      | Left    | App.<br>Total | Right    | Thru   | Left    | App.<br>Total | Right      | Thru  | Left    | App.<br>Total  | Int.<br>Total |
| Factor             | 1.0                     | 1.0     | 1.0     |               | 1.0   | 1.0       | 1.0     |               | . 1.0    | 1.0    | 1.0     |               | 1.0        | 1.0   | 1.0     |                |               |
| 02:00 PM           | 39                      | 265     | 18      | 322           | 56    | 177       | 71      | 304           | 13       | 167    | 49      | 229           | 40         | 111   | 21      | 172            | 1027          |
| 02:15 PM           | 52                      | 269     | 19      | 340           | 50    | 211       | 66      | 327           | 13       | 160    | 42      | 215           | 55         | 137   | 21      | 213            | 1095          |
| 02:30 PM           | 50                      | 265     | 31      | 346           | 78    | 173       | 84      | 335           | 23       | 186    | 36      | 245           | 53         | 125   | 18      | 196            | 1122          |
| 02:45 PM           | 41                      | 276     | 32      | 349           | 68    | 162       | 78      | 308           | 25       | 136    | 38      | 199           | 57         | 129   | 19      | 205            | 1061          |
| Total              | 182                     | 1075    | 100     | 1357          | 252   | 723       | 299     | 1274          | . 74     | 649    | 165     | 888           | 205        | 502   | 79      | 786            | 4305          |
| 03:00 PM           | 42                      | 237     | 26      | 305           | 29    | 200       | 79      | 308           |          | 144    | 55      | 209           | 47         | 136   | 19      | 202            | 1024          |
| 03:15 PM           | 33                      | 215     | 21      | <b>2</b> 69 : | 59    | 223       | 71      | 353           |          | 175    | 30      | 222           | 62         | 151   | 31      | 244            | 1088          |
| 03:30 PM           | 21                      | 177     | 17      | 215           | 51    | 248       | 43      | 342           | 19       | 189    | 36      | 244 :         |            | 126   | 10      | 219            | 1020          |
| 03:45 PM           | 12                      | 194     | 20      | 226           | 56    | 229       | 31      | 316           | 11       | 204    | 29      | 244           |            | 134   | 26      | 237            | 1023          |
| Total              | 108                     | 823     | 84      | 1015          | 195   | 900       | 224     | 1319          | 57       | 712    | 150     | 919           | 269        | 547   | 86      | 902            | 4155          |
| 04:00 PM           | 16                      | 153     | 15      | 184           | 58    | 206       | 39      | 303           | 14       | 229    | 56      | 299           | <b>5</b> 5 | 146   | 23      | 224            | 1010          |
| 04:15 PM           | 15                      | 119     | 13      | 147           | 56    | 239       | 28      | 323           | 27       | 295    | 50      | 372           | 57         | 170   | 21      | 248            | 1090          |
| 04:30 PM           | 13                      | 127     | 16      | 156           | 54    | 217       | 19      | 290           | 16       | 311    | 59      | 386           | 59         | 141   | 17      | 217            | 1049          |
| 04:45 PM           | 12                      | 118     | 28      | 158           | 40    | 179       | 32      | 251           | 19       | 239    | 68_     | 326           | 50         | 112   | 22      | 184            | 919           |
| Total              | 56                      | 517     | 72      | 645           | 208   | 841       | 118     | 1167          | 76       | 1074   | 233     | 1383          | 221        | 569   | 83      | 873            | 4068          |
| *** BREAK **       | *                       |         |         |               |       |           |         |               |          |        |         |               |            |       |         |                |               |
| 06:30 PM           | 16                      | 87      | 14      | 117           | 60    | 119       | 24      | 203           | 15       | 142    | 30      | 187           | 24         | 68    | 11      | 103            | 610           |
| 06:45 PM           | 18                      | 71      | 16      | 105           | . 55  | 130       | 16      | 201           |          | 178    | 33      | 227           | . 22       | 66    | 4       | 92             | 625           |
| Total              | 34                      | 158     | 30      | 222           | 115   | 249       | 40      | 404           | 31       | 320    | 63      | 414           | 46         | 134   | 15      | 195            | 123           |
| 07:00 PM           | 11                      | 71      | 10      | 92            | 62    | 121       | 18      | 201           |          | 138    | 20      | 173           | 36         | 51    | 14      | 101            | 56            |
| 07:15 PM           | 4                       | 93      | 12      | 109           | 37    | 122       | 18      | 177           |          | 113    | 42      | 171           | 30         | 61    | 16      | 107            | 56            |
| 07:30 PM           | 4                       | 60      | 17      | 81            | 27    | 109       | 20      | 156           |          | 102    | 33      | 150           | 28         | 59    | 11      | 98             | 48            |
| 07:45 PM           | 6                       | 67      | 11      | 84            | 21    | 86        | 17      | 124           |          | 100    | 31      | 142           | 15         | 55    | 10      | 80             | 43            |
| Total              | 25                      | 291     | 50      | 366           | 147   | 438       | 73      | 658           | 3 57     | 453    | 126     | 636           | 109        | 226   | 51      | 386            | 204           |
| 08:00 PM           | 2                       | 89      | 6       | 97            | 22    | 106       | 24      | 152           | 17       | 120    | 39      | 176           | 21         | 48    | 18      | 87             | 51            |
| 08:15 PM           | 1                       | 98      | 12      | 111           | 27    | 100       | 19      | 146           | 48       | 206    | 24      | 278           | 28         | 65    | 15      | 108            | 64            |
| 08:30 PM           | 4                       | 85      | 14      | 103           | 34    | 91        | 26      | 151           | 58       | 325    | 58      | 441           | 22         | 105   | 29      | 156            | 85            |
| 08:45 PM           | 5                       | 112     | 12      | 129           | 32    | 107       | 31      | 170           | 64       | 413    | 48      | 525           | 29         | 164   | 28      | 221            | 104           |
| Total              | 12                      | 384     | 44      | 440           | 115   | 404       | 100     | 619           | 187      | 1064   | 169     | 1420          | . 100      | 382   | 90      | 572            | 305           |
| 09:00 PM           | 4                       | 118     | 12      | 134           | 31    | 104       | 22      | 157           | 7 68     | 492    | 51      | 611           |            |       | 39      | 202            | 110           |
| 09:15 PM           | 3                       | 130     | 10      | 143           | . 38  | 120       | 24      | 182           | 2 99     | 528    | 57      | 684           |            | 199   | 28      | 254            | 126           |
| <b>Grand Total</b> | 424                     | 3496    | 402     | 4322          | 1101  | 3779      | 900     | 5780          | 649      | 5292   | 1014    | 6955          |            |       | 471     | 4170           | 2122          |
| Apprch %           | 9.8                     | 80.9    | 9.3     |               | 19.0  | 65.4      | 15.6    |               | 9.3      | 76.1   | 14.6    |               | 24.1       |       | 11.3    |                |               |
| Total %            | 2.0                     | 16.5    | 1.9     | 20.4          | 5.2   | 17.8      | 4.2     | 27.2          | 2 3.1    | 24.9   | 4.8     | 32.8          | 4.7        | 12.7  | 2.2     | 19.6           |               |
|                    | a - man v capacipations | S.FIGU  | JEROA S | Ť.            |       | ADAM      | IS BLVD | ).            |          | S.FIGI | JEROA S | ST.           |            | ADAN  | IS BLVE | <del>)</del> . |               |
|                    |                         |         |         |               |       | , ,, ,,,, |         |               |          |        |         |               |            | _     |         |                |               |

|                       |        | S.FIGUE<br>South | ROA ST  |               |          |      | S BLVD.<br>bound |               |       |      | ROA ST | •             |       |      | BLVD. |               |               | <         |
|-----------------------|--------|------------------|---------|---------------|----------|------|------------------|---------------|-------|------|--------|---------------|-------|------|-------|---------------|---------------|-----------|
| Start Time            | Right  | Thru             | Left    | App.<br>Total | Right    | Thru | Left             | App.<br>Total | Right | Thru | Left   | App.<br>Total | Right | Thru | Left  | App.<br>Total | Int.<br>Total |           |
| Peak Hour Fro         | m 02:0 | 0 PM to          | 04:45 F | PM - Pea      | k 1 of 1 |      |                  |               |       |      |        |               |       |      |       |               |               | B         |
| Intersection          | 02:00  | PM               |         | i             |          |      |                  |               | :     |      |        |               | :     |      |       |               |               |           |
| Volume                | 182    | 1075             | 100     | 1357          | 252      | 723  | 299              | 1274          | 74    | 649  | 165    | 888           | 205   | 502  | 79    | 786           | 4305          |           |
| Percent               | 13.4   | 79.2             | 7.4     |               | 19.8     | 56.8 | 23.5             |               | 8.3   | 73.1 | 18.6   |               | 26.1  | 63.9 | 10.1  |               |               | <b>33</b> |
| 02:30<br>Volume       | 50     | 265              | 31      | 346           | 78       | 173  | 84               | 335           | 23    | 186  | 36     | 245           | 53    | 125  | 18    | 196           | 1122          | 1000      |
| Peak Factor           |        |                  |         |               |          |      |                  |               |       |      |        |               |       |      |       |               | 0.959         | 1         |
| High Int.             | 02:45  | PM               |         |               | 02:30    | PM   |                  |               | 02:30 | PM   |        |               | 02:15 | PM   |       |               |               |           |
| Volume<br>Peak Factor |        | 276              | 32      | 349<br>0.972  | 78       | 173  | 84               | 335<br>0.951  | 23    | 186  | 36     | 245<br>0.906  | 55    | 137  | 21    | 213<br>0.923  |               |           |

<< ACCUTEK >>
 << 21114 TRIGGER LANE >>
 << DIAMOND BAR, CA 91765 >>
<< (909) 595-6199 FAX: (909) 595-6022 >

CITY: N/S: E/W: CLIENT:

File Name : 319601 Site Code : 00319601 Start Date : 11/30/2002 Page No : 2

|                 | ,       | S.FIGUE |         | . :           |        |      | S BLVD. | •             |       |       | ROA ST |               |          | ADAMS |      |                 |               |
|-----------------|---------|---------|---------|---------------|--------|------|---------|---------------|-------|-------|--------|---------------|----------|-------|------|-----------------|---------------|
|                 | i       | South   | bound   |               |        | West | bound   |               |       | North | bound  |               | <b>.</b> | East  | ound |                 |               |
| Start Time      | Right   | Thru    | Left    | App.<br>Total | Right  | Thru | Left    | App.<br>Total | Right | Thru  | Left   | App.<br>Total | Right    | Thru  | Left | App. :<br>Total | Int.<br>Total |
| Peak Hour Fro   | m 06:30 | PM to   | 09:15 F | PM - Peak     | 1 of 1 |      |         |               |       |       |        |               |          |       |      |                 |               |
| Intersection    | 08:30   | PM      |         |               |        |      |         | ;             |       |       |        |               | ;        |       |      | •               |               |
| Volume          | 16      | 445     | 48      | 509           | 135    | 422  | 103     | 660           | 289   | 1758  | 214    | 2261          | 106      | 603   | 124  | 833             | 4263          |
| Percent         | 3.1     | 87.4    | 9.4     | į             | 20.5   | 63.9 | 15.6    | i             | 12.8  | 77.8  | 9.5    |               | 12.7     | 72.4  | 14.9 | :               |               |
| 09:15<br>Volume | 3       | 130     | 10      | 143           | 38     | 120  | 24      | 182           | 99    | 528   | 57     | 684           | 27       | 199   | 28   | 254             | 1263          |
| Peak Factor     |         |         |         |               |        |      |         |               |       |       |        |               | :        |       |      |                 | 0.844         |
| High Int.       | 09:15   | PM      |         |               | 09:15  | PM   |         |               | 09:15 | PM    |        |               | 09:15    | PM    |      |                 |               |
| Volume          | 3       | 130     | 10      | 143.          | 38     | 120  | 24      | 182           | 99    | 528   | 57     | 684           | 27       | 199   | 28   | 254             |               |
| Peak Factor     |         |         |         | 0.890         |        |      |         | 0.907         |       |       |        | 0.826         | •        |       |      | 0.820 '         |               |

CITY: N/S: E/W: CLIENT:

#### << ACCUTEK >> << 21114 TRIGGER LANE >> << DIAMOND BAR, CA 91765 >> << (909) 595-6199 FAX: (909) 595-6022 >

File Name : 319602 Site Code : 00319602 Start Date : 11/30/2002 Page No : 1

ď

| IICIN I .                                                                                                                                  |                                                                           |                                                                                                                  |                                                                        |                                                                                         |                                                                          |                                                                  |                                                               |                                                                                      | nina Ma                                                                                              |                                                                                                                        |                                                                                   |                                                                                                                |                                                                                              |                                                                                             |                                                                                                             |                                                                                                           |                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|                                                                                                                                            |                                                                           | FIGUER<br>Southl                                                                                                 |                                                                        |                                                                                         | JE                                                                       | FFERS(<br>Westl                                                  | N BLVD                                                        |                                                                                      |                                                                                                      | vement<br>FIGUER<br>Northb                                                                                             |                                                                                   |                                                                                                                | JE                                                                                           | FFERSO<br>Eastb                                                                             | ON BLVD                                                                                                     | ).                                                                                                        |                                                                                |
| Start Time                                                                                                                                 | Right                                                                     | Thru                                                                                                             | Left                                                                   | App.<br>Total                                                                           | Right                                                                    | Thru                                                             | Left                                                          | App.<br>Total                                                                        | Right                                                                                                | Thru                                                                                                                   | Left                                                                              | App.<br>Total                                                                                                  | Right                                                                                        | Thru                                                                                        | Left                                                                                                        | App.<br>Total                                                                                             | Int.<br>Total                                                                  |
| Factor                                                                                                                                     | 1.0                                                                       | 1.0                                                                                                              | 1.0                                                                    |                                                                                         | 1.0                                                                      | 1.0                                                              | 1.0                                                           |                                                                                      | 1.0                                                                                                  | 1.0                                                                                                                    | 1.0                                                                               |                                                                                                                | 1.0                                                                                          | 1.0                                                                                         | 1.0                                                                                                         |                                                                                                           |                                                                                |
| 02:00 PM                                                                                                                                   | 52                                                                        | 231                                                                                                              | 30                                                                     | 313                                                                                     | 40                                                                       | 154                                                              | 53                                                            | 247                                                                                  | 86                                                                                                   | 260                                                                                                                    | 98                                                                                | 444                                                                                                            | 24                                                                                           | 48                                                                                          | 11                                                                                                          | 83                                                                                                        | 1087                                                                           |
| 02:15 PM                                                                                                                                   | 43                                                                        | 202                                                                                                              | 14                                                                     | 259                                                                                     | 49                                                                       | 141                                                              | 52                                                            | 242                                                                                  | 158                                                                                                  | 299                                                                                                                    | 89                                                                                | 546                                                                                                            | 42                                                                                           | 51                                                                                          | 20                                                                                                          | 113                                                                                                       | 1160                                                                           |
| 02:30 PM                                                                                                                                   | 50                                                                        | 208                                                                                                              | 40                                                                     | 298                                                                                     | 29                                                                       | 157                                                              | 39                                                            | 225                                                                                  | 100                                                                                                  | 287                                                                                                                    | <b>9</b> 8                                                                        | 485                                                                                                            | 35                                                                                           | 40                                                                                          | 9                                                                                                           | 84                                                                                                        | 1092                                                                           |
| 02:45 PM                                                                                                                                   | 60                                                                        | 231                                                                                                              | 43                                                                     | 334                                                                                     | 54                                                                       | 164                                                              | 43                                                            | 261                                                                                  | 118                                                                                                  | 257                                                                                                                    | <b>5</b> 9                                                                        | 434                                                                                                            | 26                                                                                           | 50                                                                                          | 9                                                                                                           | 85                                                                                                        | 1114                                                                           |
| Total                                                                                                                                      | 205                                                                       | 872                                                                                                              | 127                                                                    | 1204                                                                                    | 172                                                                      | <b>6</b> 16                                                      | 187                                                           | 975                                                                                  | 462                                                                                                  | 1103                                                                                                                   | 344                                                                               | 1909                                                                                                           | 127                                                                                          | 189                                                                                         | 49                                                                                                          | 365                                                                                                       | 4453                                                                           |
| 03:00 PM                                                                                                                                   | 56                                                                        | 200                                                                                                              | 42                                                                     | 298                                                                                     | 51                                                                       | 172                                                              | 32                                                            | 255                                                                                  | 100                                                                                                  | 338                                                                                                                    | 2                                                                                 | 440                                                                                                            | 1                                                                                            | 71                                                                                          | 14                                                                                                          | 86                                                                                                        | 1079                                                                           |
| 03:15 PM                                                                                                                                   | 72                                                                        | 179                                                                                                              | 66                                                                     | 317                                                                                     | 41                                                                       | 154                                                              | 38                                                            | 233                                                                                  | 122                                                                                                  | 331                                                                                                                    | 1                                                                                 | 454                                                                                                            | 2                                                                                            | 108                                                                                         | 21                                                                                                          | 131                                                                                                       | 1135                                                                           |
| 03:30 PM                                                                                                                                   | 57                                                                        | 190                                                                                                              | 53                                                                     | 300                                                                                     | 36                                                                       | 120                                                              | 19                                                            | 175                                                                                  | 42                                                                                                   | 269                                                                                                                    | 0                                                                                 | 311                                                                                                            | 8                                                                                            | 107                                                                                         | 29                                                                                                          | 144                                                                                                       | 930                                                                            |
| 03:45 PM                                                                                                                                   | 48                                                                        | 213                                                                                                              | 21                                                                     | 282                                                                                     | 30                                                                       | 102                                                              | 17                                                            | 149                                                                                  | 43                                                                                                   | 317                                                                                                                    | 0                                                                                 | 360                                                                                                            | 12                                                                                           | 67                                                                                          | 29                                                                                                          | 108                                                                                                       | 899                                                                            |
| Total                                                                                                                                      | 233                                                                       | 782                                                                                                              | 182                                                                    | 1197                                                                                    | 158                                                                      | 548                                                              | 106                                                           | 812                                                                                  | 307                                                                                                  | 1255                                                                                                                   | 3                                                                                 | 1565                                                                                                           | 23                                                                                           | 353                                                                                         | 93                                                                                                          | 469                                                                                                       | 4043                                                                           |
| 04:00 PM                                                                                                                                   | 36                                                                        | 204                                                                                                              | 0                                                                      | 240                                                                                     | 39                                                                       | 129                                                              | 11                                                            | 179                                                                                  | 38                                                                                                   | 460                                                                                                                    | 0                                                                                 | 498                                                                                                            | 25                                                                                           | 98                                                                                          | 41                                                                                                          | 164                                                                                                       | 108                                                                            |
| 04:15 PM                                                                                                                                   | 55                                                                        | 224                                                                                                              | 0                                                                      | 279                                                                                     | 41                                                                       | 111                                                              | 0                                                             | 152                                                                                  | 1                                                                                                    | 572                                                                                                                    | 0                                                                                 | 573                                                                                                            | 12                                                                                           | 71                                                                                          | 31                                                                                                          | 114                                                                                                       | 111                                                                            |
| 04.30 014                                                                                                                                  | 63                                                                        | 241                                                                                                              | 0                                                                      | 304                                                                                     | 37                                                                       | 137                                                              | 0                                                             | 174                                                                                  | 0                                                                                                    | 564                                                                                                                    | 0                                                                                 | 564                                                                                                            | 3                                                                                            | 2                                                                                           | 5                                                                                                           | 10                                                                                                        | 105                                                                            |
| 04:30 PM                                                                                                                                   |                                                                           |                                                                                                                  |                                                                        |                                                                                         |                                                                          | 4 40                                                             | 0                                                             | 195                                                                                  | 0                                                                                                    | 490                                                                                                                    | 0                                                                                 | 490                                                                                                            | 5                                                                                            | 2                                                                                           | 6                                                                                                           | 13                                                                                                        | 95                                                                             |
| 04:30 PM<br>04:45 PM<br>Total                                                                                                              | 50<br>204                                                                 | 208<br>877                                                                                                       | 1                                                                      | 259<br>1082                                                                             | 46<br>163                                                                | 149<br>526                                                       | 11                                                            | 700                                                                                  | 39                                                                                                   | 2086                                                                                                                   | 0                                                                                 | 2125                                                                                                           | 45                                                                                           | 173                                                                                         | 83                                                                                                          | 301                                                                                                       | 420                                                                            |
| 04:45 PM                                                                                                                                   | 204                                                                       |                                                                                                                  |                                                                        |                                                                                         |                                                                          | ~                                                                |                                                               |                                                                                      |                                                                                                      |                                                                                                                        |                                                                                   |                                                                                                                |                                                                                              |                                                                                             |                                                                                                             |                                                                                                           |                                                                                |
| 04:45 PM<br>Total<br>** BREAK **<br>06:30 PM                                                                                               | 204<br>**                                                                 | 877<br>110                                                                                                       | 0                                                                      | 1082<br>150                                                                             | 163                                                                      | <b>526</b><br>66                                                 | 11                                                            | <b>70</b> 0<br>84                                                                    | 39                                                                                                   | 2086<br>281                                                                                                            | 0                                                                                 | 2125<br>281                                                                                                    | 45<br>21                                                                                     | 173<br>97                                                                                   | 83<br>19                                                                                                    | <b>301</b> 137                                                                                            | 420<br>65                                                                      |
| 04:45 PM<br>Total<br>** BREAK **<br>06:30 PM<br>06:45 PM                                                                                   | 204<br>**<br>40<br>62                                                     | 877<br>110<br>79                                                                                                 | 1<br>0<br>1                                                            | 1082<br>150<br>142                                                                      | 163<br>18<br>24                                                          | 526<br>66<br>67                                                  | 11<br>0<br>0                                                  | <b>70</b> 0<br>84<br>91                                                              | 39                                                                                                   | 2086<br>281<br>275                                                                                                     | 0 0                                                                               | 2125<br>281<br>275                                                                                             | 45<br>21<br>28                                                                               | 173<br>97<br>71                                                                             | 83<br>19<br>24                                                                                              | 301<br>137<br>123                                                                                         | 420<br>65<br>63                                                                |
| 04:45 PM<br>Total<br>** BREAK **<br>06:30 PM                                                                                               | 204<br>**<br>40<br>62                                                     | 877<br>110                                                                                                       | 0                                                                      | 1082<br>150                                                                             | 163<br>18<br>24                                                          | <b>526</b><br>66                                                 | 11                                                            | <b>70</b> 0<br>84                                                                    | 39                                                                                                   | 2086<br>281                                                                                                            | 0                                                                                 | 2125<br>281                                                                                                    | 45<br>21                                                                                     | 173<br>97                                                                                   | 83<br>19                                                                                                    | <b>301</b> 137                                                                                            | 420<br>65<br>63                                                                |
| 04:45 PM<br>Total<br>** BREAK **<br>06:30 PM<br>06:45 PM                                                                                   | 204<br>**<br>40<br>62<br>102                                              | 877<br>110<br>79                                                                                                 | 1<br>0<br>1                                                            | 1082<br>150<br>142                                                                      | 163<br>18<br>24<br>42                                                    | 526<br>66<br>67<br>133<br>51                                     | 11<br>0<br>0                                                  | <b>70</b> 0<br>84<br>91                                                              | 39<br>0<br>0<br>0                                                                                    | 2086<br>281<br>275<br>556<br>235                                                                                       | 0<br>0<br>0<br>0                                                                  | 2125<br>281<br>275                                                                                             | 21<br>28<br>49<br>29                                                                         | 97<br>71<br>168<br>75                                                                       | 19<br>24<br>43<br>24                                                                                        | 301<br>137<br>123                                                                                         | 65<br>63<br>128                                                                |
| 04:45 PM<br>Total<br>** BREAK **<br>06:30 PM<br>06:45 PM<br>Total<br>07:00 PM<br>07:15 PM                                                  | 204<br>**<br>40<br>62<br>102<br>39<br>50                                  | 110<br>79<br>189                                                                                                 | 0 1                                                                    | 150<br>142<br>292<br>135<br>142                                                         | 163<br>18<br>24<br>42<br>8<br>19                                         | 526<br>66<br>67<br>133<br>51<br>57                               | 0<br>0<br>0                                                   | 700<br>84<br>91<br>175<br>59<br>76                                                   | 39<br>0<br>0<br>0<br>2<br>2                                                                          | 2086<br>281<br>275<br>556<br>235<br>223                                                                                | 0<br>0<br>0<br>0                                                                  | 2125<br>281<br>275<br>556<br>246<br>232                                                                        | 21<br>28<br>49<br>29<br>22                                                                   | 97<br>71<br>168<br>75<br>62                                                                 | 19<br>24<br>43<br>24<br>28                                                                                  | 137<br>123<br>260<br>128<br>112                                                                           | 65<br>63<br>128<br>56<br>56                                                    |
| 04:45 PM<br>Total<br>** BREAK **<br>06:30 PM<br>06:45 PM<br>Total<br>07:00 PM<br>07:15 PM<br>07:30 PM                                      | 204<br>**<br>40<br>62<br>102<br>39<br>50<br>38                            | 110<br>79<br>189<br>96<br>91<br>110                                                                              | 0<br>1<br>1                                                            | 150<br>142<br>292<br>135<br>142<br>148                                                  | 163<br>18<br>24<br>42<br>8<br>19<br>24                                   | 526<br>66<br>67<br>133<br>51<br>57<br>57                         | 0<br>0<br>0<br>0                                              | 700<br>84<br>91<br>175<br>59<br>76<br>82                                             | 39<br>0<br>0<br>0<br>2<br>2<br>7                                                                     | 2086<br>281<br>275<br>556<br>235<br>223<br>226                                                                         | 0<br>0<br>0<br>0<br>9<br>7<br>1                                                   | 2125<br>281<br>275<br>556<br>246<br>232<br>234                                                                 | 21<br>28<br>49<br>29<br>22<br>30                                                             | 97<br>71<br>168<br>75<br>62<br>58                                                           | 19<br>24<br>43<br>24<br>28<br>15                                                                            | 137<br>123<br>260<br>128<br>112<br>103                                                                    | 65<br>63<br>128<br>56<br>56                                                    |
| 04:45 PM<br>Total<br>** BREAK **<br>06:30 PM<br>06:45 PM<br>Total<br>07:00 PM<br>07:15 PM<br>07:30 PM<br>07:45 PM                          | 204<br>***<br>40<br>62<br>102<br>39<br>50<br>38<br>27                     | 110<br>79<br>189<br>96<br>91<br>110<br>82                                                                        | 0<br>1<br>1<br>0<br>1<br>0                                             | 150<br>142<br>292<br>135<br>142<br>148<br>110                                           | 163<br>18<br>24<br>42<br>8<br>19<br>24<br>16                             | 526<br>66<br>67<br>133<br>51<br>57<br>57<br>57<br>52             | 0<br>0<br>0<br>0                                              | 700<br>84<br>91<br>175<br>59<br>76<br>82<br>68                                       | 0<br>0<br>0<br>2<br>2<br>7<br>16                                                                     | 2086<br>281<br>275<br>556<br>235<br>223<br>226<br>210                                                                  | 0<br>0<br>0<br>0<br>9<br>7<br>1<br>1                                              | 2125<br>281<br>275<br>556<br>246<br>232<br>234<br>227                                                          | 21<br>28<br>49<br>29<br>22<br>30<br>9                                                        | 97<br>71<br>168<br>75<br>62<br>58<br>52                                                     | 19<br>24<br>43<br>24<br>28<br>15                                                                            | 137<br>123<br>260<br>128<br>112<br>103<br>76                                                              | 65<br>63<br>128<br>56<br>56<br>48                                              |
| 04:45 PM<br>Total<br>** BREAK **<br>06:30 PM<br>06:45 PM<br>Total<br>07:00 PM<br>07:15 PM<br>07:30 PM                                      | 204<br>***<br>40<br>62<br>102<br>39<br>50<br>38<br>27                     | 110<br>79<br>189<br>96<br>91<br>110                                                                              | 0<br>1<br>1<br>0<br>1<br>0                                             | 150<br>142<br>292<br>135<br>142<br>148                                                  | 163<br>18<br>24<br>42<br>8<br>19<br>24<br>16                             | 526<br>66<br>67<br>133<br>51<br>57<br>57                         | 0<br>0<br>0<br>0                                              | 700<br>84<br>91<br>175<br>59<br>76<br>82                                             | 39<br>0<br>0<br>0<br>2<br>2<br>7                                                                     | 2086<br>281<br>275<br>556<br>235<br>223<br>226                                                                         | 0<br>0<br>0<br>0<br>9<br>7<br>1                                                   | 2125<br>281<br>275<br>556<br>246<br>232<br>234                                                                 | 21<br>28<br>49<br>29<br>22<br>30                                                             | 97<br>71<br>168<br>75<br>62<br>58                                                           | 19<br>24<br>43<br>24<br>28<br>15                                                                            | 137<br>123<br>260<br>128<br>112<br>103                                                                    | 65<br>63<br>128<br>56<br>56<br>48                                              |
| 04:45 PM Total  ** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM 07:45 PM Total                                            | 204 **  40 62 102 39 50 38 27 154                                         | 110<br>79<br>189<br>96<br>91<br>110<br>82                                                                        | 0<br>1<br>1<br>0<br>1<br>0                                             | 150<br>142<br>292<br>135<br>142<br>148<br>110                                           | 163<br>18<br>24<br>42<br>8<br>19<br>24<br>16<br>67                       | 526  66 67 133  51 57 57 52 217                                  | 0<br>0<br>0<br>0                                              | 700<br>84<br>91<br>175<br>59<br>76<br>82<br>68                                       | 39<br>0<br>0<br>0<br>2<br>2<br>7<br>16<br>27<br>5                                                    | 2086<br>281<br>275<br>556<br>235<br>223<br>226<br>210<br>894<br>228                                                    | 0<br>0<br>0<br>0<br>9<br>7<br>1<br>1<br>18<br>8                                   | 2125<br>281<br>275<br>556<br>246<br>232<br>234<br>227<br>939<br>241                                            | 21<br>28<br>49<br>29<br>22<br>30<br>9                                                        | 97<br>71<br>168<br>75<br>62<br>58<br>52<br>247                                              | 19<br>24<br>43<br>24<br>28<br>15<br>15<br>82                                                                | 137<br>123<br>260<br>128<br>112<br>103<br>76<br>419                                                       | 65<br>63<br>128<br>56<br>56<br>48<br>217                                       |
| 04:45 PM Total  ** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM 07:45 PM Total  08:00 PM 08:15 PM                         | 204 **  40 62 102 39 50 38 27 154 30 18                                   | 110<br>79<br>189<br>96<br>91<br>110<br>82<br>379<br>98<br>142                                                    | 0<br>1<br>1<br>0<br>1<br>0<br>1<br>2                                   | 150<br>142<br>292<br>135<br>142<br>148<br>110<br>535                                    | 163  18 24 42  8 19 24 16 67                                             | 526  66 67 133  51 57 57 52 217 18 29                            | 0<br>0<br>0<br>0<br>0<br>1<br>0<br>1                          | 700<br>84<br>91<br>175<br>59<br>76<br>82<br>68<br>285<br>31<br>46                    | 39<br>0<br>0<br>0<br>2<br>2<br>7<br>16<br>27<br>5<br>19                                              | 2086<br>281<br>275<br>556<br>235<br>223<br>226<br>210<br>894<br>228<br>319                                             | 0<br>0<br>0<br>0<br>9<br>7<br>1<br>1<br>18<br>8<br>2                              | 281<br>275<br>556<br>246<br>232<br>234<br>227<br>939<br>241<br>340                                             | 21<br>28<br>49<br>29<br>22<br>30<br>9<br>90                                                  | 97<br>71<br>168<br>75<br>62<br>58<br>52<br>247<br>52<br>31                                  | 19<br>24<br>43<br>24<br>28<br>15<br>15<br>82<br>8<br>39                                                     | 137<br>123<br>260<br>128<br>112<br>103<br>76<br>419                                                       | 65<br>63<br>128<br>56<br>56<br>48<br>217                                       |
| 04:45 PM Total  ** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM 07:45 PM Total  08:00 PM 08:15 PM 08:30 PM                | 204 ***  40 62 102 39 50 38 27 154 30 18 13                               | 110<br>79<br>189<br>96<br>91<br>110<br>82<br>379<br>98<br>142<br>149                                             | 0<br>1<br>1<br>0<br>1<br>0<br>1<br>2<br>4<br>8<br>27                   | 150<br>142<br>292<br>135<br>142<br>148<br>110<br>535                                    | 163  18 24 42  8 19 24 16 67 11 3 17 10                                  | 526  66 67 133  51 57 57 52 217 18 29 19                         | 0<br>0<br>0<br>0<br>0<br>1<br>0<br>1<br>2<br>0                | 700<br>84<br>91<br>175<br>59<br>76<br>82<br>68<br>285<br>31<br>46<br>29              | 39<br>0<br>0<br>0<br>2<br>2<br>7<br>16<br>27<br>5<br>19<br>0                                         | 2086<br>281<br>275<br>556<br>235<br>223<br>226<br>210<br>894<br>228<br>319<br>356                                      | 0<br>0<br>0<br>0<br>7<br>1<br>1<br>18<br>8<br>2                                   | 2125<br>281<br>275<br>556<br>246<br>232<br>234<br>227<br>939<br>241<br>340<br>356                              | 21<br>28<br>49<br>29<br>22<br>30<br>9<br>90<br>13<br>19<br>0                                 | 97<br>71<br>168<br>75<br>62<br>58<br>52<br>247<br>52<br>31<br>44                            | 19<br>24<br>43<br>24<br>28<br>15<br>15<br>82<br>8<br>39<br>71                                               | 137<br>123<br>260<br>128<br>112<br>103<br>76<br>419<br>73<br>89<br>115                                    | 65<br>63<br>128<br>56<br>56<br>48<br>217<br>47<br>64<br>68                     |
| 04:45 PM Total  ** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM 07:45 PM Total  08:00 PM 08:15 PM 08:30 PM 08:45 PM       | 204 **  40 62 102 39 50 38 27 154 30 18 13 18 8                           | 110<br>79<br>189<br>96<br>91<br>110<br>82<br>379<br>98<br>142<br>149<br>176                                      | 0<br>1<br>1<br>0<br>1<br>0<br>1<br>2<br>4<br>8<br>27<br>41             | 150<br>142<br>292<br>135<br>142<br>148<br>110<br>535<br>132<br>168<br>189<br>225        | 183<br>244<br>42<br>8 19<br>24 16<br>6 67<br>11 17<br>10 10              | 526  66 67 133  51 57 57 52 217  18 29 19 17                     | 0<br>0<br>0<br>0<br>0<br>1<br>0<br>1<br>2<br>0<br>0           | 700<br>84<br>91<br>175<br>59<br>76<br>82<br>68<br>285<br>31<br>46<br>29<br>37        | 39<br>0<br>0<br>0<br>2<br>2<br>7<br>16<br>27<br>5<br>19<br>0                                         | 2086<br>281<br>275<br>556<br>235<br>223<br>226<br>210<br>894<br>228<br>319<br>356<br>459                               | 0<br>0<br>0<br>0<br>7<br>1<br>1<br>18<br>8<br>2<br>0<br>1                         | 2125<br>281<br>275<br>556<br>246<br>232<br>234<br>227<br>939<br>241<br>340<br>356<br>460                       | 21<br>28<br>49<br>29<br>22<br>30<br>9<br>90<br>13<br>19<br>0                                 | 97<br>71<br>168<br>75<br>62<br>58<br>52<br>247<br>52<br>31<br>44<br>54                      | 83<br>19<br>24<br>43<br>24<br>28<br>15<br>15<br>82<br>8<br>39<br>71<br>70                                   | 137<br>123<br>260<br>128<br>112<br>103<br>76<br>419<br>73<br>89<br>115<br>124                             | 65<br>63<br>128<br>56<br>56<br>48<br>217<br>47<br>64<br>68<br>84               |
| 04:45 PM Total  ** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM 07:45 PM Total  08:00 PM 08:15 PM 08:30 PM                | 204 **  40 62 102 39 50 38 27 154 30 18 13 18 8                           | 110<br>79<br>189<br>96<br>91<br>110<br>82<br>379<br>98<br>142<br>149                                             | 0<br>1<br>1<br>0<br>1<br>0<br>1<br>2<br>4<br>8<br>27                   | 150<br>142<br>292<br>135<br>142<br>148<br>110<br>535                                    | 163  18 24 42  8 19 24 16 67 11 3 17 0 10 6 20                           | 526  66 67 133  51 57 57 52 217  18 29 19 17                     | 0<br>0<br>0<br>0<br>0<br>1<br>0<br>1<br>2<br>0                | 700<br>84<br>91<br>175<br>59<br>76<br>82<br>68<br>285<br>31<br>46<br>29              | 39<br>0<br>0<br>0<br>2<br>2<br>7<br>16<br>27<br>5<br>19<br>0                                         | 2086<br>281<br>275<br>556<br>235<br>223<br>226<br>210<br>894<br>228<br>319<br>356<br>459                               | 0<br>0<br>0<br>0<br>7<br>1<br>1<br>18<br>8<br>2                                   | 2125<br>281<br>275<br>556<br>246<br>232<br>234<br>227<br>939<br>241<br>340<br>356                              | 21<br>28<br>49<br>29<br>22<br>30<br>9<br>90<br>13<br>19<br>0                                 | 97<br>71<br>168<br>75<br>62<br>58<br>52<br>247<br>52<br>31<br>44                            | 19<br>24<br>43<br>24<br>28<br>15<br>15<br>82<br>8<br>39<br>71                                               | 137<br>123<br>260<br>128<br>112<br>103<br>76<br>419<br>73<br>89<br>115                                    | 420<br>65<br>63<br>128<br>56<br>56<br>48<br>217<br>47<br>64<br>68<br>88        |
| 04:45 PM Total  ** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM 07:45 PM Total  08:00 PM 08:15 PM 08:30 PM 08:45 PM Total | 204 **  40 62 102 39 50 38 27 154 130 18 131 69                           | 110<br>79<br>189<br>96<br>91<br>110<br>82<br>379<br>98<br>142<br>149<br>176<br>565                               | 0<br>1<br>1<br>0<br>1<br>0<br>1<br>2<br>4<br>8<br>27<br>41             | 150<br>142<br>292<br>135<br>142<br>148<br>110<br>535<br>132<br>168<br>189<br>225<br>714 | 163  18 24 42  8 19 24 16 67 11 3 17 0 10 6 20 8 58                      | 526  66 67 133  51 57 57 52 217  18 29 19 17 83                  | 0<br>0<br>0<br>0<br>0<br>1<br>0<br>1<br>2<br>0<br>0           | 700<br>84<br>91<br>175<br>59<br>76<br>82<br>68<br>285<br>31<br>46<br>29<br>37        | 39<br>0<br>0<br>0<br>2<br>2<br>7<br>16<br>27<br>5<br>19<br>0<br>0                                    | 2086  281 275 556  235 223 226 210 894  228 319 356 459 1362 497                                                       | 0<br>0<br>0<br>0<br>7<br>1<br>1<br>18<br>8<br>2<br>0<br>1                         | 2125<br>281<br>275<br>556<br>246<br>232<br>234<br>227<br>939<br>241<br>340<br>356<br>460                       | 21<br>28<br>49<br>29<br>22<br>30<br>9<br>90<br>13<br>19<br>0<br>0                            | 97<br>71<br>168<br>75<br>62<br>58<br>52<br>247<br>52<br>31<br>44<br>54<br>181               | 83<br>19<br>24<br>43<br>24<br>28<br>15<br>15<br>82<br>8<br>39<br>71<br>70<br>188<br>47                      | 301<br>137<br>123<br>260<br>128<br>112<br>103<br>76<br>419<br>73<br>89<br>115<br>124<br>401<br>188        | 65<br>63<br>128<br>56<br>56<br>48<br>217<br>41<br>66<br>68<br>26               |
| 04:45 PM Total  ** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM 07:45 PM Total  08:00 PM 08:15 PM 08:30 PM 08:45 PM Total | 204 **  40 62 102 39 50 38 27 154 130 18 131 69                           | 110<br>79<br>189<br>96<br>91<br>110<br>82<br>379<br>98<br>142<br>149<br>176<br>565                               | 0<br>1<br>1<br>0<br>1<br>0<br>1<br>2<br>4<br>8<br>27<br>41<br>80       | 150<br>142<br>292<br>135<br>142<br>148<br>110<br>535<br>132<br>168<br>189<br>225<br>714 | 163  18 24 42  8 19 24 16 67 11 3 17 0 10 6 20 8 58                      | 526  66 67 133  51 57 57 52 217  18 29 19 17 83                  | 0<br>0<br>0<br>0<br>0<br>1<br>0<br>1<br>2<br>0<br>0<br>0<br>2 | 700<br>84<br>91<br>175<br>59<br>76<br>82<br>68<br>285<br>31<br>46<br>29<br>37<br>143 | 39<br>0<br>0<br>0<br>2<br>2<br>7<br>16<br>27<br>5<br>19<br>0<br>0<br>24                              | 2086  281 275 556  235 223 226 210 894  228 319 356 459 1362  497 518                                                  | 0<br>0<br>0<br>0<br>7<br>1<br>1<br>18<br>8<br>2<br>0<br>1                         | 2125<br>281<br>275<br>556<br>246<br>232<br>234<br>227<br>939<br>241<br>340<br>356<br>460<br>1397<br>498<br>518 | 21<br>28<br>49<br>29<br>22<br>30<br>9<br>90<br>13<br>19<br>0<br>0<br>32                      | 97<br>71<br>168<br>75<br>62<br>58<br>52<br>247<br>52<br>31<br>44<br>54<br>181<br>141<br>165 | 83<br>19<br>24<br>43<br>24<br>28<br>15<br>15<br>82<br>8<br>39<br>71<br>70<br>188<br>47<br>80                | 301<br>137<br>123<br>260<br>128<br>112<br>103<br>76<br>419<br>73<br>89<br>115<br>124<br>401<br>188<br>246 | 65<br>63<br>128<br>566<br>56<br>48<br>217<br>47<br>668<br>84<br>265            |
| 04:45 PM Total  ** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM 07:45 PM Total  08:00 PM 08:15 PM 08:30 PM 08:45 PM Total | 204 **  40 62 102 39 50 38 27 154 130 1 18 1 30 1 81 1 981                | 110<br>79<br>189<br>96<br>91<br>110<br>82<br>379<br>98<br>142<br>149<br>176<br>565<br>170<br>202<br>4036         | 0<br>1<br>1<br>0<br>1<br>0<br>1<br>2<br>4<br>8<br>27<br>41<br>80       | 150<br>142<br>292<br>135<br>142<br>148<br>110<br>535<br>132<br>168<br>189<br>225<br>714 | 163  18 24 42  8 19 24 16 67 11 3 17 0 10 6 20 1 58 2 53 2 41 8 754      | 526  66 67 133  51 57 57 52 217  18 29 19 17 83  13 25 2161      | 0<br>0<br>0<br>0<br>0<br>1<br>0<br>1<br>2<br>0<br>0<br>0<br>2 | 700  84 91 175 59 76 82 68 285 31 46 29 37 143                                       | 39<br>0<br>0<br>0<br>2<br>2<br>7<br>16<br>27<br>5<br>19<br>0<br>0<br>24<br>1<br>1<br>0<br>860        | 281<br>275<br>556<br>235<br>223<br>226<br>210<br>894<br>228<br>319<br>356<br>459<br>1362<br>497<br>518<br>8271         | 0<br>0<br>0<br>0<br>7<br>1<br>1<br>18<br>8<br>2<br>0<br>1<br>111<br>0<br>0<br>376 | 2125<br>281<br>275<br>556<br>246<br>232<br>234<br>227<br>939<br>241<br>340<br>356<br>460<br>1397               | 21<br>28<br>49<br>29<br>22<br>30<br>9<br>90<br>13<br>19<br>0<br>32<br>0<br>1<br>367          | 97 71 168 75 62 58 52 247 52 31 44 54 181 141 165 1617                                      | 83<br>19<br>24<br>43<br>24<br>28<br>15<br>15<br>82<br>8<br>39<br>71<br>70<br>188<br>47<br>80<br>665         | 301<br>137<br>123<br>260<br>128<br>112<br>103<br>76<br>419<br>73<br>89<br>115<br>124<br>401<br>188        |                                                                                |
| 04:45 PM Total  ** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM 07:45 PM Total  08:00 PM 08:15 PM 08:30 PM 08:45 PM Total | 204 **  40 62 102 39 50 38 27 154 130 1 18 1 13 1 8 1 69 1 11 1 981 1 7.8 | 110<br>79<br>189<br>96<br>91<br>110<br>82<br>379<br>98<br>142<br>149<br>176<br>565<br>170<br>202<br>4036<br>73.3 | 0<br>1<br>1<br>0<br>1<br>0<br>1<br>2<br>4<br>8<br>27<br>41<br>80<br>49 | 150<br>142<br>292<br>135<br>142<br>148<br>110<br>535<br>132<br>168<br>189<br>225<br>714 | 163  18 24 42  8 19 24 16 67 11 3 17 9 10 6 20 8 58 2 53 2 41 8 754 23.4 | 526  66 67 133  51 57 57 52 217  18 29 19 17 83  13 25 2161 67.1 | 0<br>0<br>0<br>0<br>0<br>1<br>0<br>1<br>2<br>0<br>0<br>0<br>2 | 700  84 91 175 59 76 82 68 285 31 46 29 37 143                                       | 39<br>0<br>0<br>0<br>2<br>2<br>7<br>16<br>27<br>5<br>19<br>0<br>0<br>24<br>1<br>1<br>0<br>860<br>9.0 | 281<br>275<br>556<br>235<br>223<br>226<br>210<br>894<br>228<br>319<br>356<br>459<br>1362<br>497<br>518<br>8271<br>87.0 | 0<br>0<br>0<br>0<br>7<br>1<br>1<br>18<br>8<br>2<br>0<br>1<br>111                  | 2125<br>281<br>275<br>556<br>246<br>232<br>234<br>227<br>939<br>241<br>340<br>356<br>460<br>1397<br>498<br>518 | 21<br>28<br>49<br>29<br>22<br>30<br>9<br>90<br>13<br>19<br>0<br>0<br>32<br>0<br>1367<br>13.9 | 97 71 168 75 62 58 52 247 52 31 44 54 181 141 165 1617 61.0                                 | 83<br>19<br>24<br>43<br>24<br>28<br>15<br>15<br>82<br>8<br>39<br>71<br>70<br>188<br>47<br>80<br>665<br>25.1 | 301<br>137<br>123<br>260<br>128<br>112<br>103<br>76<br>419<br>73<br>89<br>115<br>124<br>401<br>188<br>246 | 420<br>65<br>63<br>128<br>56<br>56<br>48<br>217<br>47<br>64<br>68<br>84<br>265 |

|                       |         |       | ROA ST. |               | JI       | EFFERS<br>West | ON BLV<br>bound | D             | - 70, 0 | FIGUER |      |               | JI    |      | ON BLVI | ).            |               |
|-----------------------|---------|-------|---------|---------------|----------|----------------|-----------------|---------------|---------|--------|------|---------------|-------|------|---------|---------------|---------------|
| Start Time            | Right   | Thru  | Left    | App.<br>Total | Right    | Thru           | Left            | App.<br>Total | Right   | Thru   |      | App.<br>Total | Right | Thru | Left    | App.<br>Total | Int.<br>Total |
| Peak Hour Fro         | m 02:00 | PM to | 04:45 1 | PM - Pea      | k 1 of 1 |                |                 |               |         |        |      |               |       |      |         |               |               |
| Intersection          | 02:00   | PM    |         |               |          |                |                 |               |         |        |      |               |       |      |         |               |               |
| Volume                | 205     | 872   | 127     | 1204          | 172      | 616            | 187             | 975           | 462     | 1103   | 344  | 1909          | 127   | 189  | 49      | 365           | 4453          |
| Percent               | 17.0    | 72.4  | 10.5    |               | 17.6     | 63.2           | 19.2            |               | 24.2    | 57.8   | 18.0 |               | 34.8  | 51.8 | 13.4    |               |               |
| 02:15<br>Volume       | 43      | 202   | 14      | 259           | 49       | 141            | 52              | 242           | 158     | 299    | 89   | 546           | 42    | 51   | 20      | 113           | 1160          |
| Peak Factor           |         |       |         |               |          |                |                 |               |         |        |      |               |       |      |         |               | 0.960         |
| High Int.             | 02:45   | PM    |         |               | 02:45    | PM             |                 |               | 02:15   | PM     |      |               | 02:15 | PM   |         |               |               |
| Volume<br>Peak Factor | 60      | 231   | 43      | 334<br>0.901  | 54       | 164            | 43              | 261<br>0.934  | 158     | 299    | 89   | 546<br>0.874  | 42    | 51   | 20      | 113<br>0.808  |               |

<< ACCUTEK >> << 21114 TRIGGER LANE >> << DIAMOND BAR, CA 91765 >> << (909) 595-6199 FAX: (909) 595-6022 >

CITY: N/S: E/W: CLIENT:

File Name : 319602 Site Code: 00319602 Start Date: 11/30/2002 Page No: 2

|                 |         | FIGUE   | ROA ST. |               | J        | EFFERS | ON BLVI | o. :          |       | FIGUER | OA ST. |               | Ji    | EFFERS | ON BLVI | 5.         |               |
|-----------------|---------|---------|---------|---------------|----------|--------|---------|---------------|-------|--------|--------|---------------|-------|--------|---------|------------|---------------|
|                 |         | South   | bound   |               |          | West   | bound   | ;             |       | North  | bound  |               |       | East   | bound   |            |               |
| Start Time      | Right   | Thru    | Left    | App.<br>Total | Right    | Thru   | Left    | App.<br>Total | Right | Thru   | Left   | App.<br>Total | Right | Thru   | Left    | App. Total | Int.<br>Total |
| Peak Hour Fro   | m 06:30 | ) PM to | 09:15   | PM - Pea      | k 1 of 1 |        |         |               |       |        |        |               |       |        |         |            |               |
| Intersection    | 08:30   | PM      |         |               |          |        |         | :             |       |        |        |               |       |        |         | :          |               |
| Volume          | 35      | 697     | 166     | 898           | 124      | 74     | 0       | 198           | 1     | 1830   | 1      | 1832          | 1     | 404    | 268     | 673        | 3601          |
| Percent         | 3.9     | 77.6    | 18.5    |               | 62.6     | 37.4   | 0.0     |               | 0.1   | 99.9   | 0.1    |               | 0.1   | 60.0   | 39.8    |            |               |
| 09:15<br>Volume | 11      | 202     | 49      | 262           | 41       | 25     | 0       | 66            | 0     | 518    | 0      | 518           | 1     | 165    | 80      | 246        | 1092          |
| Peak Factor     |         |         |         |               |          |        |         |               |       |        |        |               |       |        |         |            | 0.824         |
| High Int.       | 09:15   | PM      |         |               | 09:00    | PM     |         |               | 09:15 | PM     |        |               | 09:15 | PM     |         |            |               |
| Volume          | 11      | 202     | 49      | 262           | 53       | 13     | 0       | 66            | 0     | 518    | 0      | 518           | 1     | 165    | 80      | 246        |               |
| Peak Factor     |         |         |         | 0.857         |          |        |         | 0.750         |       |        |        | 0.884         |       |        |         | 0.684      |               |

CITY: N/S: EW: CLIENT:

#### << ACCUTEK >> << 21114 TRIGGER LANE >> << DIAMOND BAR, CA 91765 >> << (909) 595-6199 FAX: (909) 595-6022 >

File Name : 319603 Site Code : 00319603 Start Date : 11/30/2002

Page No : 1

Groups Printed- Turning Movement

|                                                                                                                                                      |                                                   | FLOW!<br>South!                                                                                |                                                |                                                                               | E                                                                                           | KPOSITIC<br>Westb                                                                                 |                                                                                | D.                                                                               |                                           | 110 OFF<br>UTHBO<br>Northb<br>Northb                                                          | UND(no:<br>ound)                            |                                                                                                | E                                                                  | (POSITI<br>Eastb                               | ON BLV<br>ound                                      | D .                                       |                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Start Time                                                                                                                                           |                                                   |                                                                                                | Left                                           | App.<br>Total                                                                 | Right                                                                                       | Thru                                                                                              | Left                                                                           | App.<br>Total F                                                                  | Right !                                   | Thru                                                                                          | Left                                        | App.<br>Total                                                                                  | Right                                                              | !                                              | Left                                                | App.<br>Total                             | Int.<br>Total                                                                                          |
| Factor                                                                                                                                               | 1.0                                               | 1.0                                                                                            | 1.0                                            |                                                                               | 1.0                                                                                         | 1.0                                                                                               | 1.0                                                                            |                                                                                  | 1.0 +                                     | 1.0                                                                                           | 1.0                                         | <u> </u>                                                                                       | 1.0                                                                | 1.0                                            | 1.0                                                 |                                           |                                                                                                        |
| 02:00 PM                                                                                                                                             | 133                                               | 52                                                                                             | 0                                              | 185                                                                           | 0                                                                                           | 112                                                                                               | 13                                                                             | 125                                                                              | 0                                         | 126                                                                                           | 37                                          | 163                                                                                            | 0                                                                  | 0                                              | 0                                                   | 0 -                                       | 473                                                                                                    |
| 02:15 PM                                                                                                                                             | 94                                                | 38                                                                                             | 0                                              | 132                                                                           | 0                                                                                           | 116                                                                                               | 15                                                                             | 131                                                                              | 0                                         | 141                                                                                           | 54                                          | 195                                                                                            | 0                                                                  | 0                                              | 0                                                   | 0                                         | 458                                                                                                    |
| 02:30 PM                                                                                                                                             | 107                                               | 81                                                                                             | 1                                              | 189                                                                           | 0                                                                                           | 77                                                                                                | 7                                                                              | 84                                                                               | 0                                         | 160                                                                                           | 42                                          | 202                                                                                            | 0                                                                  | 0                                              | 0                                                   | 0                                         | 475                                                                                                    |
| 02:45 PM                                                                                                                                             | 70                                                | 40                                                                                             | 0                                              | 110 '                                                                         | 0                                                                                           | 45                                                                                                | 14                                                                             | 59                                                                               | 0                                         | 159                                                                                           | 35                                          | 194                                                                                            | 0_                                                                 | 0                                              | 00                                                  | 0                                         | 363                                                                                                    |
| Total                                                                                                                                                | 404                                               | 211                                                                                            | 1                                              | 616                                                                           | 0                                                                                           | 350                                                                                               | 49                                                                             | 399                                                                              | 0                                         | 586                                                                                           | 168                                         | 754                                                                                            | 0                                                                  | 0                                              | 0                                                   | 0                                         | 1769                                                                                                   |
| 03:00 PM                                                                                                                                             | 62                                                | 78                                                                                             | 0                                              | 140                                                                           | 0                                                                                           | 78                                                                                                | 9                                                                              | 87                                                                               | 0                                         | 138                                                                                           | 26                                          | 164                                                                                            | 0                                                                  | 0                                              | 0                                                   | 0                                         | 391                                                                                                    |
| 03:15 PM                                                                                                                                             | 56                                                | 61                                                                                             | 0                                              | 117                                                                           | 0                                                                                           | 86                                                                                                | 12                                                                             | 98                                                                               | 0                                         | 152                                                                                           | 36                                          | 188                                                                                            | 0                                                                  | 0                                              | 0                                                   | 0 -                                       | 403                                                                                                    |
| 03:30 PM                                                                                                                                             | 41                                                | 58                                                                                             | 1                                              | 100                                                                           | 1                                                                                           | 64                                                                                                | 6                                                                              | 71                                                                               | 0                                         | 157                                                                                           | 32                                          | 189                                                                                            | 0                                                                  | 0                                              | 0                                                   | 0                                         | 360                                                                                                    |
| 03:45 PM                                                                                                                                             | 35                                                | 32                                                                                             | 1                                              | 68                                                                            | 0                                                                                           | 73                                                                                                | 11                                                                             | 84                                                                               | 0                                         | 126                                                                                           | 39                                          | 165                                                                                            | 0                                                                  | 0                                              | 0                                                   | 0                                         | 317                                                                                                    |
| Total                                                                                                                                                | 194                                               | 229                                                                                            | 2                                              | 425                                                                           | 1                                                                                           | 301                                                                                               | 38                                                                             | 340                                                                              | 0                                         | 573                                                                                           | 133                                         | 706                                                                                            | 0                                                                  | 0                                              | 0                                                   | 0                                         | 1471                                                                                                   |
| 04:00 PM                                                                                                                                             | 69                                                | 51                                                                                             | 1                                              | 121                                                                           | 0                                                                                           | 70                                                                                                | 18                                                                             | 88                                                                               | 0                                         | 151                                                                                           | 35                                          | 186                                                                                            | 0                                                                  | 0                                              | 0                                                   | 0                                         | 395                                                                                                    |
| 04:15 PM                                                                                                                                             | 49                                                | 73                                                                                             | Ô                                              | 122                                                                           | -                                                                                           | 102                                                                                               | 13                                                                             | 115                                                                              | 0                                         | 206                                                                                           | 36                                          | 242                                                                                            | 0                                                                  | 0                                              | 0                                                   | 0 -                                       | 479                                                                                                    |
| 04:30 PM                                                                                                                                             | 103                                               | 69                                                                                             | ő                                              | 172                                                                           |                                                                                             | 98                                                                                                | 14                                                                             | 112                                                                              | 0                                         | 159                                                                                           | 38                                          | 197                                                                                            | 0                                                                  | 0                                              | 0                                                   | 0                                         | 481                                                                                                    |
|                                                                                                                                                      | 74                                                | 36                                                                                             | 3                                              | 113                                                                           | 0                                                                                           | 66                                                                                                | 10                                                                             | 76                                                                               | 0                                         | 130                                                                                           | 40                                          | 170                                                                                            | 0                                                                  | 0                                              | 0                                                   | 0                                         | 359                                                                                                    |
| U4:43 P(V)                                                                                                                                           |                                                   |                                                                                                |                                                | 117                                                                           |                                                                                             | - 00                                                                                              | 10                                                                             | , 0                                                                              | •                                         | 130                                                                                           | ער                                          | 1/0:                                                                                           | U                                                                  | U                                              |                                                     | U :                                       |                                                                                                        |
| 04:45 PM<br>Total<br>** BREAK **                                                                                                                     | 295                                               | 229                                                                                            | 4                                              | 528                                                                           | , 0                                                                                         | 336                                                                                               | 55                                                                             | 391                                                                              | 0                                         | 646                                                                                           | 149                                         | 795                                                                                            | 0                                                                  | 0                                              | 0                                                   | 0                                         | 1714                                                                                                   |
| Total<br>** BREAK **<br>06:30 PM                                                                                                                     | 295<br>*<br>46                                    | 229<br>24                                                                                      | 0                                              | 528 ;<br>70                                                                   | 0                                                                                           | 54                                                                                                | 1                                                                              | 55                                                                               | 0                                         | 78                                                                                            | 8                                           | 86                                                                                             | 0                                                                  | 0                                              | 0                                                   | 0                                         | 211                                                                                                    |
| Total<br>** BREAK **<br>06:30 PM<br>06:45 PM                                                                                                         | 295<br>*<br>46<br>40                              | 229<br>24<br>21                                                                                | 0                                              | 528<br>70<br>61                                                               | 0<br>0                                                                                      | 54<br>50                                                                                          | 1<br>3                                                                         | 55<br>53                                                                         | 0                                         | 78<br>87                                                                                      | 8<br>9                                      | 86<br>96                                                                                       | 0                                                                  | 0<br>0                                         | 0                                                   | 0<br>0                                    | 211<br>210                                                                                             |
| Total<br>** BREAK **<br>06:30 PM<br>06:45 PM<br>Total                                                                                                | 295<br>*<br>46                                    | 229<br>24                                                                                      | 0                                              | 528 ;<br>70                                                                   | 0                                                                                           | 54                                                                                                | 1                                                                              | 55                                                                               | 0                                         | 78                                                                                            | 8                                           | 86                                                                                             | 0                                                                  | 0                                              | 0                                                   | 0                                         | 211                                                                                                    |
| Total ** BREAK ** 06:30 PM 06:45 PM Total 07:00 PM                                                                                                   | 295<br>*<br>46<br>40<br>86<br>24                  | 229<br>24<br>21<br>45                                                                          | 0<br>0<br>0                                    | 70<br>61<br>131<br>43                                                         | 0<br>0                                                                                      | 54<br>50                                                                                          | 1<br>3                                                                         | 55<br>53<br>108                                                                  | 0                                         | 78<br>87                                                                                      | 8<br>9                                      | 86<br>96<br>182                                                                                | 0 0 0                                                              | 0 0                                            | 0<br>0<br>0                                         | 0<br>0<br>0                               | 211<br>210<br>421<br>213                                                                               |
| Total ** BREAK ** 06:30 PM 06:45 PM Total 07:00 PM 07:15 PM                                                                                          | 295<br>*<br>46<br>40<br>86<br>24<br>42            | 229<br>24<br>21<br>45<br>19<br>20                                                              | 0<br>0<br>0                                    | 70<br>61<br>131<br>43<br>62                                                   | 0<br>0<br>0                                                                                 | 54<br>50<br>104<br>65<br>56                                                                       | 1<br>3<br>4<br>6<br>2                                                          | 55<br>53<br>108<br>71<br>58                                                      | 0<br>0<br>0                               | 78<br>87<br>165<br>80<br>87                                                                   | 8<br>9<br>17<br>19<br>10                    | 86<br>96<br>182<br>99<br>97                                                                    | 0 0 0                                                              | 0 0 0                                          | 0<br>0<br>0                                         | 0<br>0<br>0                               | 211<br>210<br>421<br>213<br>217                                                                        |
| Total  ** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM                                                                              | 295<br>*<br>46<br>40<br>86<br>24<br>42<br>28      | 229<br>24<br>21<br>45<br>19<br>20<br>20                                                        | 0<br>0<br>0<br>0                               | 70<br>61<br>131<br>43<br>62<br>48                                             | 0<br>0<br>0                                                                                 | 54<br>50<br>104<br>65<br>56<br>55                                                                 | 1<br>3<br>4<br>6<br>2<br>6                                                     | 55<br>53<br>108<br>71<br>58<br>61;                                               | 0<br>0<br>0                               | 78<br>87<br>165<br>80<br>87<br>54                                                             | 8<br>9<br>17<br>19<br>10<br>13              | 86<br>96<br>182<br>99<br>97<br>67                                                              | 0 0 0                                                              | 0<br>0<br>0                                    | 0<br>0<br>0<br>0                                    | 0<br>0<br>0                               | 211<br>210<br>421<br>213<br>217<br>176                                                                 |
| Total  ** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM 07:45 PM                                                                     | 295<br>*  46<br>40<br>86<br>24<br>42<br>28<br>42  | 229<br>24<br>21<br>45<br>19<br>20<br>20<br>12                                                  | 0<br>0<br>0<br>0<br>0                          | 70<br>61<br>131<br>43<br>62<br>48<br>54                                       | 0<br>0<br>0<br>0<br>0<br>0                                                                  | 54<br>50<br>104<br>65<br>56<br>55<br>57                                                           | 1<br>3<br>4<br>6<br>2<br>6<br>0                                                | 55<br>53<br>108<br>71<br>58<br>61:<br>57                                         | 0<br>0<br>0<br>0<br>0                     | 78<br>87<br>165<br>80<br>87<br>54<br>61                                                       | 8<br>9<br>17<br>19<br>10<br>13<br>10        | 86<br>96<br>182<br>99<br>97<br>67<br>71                                                        | 0<br>0<br>0                                                        | 0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0                               | 211<br>210<br>421<br>213<br>217<br>176<br>182                                                          |
| Total  ** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM                                                                              | 295<br>*<br>46<br>40<br>86<br>24<br>42<br>28      | 229<br>24<br>21<br>45<br>19<br>20<br>20                                                        | 0<br>0<br>0<br>0                               | 70<br>61<br>131<br>43<br>62<br>48                                             | 0<br>0<br>0<br>0<br>0<br>0                                                                  | 54<br>50<br>104<br>65<br>56<br>55                                                                 | 1<br>3<br>4<br>6<br>2<br>6                                                     | 55<br>53<br>108<br>71<br>58<br>61;                                               | 0<br>0<br>0                               | 78<br>87<br>165<br>80<br>87<br>54                                                             | 8<br>9<br>17<br>19<br>10<br>13              | 86<br>96<br>182<br>99<br>97<br>67                                                              | 0<br>0<br>0                                                        | 0<br>0<br>0                                    | 0<br>0<br>0<br>0                                    | 0<br>0<br>0                               | 211<br>210<br>421<br>213<br>217<br>176                                                                 |
| Total  ** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM 07:45 PM                                                                     | 295<br>*  46<br>40<br>86<br>24<br>42<br>28<br>42  | 229<br>24<br>21<br>45<br>19<br>20<br>20<br>12                                                  | 0<br>0<br>0<br>0<br>0                          | 70<br>61<br>131<br>43<br>62<br>48<br>54                                       | 0<br>0<br>0<br>0<br>0<br>0                                                                  | 54<br>50<br>104<br>65<br>56<br>55<br>57                                                           | 1<br>3<br>4<br>6<br>2<br>6<br>0                                                | 55<br>53<br>108<br>71<br>58<br>61:<br>57                                         | 0<br>0<br>0<br>0<br>0                     | 78<br>87<br>165<br>80<br>87<br>54<br>61                                                       | 8<br>9<br>17<br>19<br>10<br>13<br>10        | 86<br>96<br>182<br>99<br>97<br>67<br>71                                                        | 0<br>0<br>0                                                        | 0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0                               | 211<br>210<br>421<br>213<br>217<br>176<br>182                                                          |
| Total  ** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM 07:45 PM Total                                                               | *  46 40 86 24 42 28 42 136                       | 229<br>24<br>21<br>45<br>19<br>20<br>20<br>12<br>71                                            | 0<br>0<br>0<br>0<br>0<br>0                     | 70<br>61<br>131<br>43<br>62<br>48<br>54<br>207                                | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | 54<br>50<br>104<br>65<br>56<br>55<br>57<br>233                                                    | 1<br>3<br>4<br>6<br>2<br>6<br>0                                                | 55<br>53<br>108<br>71<br>58<br>61:<br>57<br>247                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0           | 78<br>87<br>165<br>80<br>87<br>54<br>61<br>282                                                | 8<br>9<br>17<br>19<br>10<br>13<br>10        | 86<br>96<br>182<br>99<br>97<br>67<br>71<br>334                                                 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                            | 0<br>0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0<br>0<br>0           | 211<br>210<br>421<br>213<br>217<br>176<br>182<br>788                                                   |
| Total  ** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM 07:45 PM Total  08:00 PM 08:15 PM 08:30 PM                                   | 295  *  46 40 86 24 42 28 42 136 39               | 229<br>24<br>21<br>45<br>19<br>20<br>20<br>12<br>71<br>20                                      | 0<br>0<br>0<br>0<br>0<br>0<br>0                | 70<br>61<br>131<br>43<br>62<br>48<br>54<br>207                                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                        | 54<br>50<br>104<br>65<br>56<br>55<br>57<br>233                                                    | 1<br>3<br>4<br>6<br>2<br>6<br>0<br>14                                          | 55<br>53<br>108<br>71<br>58<br>61:<br>57<br>247                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0           | 78<br>87<br>165<br>80<br>87<br>54<br>61<br>282                                                | 8<br>9<br>17<br>19<br>10<br>13<br>10<br>52  | 86<br>96<br>182<br>99<br>97<br>67<br>71<br>334                                                 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                            | 0<br>0<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0<br>0<br>0           | 211<br>210<br>421<br>213<br>217<br>176<br>182<br>788                                                   |
| Total  ** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM 07:45 PM Total  08:00 PM 08:15 PM                                            | *  46 40 86 24 42 28 42 136 39 43                 | 229<br>24<br>21<br>45<br>19<br>20<br>20<br>12<br>71<br>20<br>23                                | 0<br>0<br>0<br>0<br>0<br>0<br>0                | 70<br>61<br>131<br>43<br>62<br>48<br>54<br>207<br>59<br>66                    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                        | 54<br>50<br>104<br>65<br>56<br>55<br>57<br>233<br>42<br>40<br>31                                  | 1<br>3<br>4<br>6<br>2<br>6<br>0<br>14<br>3<br>11                               | 55<br>53<br>108<br>71<br>58<br>61:<br>57<br>247                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0           | 78<br>87<br>165<br>80<br>87<br>54<br>61<br>282<br>67<br>94                                    | 8 9 17 19 10 13 10 52 10 11 15 16           | 86<br>96<br>182<br>99<br>97<br>67<br>71<br>334<br>77<br>105                                    | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                            | 0<br>0<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 211<br>210<br>421<br>213<br>217<br>176<br>182<br>788<br>181<br>222<br>362<br>412                       |
| Total  ** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM 07:45 PM Total  08:00 PM 08:15 PM 08:30 PM                                   | *  46 40 86 24 42 28 42 136 39 43 35              | 229<br>24<br>21<br>45<br>19<br>20<br>20<br>12<br>71<br>20<br>23<br>54                          | 0<br>0<br>0<br>0<br>0<br>0<br>0                | 70<br>61<br>131<br>43<br>62<br>48<br>54<br>207<br>59<br>66<br>89              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | 54<br>50<br>104<br>65<br>56<br>55<br>57<br>233<br>42<br>40<br>31<br>55                            | 1<br>3<br>4<br>6<br>2<br>6<br>0<br>14<br>3<br>11<br>34                         | 55<br>53<br>108<br>71<br>58<br>61:<br>57<br>247<br>45:<br>51;<br>65              | 0<br>0<br>0<br>0<br>0<br>0<br>0           | 78<br>87<br>165<br>80<br>87<br>54<br>61<br>282<br>67<br>94<br>193                             | 8 9 17 19 10 13 10 52 10 11 15              | 86<br>96<br>182<br>99<br>97<br>67<br>71<br>334<br>77<br>105<br>208                             | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0<br>0<br>0           | 211<br>210<br>421<br>213<br>217<br>176<br>182<br>788<br>181<br>222<br>362                              |
| Total  ** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM 07:45 PM Total  08:00 PM 08:15 PM 08:15 PM 08:30 PM 08:45 PM                 | 295  *  46 40 86  24 42 28 42 136  39 43 35 44    | 229<br>24<br>21<br>45<br>19<br>20<br>20<br>12<br>71<br>20<br>23<br>54<br>37                    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 70<br>61<br>131<br>43<br>62<br>48<br>54<br>207<br>59<br>66<br>89<br>81        | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | 54<br>50<br>104<br>65<br>56<br>55<br>57<br>233<br>42<br>40<br>31<br>55<br>168                     | 1<br>3<br>4<br>6<br>2<br>6<br>0<br>14<br>3<br>11<br>34<br>22                   | 55<br>53<br>108<br>71<br>58<br>61:<br>57<br>247<br>45:<br>51;<br>65<br>77        | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 78<br>87<br>165<br>80<br>87<br>54<br>61<br>282<br>67<br>94<br>193<br>238                      | 8 9 17 19 10 13 10 52 10 11 15 16           | 86<br>96<br>182<br>99<br>97<br>67<br>71<br>334<br>77<br>105<br>208<br>254                      | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 211<br>210<br>421<br>213<br>217<br>176<br>182<br>788<br>181<br>222<br>362<br>412<br>1177               |
| Total  ** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM 07:45 PM Total  08:00 PM 08:15 PM 08:30 PM 08:30 PM 08:45 PM Total           | *  46 40 86 24 42 28 42 136 39 43 35 44 161 63 63 | 229<br>24<br>21<br>45<br>19<br>20<br>20<br>12<br>71<br>20<br>23<br>54<br>37<br>134             | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 70<br>61<br>131<br>43<br>62<br>48<br>54<br>207<br>59<br>66<br>89<br>81<br>295 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                              | 54<br>50<br>104<br>65<br>56<br>55<br>57<br>233<br>42<br>40<br>31<br>55<br>168                     | 1<br>3<br>4<br>6<br>2<br>6<br>0<br>14<br>3<br>11<br>34<br>22                   | 55<br>53<br>108<br>71<br>58<br>61:<br>57<br>247<br>45:<br>51;<br>65<br>77<br>238 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 78<br>87<br>165<br>80<br>87<br>54<br>61<br>282<br>67<br>94<br>193<br>238<br>592               | 8 9 17 19 10 13 10 52 10 11 15 16 52        | 86<br>96<br>182<br>99<br>97<br>67<br>71<br>334<br>77<br>105<br>208<br>254<br>644               | 0 0 0 0 0 0 0 0 0 0 0 0                                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 211<br>210<br>421<br>213<br>217<br>176<br>182<br>788<br>181<br>222<br>362<br>412                       |
| Total  ** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM 07:45 PM Total  08:00 PM 08:15 PM 08:30 PM 08:15 PM 08:30 PM 08:45 PM Total  | *  46 40 86 24 42 28 42 136 39 43 35 44 161 63 63 | 229<br>24<br>21<br>45<br>19<br>20<br>20<br>12<br>71<br>20<br>23<br>54<br>37<br>134             | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 70<br>61<br>131<br>43<br>62<br>48<br>54<br>207<br>59<br>66<br>89<br>81<br>295 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 54<br>50<br>104<br>65<br>56<br>55<br>57<br>233<br>42<br>40<br>31<br>55<br>168                     | 1<br>3<br>4<br>6<br>2<br>6<br>0<br>14<br>3<br>11<br>34<br>22<br>70<br>28       | 55<br>53<br>108<br>71<br>58<br>61:<br>57<br>247<br>45:<br>51;<br>65<br>77<br>238 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 78<br>87<br>165<br>80<br>87<br>54<br>61<br>282<br>67<br>94<br>193<br>238<br>592               | 8 9 17 19 10 13 10 52 10 15 16 52 20 10 601 | 86<br>96<br>182<br>99<br>97<br>67<br>71<br>334<br>77<br>105<br>208<br>254<br>644               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 211<br>210<br>421<br>213<br>217<br>176<br>182<br>788<br>181<br>222<br>362<br>412<br>1177               |
| Total  ** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM 07:45 PM Total  08:00 PM 08:15 PM 08:30 PM 08:45 PM Total  09:00 PM 09:15 PM | *  46 40 86 24 42 28 42 136 39 43 35 44 161 63 63 | 229<br>24<br>21<br>45<br>19<br>20<br>20<br>12<br>71<br>20<br>23<br>54<br>37<br>134<br>24<br>36 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 70<br>61<br>131<br>43<br>62<br>48<br>54<br>207<br>59<br>66<br>89<br>81<br>295 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 54<br>50<br>104<br>65<br>56<br>55<br>57<br>233<br>42<br>40<br>31<br>55<br>168<br>39<br>42<br>1573 | 1<br>3<br>4<br>6<br>2<br>6<br>0<br>14<br>3<br>11<br>34<br>22<br>70<br>28<br>24 | 55<br>53<br>108<br>71<br>58<br>61:<br>57<br>247<br>45:<br>51;<br>65<br>77<br>238 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 78<br>87<br>165<br>80<br>87<br>54<br>61<br>282<br>67<br>94<br>193<br>238<br>592<br>253<br>270 | 8 9 17 19 10 13 10 52 10 11 15 16 52 20 10  | 86<br>96<br>182<br>99<br>97<br>67<br>71<br>334<br>77<br>105<br>208<br>254<br>644<br>273<br>280 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 211<br>210<br>421<br>213<br>217<br>176<br>182<br>788<br>181<br>222<br>362<br>412<br>1177<br>427<br>445 |

|                 | !<br>!  |       | ER ST.  |               | E        |      | ION BLV<br>bound | D.            |       |      |      |               | E      |       | ION BLV | /D :          |               | Ð         |
|-----------------|---------|-------|---------|---------------|----------|------|------------------|---------------|-------|------|------|---------------|--------|-------|---------|---------------|---------------|-----------|
| Start Time      | Right   | Thru  | Left    | App.<br>Total | Right    | Thru | Left             | App.<br>Total | Right | Thru | Left | App.<br>Total | Right  | Thru  | Left    | App.<br>Total | Int.<br>Total |           |
| Peak Hour Fro   | m 02:00 | PM to | 04:45 F | M - Pea       | k 1 of 1 |      |                  |               |       |      |      |               |        |       |         |               |               | v 0°      |
| Intersection    | 02:00   | PM    |         |               |          |      |                  |               |       |      |      |               |        |       |         |               |               |           |
| Volume          | 404     | 211   | 1       | 616           | 0        | 350  | 49               | 399           | 0     | 586  | 168  | 754           | 0      | 0     | 0       | 0             | 1769          | ٠.        |
| Percent         | 65.6    | 34.3  | 0.2     |               | 0.0      | 87.7 | 12.3             |               | 0.0   | 77.7 | 22.3 |               | 0.0    | 0.0   | 0.0     |               |               |           |
| 02:30<br>Volume | 107     | 81    | 1       | 189           | 0        | 77   | 7                | 84            | 0     | 160  | 42   | 202           | 0      | 0     | 0       | 0             | 475           | 90.09<br> |
| Peak Factor     |         |       |         |               |          |      |                  |               |       |      |      |               | •      |       |         |               | 0.931         | 6.9       |
| High Int.       | 02:30   | PM    |         |               | 02:15    | PM   |                  |               | 02:30 | PM   |      |               | 1:45:0 | 00 PM |         |               |               |           |
| Volume          | 107     | 81    | 1       | 189           | . 0      | 116  | 15               | 131           | ; 0   | 160  | 42   | 202           | •      |       |         |               |               |           |
| Peak Factor     |         |       |         | 0.815         |          |      |                  | 0.761         |       |      |      | 0.933         | i      |       |         |               |               | W. 26     |
|                 |         |       |         |               |          |      |                  |               |       |      |      |               |        |       |         |               |               | 400.00    |

<< ACCUTEK >> << 21114 TRIGGER LANE >> << DIAMOND BAR, CA 91765 >> << (909) 595-6199 FAX: (909) 595-6022 >

CITY: N/S: E/W: CLIENT:

File Name : 319603 Site Code : 00319603 Start Date : 11/30/2002 Page No : 2

|                 |         | FLOW<br>South |         |               | E        |      | ION BLV<br>bound | D.            | -     | OUTHBC<br>Northb | F RAMP<br>OUND(no<br>cound)<br>bound | \$            | E     | XPOSITI<br>Eastb |      | )             |               |
|-----------------|---------|---------------|---------|---------------|----------|------|------------------|---------------|-------|------------------|--------------------------------------|---------------|-------|------------------|------|---------------|---------------|
| Start Time      | Right   | Thru:         | Left    | App.<br>Total | Right    | Thru | Left             | App.<br>Total | Right | Thru             | Left                                 | App.<br>Total | Right | Thru             | Left | App.<br>Total | Int.<br>Total |
| Peak Hour Fro   | m 06:30 | PM to         | 09:15 P | M - Pea       | k 1 of 1 |      |                  |               |       |                  |                                      |               |       |                  |      |               |               |
| Intersection    | 08:301  | PM            |         |               |          |      |                  |               |       |                  |                                      |               |       |                  |      |               |               |
| Volume          | 205     | 151           | 0       | 356           | 0        | 167  | 108              | 275           | 0     | 954              | 61                                   | 1015          | 0     | 0                | 0    | 0             | 1646          |
| Percent         | 57.6    | 42.4          | 0.0     |               | 0.0      | 60.7 | 39.3             |               | 0.0   | 94.0             | 6.0                                  |               | 0.0   | 0.0              | 0.0  |               |               |
| 09:15<br>Volume | 63      | 36            | 0       | 99            | 0        | 42   | 24               | 66            | 0     | 270              | 10                                   | 280           | 0     | 0                | 0    | 0             | 445           |
| Peak Factor     |         |               |         |               |          |      |                  |               |       |                  |                                      |               |       |                  |      |               | 0.925         |
| High Int.       | 09:15   | PM            |         |               | 08:45    | PM   |                  |               | 09:15 | PM               |                                      |               |       |                  |      |               |               |
| Volume          | 63      | 36            | 0       | 99            | : 0      | 55   | 22               | 77            | 0     | 270              | 10                                   | 280           |       |                  |      |               |               |
| Peak Factor     |         |               |         | 0.899         |          |      |                  | 0.893         |       |                  |                                      | 0.906         | :     |                  |      |               |               |

CITY: N/S: EW: CLIENT:

## << ACCUTEK >> << 21114 TRIGGER LANE >> << DIAMOND BAR, CA 91765 >> << (909) 595-6199 FAX: (909) 595-6022 >

File Name : 319605 Site Code : 00319605 Start Date : 11/30/2002 Page No : 1

|                                                                                                                                                            |                                                            |                                                                               |                                                                                         |                                                                                       |                                                                                              | Gr                                                                      | oups Prin                                                            | stad. Tur                                                                                      | nina Ma                                                                           | vomont                                                                                                |                                                                         |                                                                                                       |                                                                      |                                                                                     | •                                                                                  | No : 1                                                                         |                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|                                                                                                                                                            |                                                            |                                                                               | ROA ST.<br>Ibound                                                                       |                                                                                       | E                                                                                            | XPOSITI                                                                 |                                                                      |                                                                                                | ming wo                                                                           | FIGUE                                                                                                 | ROA ST.<br>bound                                                        |                                                                                                       | E                                                                    | XPOSITI<br>Eastb                                                                    |                                                                                    | D.                                                                             |                                                                                           |
| Start Time                                                                                                                                                 | Right                                                      | Thru                                                                          | Left                                                                                    | App.<br>Total                                                                         | Right                                                                                        | Thru                                                                    | Left                                                                 | App.<br>Total                                                                                  | Right                                                                             | Thru                                                                                                  | Left :                                                                  | App. i                                                                                                | Right                                                                | Thru :                                                                              | Left                                                                               | App.<br>Total                                                                  | Int.<br>Total                                                                             |
| Factor                                                                                                                                                     | 1.0                                                        | 1.0                                                                           | 1.0                                                                                     |                                                                                       | 1.0                                                                                          | 1.0                                                                     | 1.0                                                                  |                                                                                                | 1.0                                                                               | 1.0                                                                                                   | 1.0                                                                     |                                                                                                       | 1.0                                                                  | 1.0                                                                                 | 1.0                                                                                | · otai                                                                         | Total                                                                                     |
| 02:00 PM                                                                                                                                                   | 90                                                         | 197                                                                           | 36                                                                                      | 323                                                                                   | 96                                                                                           | 198                                                                     | 0                                                                    | 294                                                                                            | 13                                                                                | 310                                                                                                   | 0                                                                       | 323                                                                                                   | 20                                                                   | 56                                                                                  | 48                                                                                 | 124                                                                            | 1064                                                                                      |
| 02:15 PM                                                                                                                                                   | 139                                                        | 168                                                                           | 36                                                                                      | 343                                                                                   | 97                                                                                           | 181                                                                     | 0                                                                    | 278                                                                                            | 12                                                                                | 306                                                                                                   | 0                                                                       | 318                                                                                                   | 31                                                                   | 106                                                                                 | 50                                                                                 | 187                                                                            | 1126                                                                                      |
| 02:30 PM                                                                                                                                                   | 54                                                         | 179                                                                           | 33                                                                                      | 266                                                                                   | 123                                                                                          | 127                                                                     | 2                                                                    | 252                                                                                            | 25                                                                                | 270                                                                                                   | 0                                                                       | 295                                                                                                   | 26                                                                   | 84                                                                                  | 43                                                                                 | 153                                                                            | 966                                                                                       |
| 02:45 PM                                                                                                                                                   | 4                                                          | 182                                                                           | 29                                                                                      | 215                                                                                   | 109                                                                                          | 10                                                                      | 6                                                                    | 125                                                                                            | 35                                                                                | 273                                                                                                   | 1                                                                       | 309                                                                                                   | 26                                                                   | 89                                                                                  | 23                                                                                 | 138                                                                            | 787                                                                                       |
| Total                                                                                                                                                      | 287                                                        | 726                                                                           | 134                                                                                     | 1147                                                                                  | 425                                                                                          | 516                                                                     | 8                                                                    | 949                                                                                            | 85                                                                                | 1159                                                                                                  | 1                                                                       | 1245                                                                                                  | 103                                                                  | 335                                                                                 | 164                                                                                | 602                                                                            | 3943                                                                                      |
| 03:00 PM                                                                                                                                                   | 1                                                          | 176                                                                           | 23                                                                                      | 200                                                                                   | 176                                                                                          | 4                                                                       | 9                                                                    | 189                                                                                            | 25                                                                                | 160                                                                                                   | 1                                                                       | 186                                                                                                   | 12                                                                   | 102                                                                                 | 28                                                                                 | 142                                                                            | 747                                                                                       |
| 03:15 PM                                                                                                                                                   | 0                                                          | 196                                                                           | 39                                                                                      | 235                                                                                   | 168                                                                                          | 5                                                                       | ő                                                                    | 173                                                                                            | 15                                                                                | 179                                                                                                   | 1                                                                       | 195                                                                                                   | 12                                                                   | 79                                                                                  | 30                                                                                 | 121                                                                            | 717                                                                                       |
| 03:30 PM                                                                                                                                                   | 0                                                          | 175                                                                           | 50                                                                                      | 225                                                                                   | 149                                                                                          | 2                                                                       | 1                                                                    | 152                                                                                            | 15                                                                                | 140                                                                                                   | 1                                                                       | 156                                                                                                   | 10                                                                   | 76                                                                                  | 24                                                                                 | 110                                                                            | 724                                                                                       |
| 03:45 PM                                                                                                                                                   | 4                                                          | 226                                                                           | 44                                                                                      | 274                                                                                   | 149                                                                                          | 5                                                                       | Ô                                                                    | 154                                                                                            | 17                                                                                | 184                                                                                                   | 0                                                                       | 201                                                                                                   | 6                                                                    | 97                                                                                  | 32                                                                                 | 135                                                                            | 643                                                                                       |
| Total                                                                                                                                                      | 5                                                          | 773                                                                           | 156                                                                                     | 934                                                                                   | 642                                                                                          | 16                                                                      | 10                                                                   | 668                                                                                            | 72                                                                                | 663                                                                                                   | 3                                                                       | 738                                                                                                   | 40                                                                   | 354                                                                                 | 114                                                                                | 508                                                                            | 764<br>2848                                                                               |
| 04:00 PM                                                                                                                                                   | 0                                                          | 247                                                                           | 24                                                                                      | 271                                                                                   | 210                                                                                          | 9                                                                       | 2                                                                    | 221                                                                                            |                                                                                   | 170                                                                                                   | 2                                                                       | 100                                                                                                   | ,                                                                    | 77                                                                                  | 40                                                                                 | 0.5                                                                            | ~                                                                                         |
| 04:15 PM                                                                                                                                                   | 3                                                          | 253                                                                           | 40                                                                                      | 296                                                                                   | 195                                                                                          | 7                                                                       | 2                                                                    | 204                                                                                            | 2<br>17                                                                           | 179<br>280                                                                                            | 2                                                                       | 183<br>297                                                                                            |                                                                      | 73                                                                                  | 10                                                                                 | 85                                                                             | 760                                                                                       |
| 04:30 PM                                                                                                                                                   | ő                                                          | 199                                                                           | 29                                                                                      | 228                                                                                   | 245                                                                                          | 9                                                                       | 0                                                                    |                                                                                                |                                                                                   |                                                                                                       | 0                                                                       |                                                                                                       | 9                                                                    | 101                                                                                 | 36                                                                                 | 146                                                                            | 943                                                                                       |
| 04:45 PM                                                                                                                                                   | 0                                                          | 186                                                                           | 38                                                                                      | 224                                                                                   | 179                                                                                          | 7                                                                       | -                                                                    | 254                                                                                            | 15                                                                                | 255                                                                                                   | 0                                                                       | 270                                                                                                   | 9                                                                    | 66                                                                                  | 15                                                                                 | 90                                                                             | 842                                                                                       |
| Total                                                                                                                                                      | 3                                                          | 885                                                                           | 131                                                                                     | 1019                                                                                  | 829                                                                                          | 32                                                                      | <u>1</u><br>5                                                        | 187<br>866                                                                                     | <u>22</u><br>56                                                                   | 242<br>956                                                                                            | 0                                                                       | 264                                                                                                   | 23                                                                   | 69                                                                                  | 34                                                                                 | 106                                                                            | 781                                                                                       |
|                                                                                                                                                            | ·*                                                         |                                                                               | 101                                                                                     | 1017                                                                                  | 029                                                                                          | 32                                                                      | 3                                                                    | 800                                                                                            | 50                                                                                | 956                                                                                                   | 2                                                                       | 1014                                                                                                  | 23                                                                   | 309                                                                                 | 95                                                                                 | 427                                                                            | 3320                                                                                      |
| *** BREAK **<br>06:30 PM                                                                                                                                   | ·*<br>0                                                    | 96                                                                            | 21                                                                                      |                                                                                       |                                                                                              |                                                                         |                                                                      |                                                                                                |                                                                                   |                                                                                                       |                                                                         |                                                                                                       |                                                                      |                                                                                     |                                                                                    |                                                                                | 3326                                                                                      |
| *** BREAK **                                                                                                                                               |                                                            | 96                                                                            | 21                                                                                      | 117                                                                                   | 96                                                                                           | 0                                                                       | 7                                                                    | 103                                                                                            | 6                                                                                 | 137                                                                                                   | 2                                                                       | 145                                                                                                   | 13                                                                   | 60                                                                                  | 15                                                                                 | 88                                                                             | 453                                                                                       |
| *** BREAK ** 06:30 PM                                                                                                                                      | 0                                                          |                                                                               |                                                                                         |                                                                                       |                                                                                              |                                                                         |                                                                      |                                                                                                |                                                                                   |                                                                                                       |                                                                         |                                                                                                       |                                                                      |                                                                                     |                                                                                    |                                                                                | 453<br>459                                                                                |
| *** BREAK **<br>06:30 PM<br>06:45 PM                                                                                                                       | 0<br>1<br>1                                                | 96<br>72<br>168                                                               | 21<br>28<br>49                                                                          | 117<br>101<br>218                                                                     | 96<br>104<br>200                                                                             | 0<br>0<br>0                                                             | 7<br>3<br>10                                                         | 103<br>107<br>210                                                                              | 6<br>8<br>14                                                                      | 137<br>143<br>280                                                                                     | 2<br>1<br>3                                                             | 145<br>152<br>297                                                                                     | 13<br>12<br>25                                                       | 60<br>69<br>129                                                                     | 15<br>18<br>33                                                                     | 88<br>99<br>187                                                                | 453<br>459<br>912                                                                         |
| *** BREAK **<br>06:30 PM<br>06:45 PM<br>Total                                                                                                              | 0<br>1<br>1                                                | 96<br>72<br>168<br>63                                                         | 21<br>28<br>49<br>31                                                                    | 117<br>101<br>218<br>95                                                               | 96<br>104<br>200                                                                             | 0<br>0<br>0                                                             | 7<br>3<br>10<br>9                                                    | 103<br>107<br>210                                                                              | 6<br>8<br>14                                                                      | 137<br>143<br>280<br>128                                                                              | 2<br>1<br>3                                                             | 145<br>152<br>297<br>138                                                                              | 13<br>12<br>25                                                       | 60<br>69<br>129<br>78                                                               | 15<br>18<br>33                                                                     | 88<br>99<br>187                                                                | 453<br>459<br>912<br>449                                                                  |
| *** BREAK **  06:30 PM  06:45 PM  Total  07:00 PM                                                                                                          | 0<br>1<br>1                                                | 96<br>72<br>168                                                               | 21<br>28<br>49<br>31<br>21                                                              | 117<br>101<br>218<br>95<br>103                                                        | 96<br>104<br>200<br>104<br>94                                                                | 0<br>0<br>0                                                             | 7<br>3<br>10<br>9<br>5                                               | 103<br>107<br>210<br>114<br>99                                                                 | 6<br>8<br>14<br>8<br>6                                                            | 137<br>143<br>280<br>128<br>113                                                                       | 2<br>1<br>3<br>2<br>1                                                   | 145<br>152<br>297<br>138<br>120                                                                       | 13<br>12<br>25<br>13<br>13                                           | 60<br>69<br>129<br>78<br>66                                                         | 15<br>18<br>33<br>11<br>14                                                         | 88<br>99<br>187<br>102<br>93                                                   | 453<br>459<br>912<br>449<br>415                                                           |
| *** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM                                                                                                   | 0<br>1<br>1<br>1<br>3<br>5                                 | 96<br>72<br>168<br>63<br>79<br>94                                             | 21<br>28<br>49<br>31<br>21<br>28                                                        | 117<br>101<br>218<br>95<br>103<br>127                                                 | 96<br>104<br>200<br>104<br>94<br>77                                                          | 0<br>0<br>0                                                             | 7<br>3<br>10<br>9<br>5<br>9                                          | 103<br>107<br>210<br>114<br>99<br>87                                                           | 6<br>8<br>14<br>8<br>6<br>3                                                       | 137<br>143<br>280<br>128<br>113<br>121                                                                | 2<br>1<br>3<br>2<br>1<br>0                                              | 145<br>152<br>297<br>138<br>120<br>124                                                                | 13<br>12<br>25<br>13<br>13<br>11                                     | 60<br>69<br>129<br>78<br>66<br>43                                                   | 15<br>18<br>33<br>11<br>14<br>9                                                    | 88<br>99<br>187<br>102<br>93<br>63                                             | 453<br>459<br>912<br>449<br>415<br>401                                                    |
| *** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM                                                                                          | 0<br>1<br>1<br>1<br>3                                      | 96<br>72<br>168<br>63<br>79                                                   | 21<br>28<br>49<br>31<br>21                                                              | 117<br>101<br>218<br>95<br>103                                                        | 96<br>104<br>200<br>104<br>94                                                                | 0<br>0<br>0                                                             | 7<br>3<br>10<br>9<br>5                                               | 103<br>107<br>210<br>114<br>99                                                                 | 6<br>8<br>14<br>8<br>6                                                            | 137<br>143<br>280<br>128<br>113                                                                       | 2<br>1<br>3<br>2<br>1                                                   | 145<br>152<br>297<br>138<br>120                                                                       | 13<br>12<br>25<br>13<br>13                                           | 60<br>69<br>129<br>78<br>66                                                         | 15<br>18<br>33<br>11<br>14                                                         | 88<br>99<br>187<br>102<br>93                                                   | 453<br>459<br>912<br>449<br>415<br>401<br>366                                             |
| *** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM 07:45 PM                                                                                 | 0<br>1<br>1<br>1<br>3<br>5                                 | 96<br>72<br>168<br>63<br>79<br>94<br>57                                       | 21<br>28<br>49<br>31<br>21<br>28<br>18                                                  | 117<br>101<br>218<br>95<br>103<br>127<br>78                                           | 96<br>104<br>200<br>104<br>94<br>77<br>78                                                    | 0<br>0<br>0<br>1<br>0<br>1<br>0<br>2                                    | 7<br>3<br>10<br>9<br>5<br>9<br>9                                     | 103<br>107<br>210<br>114<br>99<br>87<br>87<br>387                                              | 6<br>8<br>14<br>8<br>6<br>3<br>8<br>25                                            | 137<br>143<br>280<br>128<br>113<br>121<br>112<br>474                                                  | 2<br>1<br>3<br>2<br>1<br>0<br>0                                         | 145<br>152<br>297<br>138<br>120<br>124<br>120<br>502                                                  | 13<br>12<br>25<br>13<br>13<br>11<br>8                                | 60<br>69<br>129<br>78<br>66<br>43<br>63<br>250                                      | 15<br>18<br>33<br>11<br>14<br>9<br>10<br>44                                        | 88<br>99<br>187<br>102<br>93<br>63<br>81<br>339                                | 453<br>459<br>912<br>449<br>415<br>401<br>366<br>1631                                     |
| *** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM 07:45 PM Total                                                                           | 0<br>1<br>1<br>3<br>5<br>3<br>12                           | 96<br>72<br>168<br>63<br>79<br>94<br>57<br>293                                | 21<br>28<br>49<br>31<br>21<br>28<br>18<br>98                                            | 117<br>101<br>218<br>95<br>103<br>127<br>78<br>403                                    | 96<br>104<br>200<br>104<br>94<br>77<br>78<br>353                                             | 0<br>0<br>0<br>1<br>0<br>1<br>0<br>2                                    | 7<br>3<br>10<br>9<br>5<br>9<br>9<br>32                               | 103<br>107<br>210<br>114<br>99<br>87<br>87<br>387                                              | 6<br>8<br>14<br>8<br>6<br>3<br>8<br>25                                            | 137<br>143<br>280<br>128<br>113<br>121<br>112<br>474                                                  | 2<br>1<br>3<br>2<br>1<br>0<br>0                                         | 145<br>152<br>297<br>138<br>120<br>124<br>120<br>502                                                  | 13<br>12<br>25<br>13<br>13<br>11<br>8<br>45                          | 60<br>69<br>129<br>78<br>66<br>43<br>63<br>250                                      | 15<br>18<br>33<br>11<br>14<br>9<br>10<br>44                                        | 88<br>99<br>187<br>102<br>93<br>63<br>81<br>339                                | 453<br>459<br>912<br>449<br>415<br>401<br>366<br>1631                                     |
| *** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM 07:45 PM Total  08:00 PM 08:15 PM 08:30 PM                                               | 0<br>1<br>1<br>3<br>5<br>3<br>12                           | 96<br>72<br>168<br>63<br>79<br>94<br>57<br>293                                | 21<br>28<br>49<br>31<br>21<br>28<br>18<br>98                                            | 117<br>101<br>218<br>95<br>103<br>127<br>78<br>403                                    | 96<br>104<br>200<br>104<br>94<br>77<br>78<br>353<br>84<br>82                                 | 0<br>0<br>0<br>1<br>0<br>1<br>0<br>2<br>2                               | 7<br>3<br>10<br>9<br>5<br>9<br>9<br>32<br>4<br>0                     | 103<br>107<br>210<br>114<br>99<br>87<br>87<br>387<br>90<br>84                                  | 6<br>8<br>14<br>8<br>6<br>3<br>8<br>25<br>25                                      | 137<br>143<br>280<br>128<br>113<br>121<br>112<br>474<br>113<br>150                                    | 2<br>1<br>3<br>2<br>1<br>0<br>0<br>3                                    | 145<br>152<br>297<br>138<br>120<br>124<br>120<br>502                                                  | 13<br>12<br>25<br>13<br>13<br>11<br>8<br>45                          | 60<br>69<br>129<br>78<br>66<br>43<br>63<br>250<br>47<br>35                          | 15<br>18<br>33<br>11<br>14<br>9<br>10<br>44                                        | 88<br>99<br>187<br>102<br>93<br>63<br>81<br>339                                | 453<br>459<br>912<br>449<br>415<br>401<br>366<br>1631                                     |
| *** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM 07:45 PM Total  08:00 PM 08:15 PM                                                        | 0<br>1<br>1<br>3<br>5<br>3<br>12                           | 96<br>72<br>168<br>63<br>79<br>94<br>57<br>293<br>84<br>95                    | 21<br>28<br>49<br>31<br>21<br>28<br>18<br>98                                            | 117<br>101<br>218<br>95<br>103<br>127<br>78<br>403<br>116<br>141                      | 96<br>104<br>200<br>104<br>94<br>77<br>78<br>353<br>84<br>82<br>67                           | 0<br>0<br>0<br>1<br>0<br>1<br>0<br>2<br>2<br>2<br>2<br>2                | 7<br>3<br>10<br>9<br>5<br>9<br>9<br>32<br>4<br>0                     | 103<br>107<br>210<br>114<br>99<br>87<br>87<br>387<br>90<br>84<br>69                            | 6<br>8<br>14<br>8<br>6<br>3<br>8<br>25<br>25<br>49<br>48                          | 137<br>143<br>280<br>128<br>113<br>121<br>112<br>474<br>113<br>150<br>158                             | 2<br>1<br>3<br>2<br>1<br>0<br>0<br>3                                    | 145<br>152<br>297<br>138<br>120<br>124<br>120<br>502<br>139<br>200<br>207                             | 13<br>12<br>25<br>13<br>13<br>11<br>8<br>45<br>4<br>0                | 60<br>69<br>129<br>78<br>66<br>43<br>63<br>250<br>47<br>35<br>19                    | 15<br>18<br>33<br>11<br>14<br>9<br>10<br>44<br>12<br>5<br>8                        | 88<br>99<br>187<br>102<br>93<br>63<br>81<br>339<br>63<br>40<br>27              | 453<br>459<br>912<br>449<br>415<br>401<br>366<br>1631<br>408<br>465<br>440                |
| *** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM 07:45 PM Total  08:00 PM 08:15 PM 08:30 PM                                               | 0<br>1<br>1<br>3<br>5<br>3<br>12                           | 96<br>72<br>168<br>63<br>79<br>94<br>57<br>293<br>84<br>95<br>77              | 21<br>28<br>49<br>31<br>21<br>28<br>18<br>98<br>29<br>43<br>55                          | 117<br>101<br>218<br>95<br>103<br>127<br>78<br>403<br>116<br>141<br>137               | 96<br>104<br>200<br>104<br>94<br>77<br>78<br>353<br>84<br>82                                 | 0<br>0<br>0<br>1<br>0<br>1<br>0<br>2<br>2                               | 7<br>3<br>10<br>9<br>5<br>9<br>9<br>32<br>4<br>0                     | 103<br>107<br>210<br>114<br>99<br>87<br>87<br>387<br>90<br>84                                  | 6<br>8<br>14<br>8<br>6<br>3<br>8<br>25<br>25                                      | 137<br>143<br>280<br>128<br>113<br>121<br>112<br>474<br>113<br>150                                    | 2<br>1<br>3<br>2<br>1<br>0<br>0<br>3                                    | 145<br>152<br>297<br>138<br>120<br>124<br>120<br>502                                                  | 13<br>12<br>25<br>13<br>13<br>11<br>8<br>45                          | 60<br>69<br>129<br>78<br>66<br>43<br>63<br>250<br>47<br>35                          | 15<br>18<br>33<br>11<br>14<br>9<br>10<br>44                                        | 88<br>99<br>187<br>102<br>93<br>63<br>81<br>339                                | 453<br>459<br>912<br>449<br>415<br>401<br>366<br>1631<br>408<br>465<br>440<br>584         |
| *** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM 07:45 PM Total  08:00 PM 08:15 PM 08:30 PM 08:45 PM Total  09:00 PM                      | 0<br>1<br>1<br>3<br>5<br>3<br>12<br>3<br>3<br>5<br>6<br>17 | 96<br>72<br>168<br>63<br>79<br>94<br>57<br>293<br>84<br>95<br>77<br>94<br>350 | 21<br>28<br>49<br>31<br>21<br>28<br>18<br>98<br>29<br>43<br>55<br>53<br>180             | 117<br>101<br>218<br>95<br>103<br>127<br>78<br>403<br>116<br>141<br>137<br>153        | 96<br>104<br>200<br>104<br>94<br>77<br>78<br>353<br>84<br>82<br>67<br>86                     | 0<br>0<br>0<br>1<br>0<br>1<br>0<br>2<br>2<br>2<br>2<br>2<br>2           | 7<br>3<br>10<br>9<br>5<br>9<br>9<br>32<br>4<br>0<br>0                | 103<br>107<br>210<br>114<br>99<br>87<br>87<br>387<br>90<br>84<br>69<br>86                      | 6<br>8<br>14<br>8<br>6<br>3<br>8<br>25<br>25<br>49<br>48<br>36                    | 137<br>143<br>280<br>128<br>113<br>121<br>112<br>474<br>113<br>150<br>158<br>230                      | 2<br>1<br>3<br>2<br>1<br>0<br>0<br>3<br>3<br>1<br>1<br>1<br>0           | 145<br>152<br>297<br>138<br>120<br>124<br>120<br>502<br>139<br>200<br>207<br>266                      | 13<br>12<br>25<br>13<br>13<br>11<br>8<br>45<br>4<br>0<br>0           | 60<br>69<br>129<br>78<br>66<br>43<br>63<br>250<br>47<br>35<br>19<br>70              | 15<br>18<br>33<br>11<br>14<br>9<br>10<br>44<br>12<br>5<br>8<br>8                   | 88<br>99<br>187<br>102<br>93<br>63<br>81<br>339<br>63<br>40<br>27<br>79        | 453<br>459<br>912<br>449<br>415<br>401<br>366<br>1631<br>408<br>465<br>440<br>584<br>1897 |
| *** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM 07:45 PM Total  08:00 PM 08:15 PM 08:30 PM 08:45 PM Total  09:00 PM 09:15 PM             | 0<br>1<br>1<br>3<br>5<br>3<br>12<br>3<br>3<br>5<br>6<br>17 | 96<br>72<br>168<br>63<br>79<br>94<br>57<br>293<br>84<br>95<br>77<br>94<br>350 | 21<br>28<br>49<br>31<br>21<br>28<br>18<br>98<br>29<br>43<br>55<br>53<br>180             | 117<br>101<br>218<br>95<br>103<br>127<br>78<br>403<br>116<br>141<br>137<br>153<br>547 | 96<br>104<br>200<br>104<br>94<br>77<br>78<br>353<br>84<br>82<br>67<br>86<br>319              | 0<br>0<br>0<br>1<br>0<br>1<br>0<br>2<br>2<br>2<br>2<br>2<br>2<br>0<br>6 | 7<br>3<br>10<br>9<br>5<br>9<br>9<br>9<br>32<br>4<br>0<br>0<br>0      | 103<br>107<br>210<br>114<br>99<br>87<br>87<br>387<br>90<br>84<br>69<br>86<br>329               | 6<br>8<br>14<br>8<br>6<br>3<br>8<br>25<br>25<br>49<br>48<br>36<br>158             | 137<br>143<br>280<br>128<br>113<br>121<br>112<br>474<br>113<br>150<br>158<br>230<br>651               | 2<br>1<br>3<br>2<br>1<br>0<br>0<br>3<br>3<br>1<br>1<br>1<br>0<br>3      | 145<br>152<br>297<br>138<br>120<br>124<br>120<br>502<br>139<br>200<br>207<br>266<br>812               | 13<br>12<br>25<br>13<br>13<br>11<br>8<br>45<br>4<br>0<br>0<br>0      | 60<br>69<br>129<br>78<br>66<br>43<br>63<br>250<br>47<br>35<br>19<br>70<br>171       | 15<br>18<br>33<br>11<br>14<br>9<br>10<br>44<br>12<br>5<br>8<br>8<br>33             | 88<br>99<br>187<br>102<br>93<br>63<br>81<br>339<br>63<br>40<br>27<br>79<br>209 | 453<br>459<br>912<br>449<br>415<br>401<br>366<br>1631<br>408<br>465<br>440<br>584<br>1897 |
| *** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM 07:45 PM Total  08:00 PM 08:15 PM 08:30 PM 08:45 PM Total  09:00 PM 09:15 PM Grand Total | 0<br>1<br>1<br>3<br>5<br>3<br>12<br>3<br>3<br>5<br>6<br>17 | 96<br>72<br>168<br>63<br>79<br>94<br>57<br>293<br>84<br>95<br>77<br>94<br>350 | 21<br>28<br>49<br>31<br>21<br>28<br>18<br>98<br>29<br>43<br>55<br>53<br>180             | 117<br>101<br>218<br>95<br>103<br>127<br>78<br>403<br>116<br>141<br>137<br>153<br>547 | 96<br>104<br>200<br>104<br>94<br>77<br>78<br>353<br>84<br>82<br>67<br>86<br>319              | 0<br>0<br>0<br>1<br>0<br>1<br>0<br>2<br>2<br>2<br>2<br>2<br>2<br>0<br>6 | 7<br>3<br>10<br>9<br>5<br>9<br>9<br>9<br>32<br>4<br>0<br>0<br>0<br>4 | 103<br>107<br>210<br>114<br>99<br>87<br>87<br>387<br>90<br>84<br>69<br>86<br>329               | 6<br>8<br>14<br>8<br>6<br>3<br>8<br>25<br>25<br>49<br>48<br>36<br>158             | 137<br>143<br>280<br>128<br>113<br>121<br>112<br>474<br>113<br>150<br>158<br>230<br>651               | 2<br>1<br>3<br>2<br>1<br>0<br>0<br>3<br>3<br>1<br>1<br>1<br>0<br>3      | 145<br>152<br>297<br>138<br>120<br>124<br>120<br>502<br>139<br>200<br>207<br>266<br>812               | 13<br>12<br>25<br>13<br>13<br>11<br>8<br>45<br>4<br>0<br>0<br>1<br>5 | 60<br>69<br>129<br>78<br>66<br>43<br>63<br>250<br>47<br>35<br>19<br>70              | 15<br>18<br>33<br>11<br>14<br>9<br>10<br>44<br>12<br>5<br>8<br>8<br>33             | 88<br>99<br>187<br>102<br>93<br>63<br>81<br>339<br>63<br>40<br>27<br>79<br>209 | 453<br>459<br>912<br>449<br>415<br>401<br>366<br>1631<br>408<br>440<br>584<br>1897        |
| *** BREAK **  06:30 PM 06:45 PM Total  07:00 PM 07:15 PM 07:30 PM 07:45 PM Total  08:00 PM 08:15 PM 08:30 PM 08:45 PM Total  09:00 PM 09:15 PM             | 0<br>1<br>1<br>3<br>5<br>3<br>12<br>3<br>3<br>5<br>6<br>17 | 96<br>72<br>168<br>63<br>79<br>94<br>57<br>293<br>84<br>95<br>77<br>94<br>350 | 21<br>28<br>49<br>31<br>21<br>28<br>18<br>98<br>29<br>43<br>55<br>53<br>180<br>43<br>57 | 117<br>101<br>218<br>95<br>103<br>127<br>78<br>403<br>116<br>141<br>137<br>153<br>547 | 96<br>104<br>200<br>104<br>94<br>77<br>78<br>353<br>84<br>82<br>67<br>86<br>319<br>96<br>109 | 0<br>0<br>0<br>1<br>0<br>1<br>0<br>2<br>2<br>2<br>2<br>2<br>2<br>0<br>6 | 7<br>3<br>10<br>9<br>5<br>9<br>9<br>32<br>4<br>0<br>0<br>0<br>4<br>7 | 103<br>107<br>210<br>114<br>99<br>87<br>87<br>387<br>90<br>84<br>69<br>86<br>329<br>111<br>111 | 6<br>8<br>14<br>8<br>6<br>3<br>8<br>25<br>25<br>49<br>48<br>36<br>158<br>44<br>54 | 137<br>143<br>280<br>128<br>113<br>121<br>112<br>474<br>113<br>150<br>158<br>230<br>651<br>206<br>249 | 2<br>1<br>3<br>2<br>1<br>0<br>0<br>3<br>3<br>1<br>1<br>1<br>0<br>3<br>3 | 145<br>152<br>297<br>138<br>120<br>124<br>120<br>502<br>139<br>200<br>207<br>266<br>812<br>250<br>304 | 13<br>12<br>25<br>13<br>13<br>11<br>8<br>45<br>4<br>0<br>0<br>1<br>5 | 60<br>69<br>129<br>78<br>66<br>43<br>63<br>250<br>47<br>35<br>19<br>70<br>171<br>77 | 15<br>18<br>33<br>11<br>14<br>9<br>10<br>44<br>12<br>5<br>8<br>8<br>33<br>17<br>16 | 88<br>99<br>187<br>102<br>93<br>63<br>81<br>339<br>63<br>40<br>27<br>79<br>209 | 453<br>459<br>912<br>449<br>415<br>401<br>366<br>1631<br>408<br>465<br>440<br>584<br>1897 |

|                       |         |       | ROA ST.<br>abound |               | Ē.       |      | ION BLV<br>bound | /D.           |       |      | ROA ST.<br>bound |               | E     |      | ION BLV<br>bound | D.            |               |
|-----------------------|---------|-------|-------------------|---------------|----------|------|------------------|---------------|-------|------|------------------|---------------|-------|------|------------------|---------------|---------------|
| Start Time            |         |       | Left              | App.<br>Total | Right    | Thru | Left             | App.<br>Total | Right | Thru | Left             | App.<br>Total | Right | Thru | Left             | App.<br>Total | Int.<br>Total |
| Peak Hour Fro         | m 02:00 | PM to | 04:45 F           | PM - Pea      | k 1 of 1 |      |                  |               |       |      |                  |               |       |      |                  |               |               |
| Intersection          |         |       |                   |               |          |      |                  |               |       |      |                  |               |       |      |                  |               |               |
| Volume                | 287     | 726   | 134               | 1147          | 425      | 516  | 8                | 949           | 85    | 1159 | 1                | 1245          | 103   | 335  | 164              | 602           | 3943          |
| Percent               | 25.0    | 63.3  | 11.7              |               | 44.8     | 54.4 | 0.8              | 2.5           | 6.8   | 93.1 | 0.1              | 12 13         | 17.1  | 55.6 | 27.2             | 004           | 05 10         |
| 02:15<br>Volume       | 139     | 168   | 36                | 343           | 97       | 181  | 0                | 278           | 12    | 306  | 0                | 318           | 31    | 106  | 50               | 187           | 1126          |
| Peak Factor           |         |       |                   |               |          |      |                  |               |       |      |                  |               |       |      |                  |               | 0.875         |
| High Int.             | 02:15   |       |                   |               | 02:00    | PM   |                  |               | 02:00 | PM   |                  |               | 02:15 | PM   |                  |               | 0.0,0         |
| Volume<br>Peak Factor | 139     | 168   | 36                | 343<br>0.836  | 96       | 198  | 0                | 294<br>0.807  | 13    | 310  | 0                | 323<br>0.964  | 31    | 106  | 50               | 187<br>0.805  |               |

<< ACCUTEK >> << 21114 TRIGGER LANE >> << DIAMOND BAR, CA 91765 >> << (909) 595-6199 FAX: (909) 595-6022 >

CITY: N/S: E/W: CLIENT: File Name : 319605 Site Code : 00319605 Start Date : 11/30/2002 Page No : 2

|                       |         |                  | ROA ST. |               | E.       | XPOSITI<br>Westt |      | D.                   |       |      | ROA ST. |               | E)    |        | ON BLV<br>ound | D.            |               |
|-----------------------|---------|------------------|---------|---------------|----------|------------------|------|----------------------|-------|------|---------|---------------|-------|--------|----------------|---------------|---------------|
| Start Time            | Right   | Thru             | Left    | App.<br>Total | Right    | Thru             | Left | App.<br>Total        | Right | Thru | Left    | App.<br>Total | Right | Thru : | Left           | App.<br>Total | Int.<br>Total |
| Peak Hour Fro         | m 06:30 | ) PM to          | 09:15 F | PM - Pea      | k 1 of 1 |                  |      |                      |       |      |         |               |       |        |                |               |               |
| Intersection          | 08:30   | PM               |         |               |          |                  |      |                      |       |      |         |               |       |        |                |               |               |
| Volume                | 26      | 380              | 208     | 614           | 358      | 12               | 7    | 377                  | 182   | 843  | 2       | 1027          | 7     | 239    | 49             | 295           | 2313          |
| Percent               | 4.2     | 61.9             | 33.9    |               | 95.0     | 3.2              | 1.9  |                      | 17.7  | 82.1 | 0.2     |               | 2.4   | 81.0   | 16.6           |               |               |
| 09:15<br>Volume       | 5       | 103              | 57      | 165           | 109      | 2                | 0    | 111                  | 54    | 249  | 1       | 304           | . 4   | 73     | 16             | 93            | 673           |
| Peak Factor           |         |                  |         |               |          |                  |      |                      |       |      |         |               |       |        |                | (             | 0.859         |
| High Int.             | 09:15   | 9:15 PM 09:00 PM |         |               |          |                  |      | 09:15                | PM    |      |         | 09:00         | PM    |        |                |               |               |
| Volume<br>Peak Factor | 5       | 103              | 57      | 165<br>0.930  | 96       | 8                | 7    | 111<br><b>0.</b> 849 | 54    | 249  | 1       | 304<br>0.845  | . 2   | 77     | 17             | 96<br>0.768   |               |

CITY: N/S: EW: CLIENT:

#### << ACCUTEK >> << 21114 TRIGGER LANE >> << DIAMOND BAR, CA 91765 >> << (909) 595-6199 FAX: (909) 595-6022 >

File Name : 319604 Site Code : 00319604 Start Date : 11/30/2002 Page No : 1

1

| -14-14 I.            |     |          |          |               |       | Grou | ınc Drin  | tod. Tur      | nina Ma     | vement |      |               |        |          | Page  | NO : 1        |               |
|----------------------|-----|----------|----------|---------------|-------|------|-----------|---------------|-------------|--------|------|---------------|--------|----------|-------|---------------|---------------|
|                      |     | FLOW     | R ST     |               |       | GIO  | ups ettii | teu- Tui      | may ra      | FLOW   |      |               |        | 3711     | IST.  |               |               |
|                      |     | South    |          |               |       | West | oound     |               |             | North  |      |               | :      |          | oound |               |               |
| Start Time           |     | Thru     | Left     | App.<br>Total | Right | Thru | Left      | App.<br>Total | Right       | Thru   | Left | App.<br>Total | Right  | Thru     | Left  | App.<br>Total | Int.<br>Total |
| Factor               | 1.0 | 1.0      | 1.0      |               | 1.0   | 1.0  | 1.0       |               | 1.0         | 1.0    | 1.0  |               | 1.0    | 1.0      | 1.0   |               |               |
| 02:00 PM             | 0   | 114      | 100      | 214           | 0     | 0    | 0         | 0             | 61          | 0      | 0    | 61            | : 25   | 82       | 0     | 107           | 382           |
| 02:15 PM             | 0   | 98       | 114      | 212           | 0     | 0    | 0         | 0             | 68          | 0      | 0    | 68            | : 38   | 122      | 0     | 160           | 440           |
| 02:30 PM             | 0   | 141      | 120      | 261           | . 0   | 0    | 0         | 0             | 63          | 0      | 0    | 63            | 27     | 117      | 0     | 144           | 468           |
| 02:45 PM             | 0   | 104      | 135      | 239           | 0     | 0    | 0         | 0             | 58          | 0      | 0    | 58            | 24     | 126      | 0     | 150           | 447           |
| Total                | 0   | 457      | 469      | 926           | 0     | 0    | 0         | 0             | 250         | 0      | 0    | 250           | 114    | 447      | 0     | 561           | 1737          |
| 03:00 PM             | 0   | 130      | 105      | 235           | 0     | 0    | 0         | 0             | 81          | 0      | 0    | 81            | 35     | 113      | 0     | 148           | 464           |
| 03:15 PM             | 0   | 132      | 131      | 263           | 0     | 0    | 0         | 0             | 98          | 0      | 0    | 98            | 21     | 112      | 0     | 133           | 494           |
| 03:30 PM             | 0   | 120      | 109      | 229           | . 0   | 0    | 0         | 0             | 75          | 0      | 0    | 75            | 14     | 124      | 0     | 138           | 442           |
| 03:45 PM             | 0   | 117      | 107      | 224           | 0     | 0    | 0         | 0             | 67          | 0      | 0    | 67            | 20     | 130      | 0     | 150           | 441           |
| Total                | 0   | 499      | 452      | 951           | 0     | 0    | 0         | 0             | 321         | 0      | 0    | 321           | 90     | 479      | 0     | 569           | 1841          |
| 04:00 PM             | 0   | 123      | 132      | 255           | 0     | 0    | 0         | 0             | 65          | 0      | 0    | 65            | 4      | 88       | 0     | 92            | 412           |
| 04:15 PM             | 0   | 155      | 142      | 297           | 0     | 0    | 0         | 0             | 70          | 0      | 0    | 70            | 14     | 119      | 0     | 133           | 500           |
| 04:30 PM             | 0   | 123      | 125      | 248           |       | 0    | 0         | 0             |             | 0      | 0    | 48            |        | 96       | 0     | 108           | 404           |
| 04:45 PM             | 0   | 78       | 121      | 199           |       | 0    | 0         | Ō             |             | 0      | 0    | 19            |        | 113      | 0     | 130           | 348           |
| Total                | 0   | 479      | 520      | 999           |       | 0    | 0         | 0             |             | 0      | 0    | 202           | 47     | 416      | 0     | 463           | 1664          |
| 06:30 PM<br>06:45 PM | 0   | 24<br>28 | 78<br>73 | 102<br>101    |       | 0    | 0         | 0             |             | 0      | 0    | 11<br>6       |        | 83<br>99 | 0     | 91<br>109     | 204<br>216    |
| Total                | 0   | 52       | 151      | 203           |       | 0    | 0         | 0             |             | 0      | 0    | 17            |        | 182      | 0     | 200           | 420           |
|                      | •   |          |          |               | J     | ·    | Ů         | ·             |             | · ·    | ŭ    |               | •      | ***      | _     |               |               |
| 07:00 PM             | 0   | 22       | 76       | 98            | 0     | 0    | 0         | 0             |             | 0      | 0    | 9             | 7      | 113      | 0     | 120           | 227           |
| 07:15 PM             | 0   | 34       | 74       | 108           |       | 0    | 0         | 0             | 5           | 0      | 0    | 5             | 4      | 82       | 0     | 86            | 199           |
| 07:30 PM             | 0   | 23       | 64       | 87            |       | 0    | 0         | 0             | 9           | 0      | 0    | 9             | 7      | 65       | 0     | 72            | 168           |
| 07:45 PM             | 0   | 25       | 54       | 79            |       |      | 0         | 0             |             | 0      | 0    | 17            |        |          | 0     | 89            | 185           |
| Total                | 0   | 104      | 268      | 372           | 2 0   | 0    | 0         | 0             | 11 40       | 0      | 0    | 40            | 28     | 339      | 0     | 367           | 779           |
| 08:00 PM             |     | 35       | 68       | 103           | 3 0   | 0    | 0         | 0             | 21          | 0      | 0    | 21            | . 21   | 67       | 0     | 88            | 21.           |
| 08:15 PM             | 0   | 34       | 107      | 141           | . 0   | 0    | 0         | 0             | 81          | 0      | 0    | 81            | . 20   | 102      | 0     | 122           | 344           |
| 08:30 PM             |     | 62       | 232      | 294           | 1 0   | 0    | 0         | C             |             |        | 0    | 103           | 3 1    | 108      |       | 109           | 506           |
| 08:45 PM             |     |          | 271      | 307           |       |      | 0         |               |             |        | 0    | 82            |        |          |       | 138           | 52            |
| Total                | 0   | 167      | 678      | 845           | 5 0   | 0    | 0         | C             | 287         | 0      | 0    | 287           | 7 52   | 405      | 0     | 457           | 1589          |
| 09:00 PM             |     |          | 271      | 313           |       |      |           | (             |             |        | 0    | 120           |        |          |       | 145           | 578           |
| 09:15 PM             |     |          | 270      | 341           |       | 0    | 0         | (             |             |        | -    | 97            |        |          |       | 176           | 614           |
| Grand Total          |     |          | 3079     | 4950          |       | •    |           | (             | 1334<br>100 |        | _    | 1334          |        |          |       | 2938          | 922           |
| Apprch %             |     |          | 62.2     |               | 0.0   |      |           |               |             | 0.0    |      |               | 12.5   |          |       |               |               |
| Total %              | 0.0 | 20.3     | 33.4     | 53.7          | 7 0.0 | 0.0  | 0.0       | 0.0           | ) 14.5      | 0.0    | 0.0  | 14.           | 5. 4.0 | 27.9     | 0.0   | 31.9          |               |

|                 | FLOWER ST. Southbound |       |       |               |          | West  | bound |               |           |      | ER ST.<br>bound |               |       | 37TH<br>Eastb |      | ,             |               |
|-----------------|-----------------------|-------|-------|---------------|----------|-------|-------|---------------|-----------|------|-----------------|---------------|-------|---------------|------|---------------|---------------|
| Start Time      | Right                 | Thru  | Left  | App.<br>Total | Right    | Thru  | Left  | App.<br>Total | Right     | Thru | Left            | App.<br>Total | Right | Thru          | Left | App.<br>Total | Int.<br>Total |
| Peak Hour Fro   | m 02:00               | PM to | 04:45 | PM - Pea      | k 1 of 1 |       |       |               |           |      |                 |               |       |               | -    |               |               |
| Intersection    | 02:30                 | PM    |       |               |          |       |       |               |           |      |                 |               |       |               |      |               |               |
| Volume          | 0                     | 507   | 491   | 998           | 0        | 0     | 0     | 0             | 300       | 0    | 0               | 300           | 107   | 468           | 0    | 575           | 1873          |
| Percent         | 0.0                   | 50.8  | 49.2  |               | 0.0      | 0.0   | 0.0   |               | 100.<br>0 | 0.0  | 0.0             |               | 18.6  | 81.4          | 0.0  |               |               |
| 03:15<br>Volume | 0                     | 132   | 131   | 263           | 0        | 0     | 0     | 0             | 98        | 0    | 0               | 98            | 21    | 112           | 0    | 133           | 494           |
| Peak Factor     |                       |       |       |               |          |       |       |               |           |      |                 |               |       |               |      |               | 0.948         |
| High Int.       | 03:15                 | PM    |       |               | 1:45:0   | 00 PM |       |               | 03:15     | PM   |                 |               | 02:45 | PM            |      |               |               |
| Volume          | 0                     | 132   | 131   | 263           | 0        | 0     | 0     | 0             |           | 0    | 0               | 98            | 24    | 126           | 0    | 150           |               |
| Peak Factor     |                       |       |       | 0.949         |          |       |       |               |           |      |                 | 0.765         |       |               |      | 0.958         |               |

<< ACCUTEK >>
 << 21114 TRIGGER LANE >>
 << DIAMOND BAR, CA 91765 >>
<< (909) 595-6199 FAX: (909) 595-6022 >

CITY: N/S: E/W: CLIENT:

File Name : 319604 Site Code : 00319604 Start Date : 11/30/2002 Page No : 2

|                 | FLOWER ST. |         |       |               |          |       |       |               |           | FLOW  | ER ST. |                 |         | 37TH  | IST. |               |               |
|-----------------|------------|---------|-------|---------------|----------|-------|-------|---------------|-----------|-------|--------|-----------------|---------|-------|------|---------------|---------------|
|                 |            | South   | bound |               |          | Westl | oound |               |           | North | bound  | ;               |         | Eastb | ound |               |               |
| Start Time      | Right      | Thru    | Left  | App.<br>Total | Right    | Thru  | Left  | App.<br>Total | Right     | Thru  | Left   | App. i<br>Total | Right ! | Thru  | Left | App.<br>Total | Int.<br>Total |
| Peak Hour Fro   | m 06:3     | 0 PM to | 09:15 | PM - Pea      | k 1 of 1 |       |       |               |           |       |        |                 |         |       |      |               |               |
| Intersection    | 08:30      | PM      |       |               |          |       |       |               |           |       |        |                 |         |       |      |               |               |
| Volume          | 0          | 211     | 1044  | 1255          | 0        | 0     | 0     | 0             | 402       | 0     | 0      | 402             | 29      | 539   | 0    | 568           | 2225          |
| Percent         | 0.0        | 16.8    | 83.2  |               | 0.0      | 0.0   | 0.0   |               | 100.<br>0 | 0.0   | 0.0    |                 | 5.1     | 94.9  | 0.0  |               |               |
| 09:15<br>Volume | 0          | 71      | 270   | 341           | 0        | 0     | 0     | 0             | 97        | 0     | 0      | 97              | 4       | 172   | 0    | 176           | 614           |
| Peak Factor     |            |         |       |               |          |       |       |               |           |       |        |                 |         |       |      |               | 0.906         |
| High Int.       | 09:15      | PM      |       |               |          |       |       |               | 09:00     | PM    |        |                 | 09:15   | PM    |      |               |               |
| Volume          | 0          | 71      | 270   | 341           | 0        | 0     | 0     | 0             | 120       | 0     | 0      | 120             | ; 4     | 172   | 0    | 176           |               |
| Peak Factor     |            |         |       | 0.920         |          |       |       |               | •         |       |        | 0.838           |         |       |      | 0.807         |               |

#### << ACCUTEK >> << 21114 TRIGGER LANE >> << DIAMOND BAR, CA 91765 >> << (909) 595-6199 FAX: (909) 595-6022 >

CITY: N/S: E/W: CLIENT:

Volume

Percent

Volume

High Int.

Volume

Peak Factor

Peak Factor

02:00

1 888

99.9

280

0 280

0.1

0

02:00 PM

889

280

280

0.794

0

0

1:45:00 PM

0

0.0

0

0

0

0.0

0

0

0

0.0

0

0

0

0

0

0

0.0

<< (909) 595-6199 FAX: (909) 595-6022>

File Name : 319606 Site Code : 00319606 Start Date : 11/30/2002

學學學門

3

2092

585

0.894

0

0

0

0.0

0

0

1:45:00 PM

0.0

1203

305

319

0.943

1

0

0

0.1

0

0

0.0

Page No : 1

| IENT:             |       |                  | <del> </del> |               |       | Gro   | ups Prin | ted- Turr     |                |                  |              |               |               |                | Page N  | 10 : 1        |             |
|-------------------|-------|------------------|--------------|---------------|-------|-------|----------|---------------|----------------|------------------|--------------|---------------|---------------|----------------|---------|---------------|-------------|
|                   |       | IGUERO<br>Southb |              |               |       | Westb | ound     |               |                | FIGUER<br>Northb |              |               |               | STATE<br>Eastb |         |               |             |
| Start Time        | Right | Thru             | Left         | App.<br>Total | Right | Thru  | Left     | App.<br>Total | Right          | Thru             | Left         | App.<br>Total | Right         | Thru           | Left    | App.<br>Total | Int<br>Tota |
| Factor            | 1.0   | 1.0              | 1.0          |               | 1.0   | 1.0   | 1.0      |               | 1.0            | 1.0              | 1.0          |               | 1.0           | 1.0            | 1.0     |               |             |
| 02:00 PM          | 0     | 280              | 0            | 280           | 0     | 0     | 0        | 0             | 0              | 305              | 0            | 305           | 0             | 0              | 0       | 0             | 58          |
| 02:15 PM          | 0     | 220              | 0            | 220           | 0     | 0     | 0        | 0             | 0              | 319              | 0            | 319           | 0             | 0              | 0       | 0             | 53          |
| 02:30 PM          | 0     | 203              | 0            | 203           | 0     | 0     | 0        | 0             | 0              | 274              | 1            | 275           | 0             | 0              | 0       | 0 -           | 47          |
| 02:45 PM          | 1     | 185              | 0            | 186           | 00    | 0     | 00       | 0             | 0              | 304              | 00           | 304           | 0             | 0              | 0       | 0             | 49          |
| Total             | 1     | 888              | 0            | 889           | 0     | 0     | 0        | 0             | 0              | 1202             | 1            | 1203          | 0             | 0              | 0       | 0             | 209         |
| 03:00 PM          | 1     | 225              | 0            | 226           | 0     | 0     | 0        | 0             | 0              | 168              | 0            | 168           | 1             | 0              | 0       | 1             | 39          |
| 03:15 PM          | 0     | 225              | 0            | 225           | 0     | 0     | 0        | 0             | 0              | 221              | 0            | 221           | 0             | 0              | 1       | 1             | 40          |
| 03:30 PM          | 0     | 198              | 0            | 198           | 0     | 0     | 0        | 0             | 0              | 152              | 0            | 152           | 0             | 0              | 0       | 0             | 3!          |
| 03:45 PM          | 0     | 220              | 0            | _220          | 0_    | 0     | 0_       | 0             | 0              | 184              | 0            | 184           | 1             | 0              | 0       | 1             | 4(          |
| Total             | 1     | 868              | 0            | 869           | 0     | 0     | 0        | 0             | 0              | 725              | 0            | 725           | 2             | 0              | 1       | 3             | 159         |
| 04:00 PM          | 0     | 221              | 0            | 221           | 0     | 0     | 0        | 0             | 0              | 201              | 1            | 202           | 0             | 0              | 0       | 0             | 4:          |
| 04:15 PM          | 0     | 235              | 0            | 235           | 0     | 0     | 0        | 0             | 0              | 257              | 0            | 257           | 2             | 0              | 1       | 3             | 4           |
| 04:30 PM          | 0     | 210              | 0            | 210           | 0     | 0     | 0        | 0             | 0              | 250              | 0            | 250           | 0             | 0              | 0       | 0             | 4           |
| 04:45 PM          | 0     | 195              | 0            | 195           | 0     | 0     | 0_       | 0             | 0              | 267              | 0            | 267           | 0_            | 0              | 00      | 0             | 4           |
| Total             | 0     | 861              | 0            | 861           | 0     | 0     | 0        | 0             | 0              | 975              | 1            | 976           | 2             | 0              | 1       | 3             | 18          |
| * BREAK **        | *     |                  |              |               |       |       |          |               |                |                  |              |               |               |                |         |               |             |
| 06:30 PM          | 2     | 119              | 0            | 121           | 0     | 0     | 0        | 0             | 0              | 151              | 0            | 151           | 0             | 0              | 2       | 2             | 2           |
| 06:45 PM          | 1     | 94               | 0            | 95            | 0_    | 0     | 0        | 0             | 0              | 146              | 1            | 147           | 2             | 0              | 0       | 2_            | 2           |
| Total             | 3     | 213              | 0            | 216           | 0     | 0     | 0        | 0             | 0              | 297              | 1            | 298           | 2             | 0              | 2       | 4             | 5           |
| 07:00 PM          | 0     | 96               | 0            | 96            | 0     | 0     | 0        | 0             | 0              | 135              | 0            | 135           | 0             | 0              | 1       | 1             | 2           |
| 07:15 PM          | 0     | 108              | 0            | 108           | 0     | 0     | 0        | 0             | 0              | 122              | 0            | 122           | 0             | 0              | 0       | 0             | 2           |
| 07:30 PM          | 1     | 124              | 0            | 125           | 0     | 0     | 0        | 0             | 0              | 122              | 0            | 122           | 0             | 0              | 0       | 0             | 2           |
| 07:45 PM          | 0     | 85               | 0            | 85            | 0     | 0     | 0_       | 0             | 0              | 124              | 0            | 124           | 1             | 0              | 11      | 2_            |             |
| Total             | 1     | 413              | 0            | 414           | 0     | 0     | 0        | 0             | 0              | 503              | 0            | 503           | 1             | 0              | 2       | 3             | ē           |
| 08:00 PM          | 0     | 100              | 0            | 100           | -     | 0     | 0        | 0             |                | 141              | 0            | 141           | 2             | 0              | 0       | 2             | 4           |
| 08:15 PM          | 0     | 103              | 0            | 103           | -     | 0     | 0        | 0             |                | 197              | 0            | 197           | 1             | 0              | 0       | 1             |             |
| 08:30 PM          | 0     | 69               | 0            | 69            | _     | 0     | 0        | 0             |                | 219              | 0            | 219           | 2             |                | 2       | 4             |             |
| 08:45 PM<br>Total | 0     | 118<br>390       | <u>0</u>     | 118<br>390    |       | 0     | 0<br>0   | 0             |                | 232<br>789       | 0            | 232<br>789    | <u>3</u><br>8 |                | 9<br>11 | 12<br>19      |             |
|                   |       |                  |              |               |       | U     | U        | U             | -              |                  | <del>-</del> |               | _             | _              |         |               |             |
| 09:00 PM          | 0     | 135              | 0            | 135           | -     | 0     | 0        | 0             |                |                  | 0            | 187           | . 0           |                | 2       | 2             |             |
| 09:15 PM          |       | 147              | 0            | 147           |       | 0     | 0        | 0             |                |                  | 0            | 225           |               |                | 7       | 9             |             |
| Grand Total       |       | 3915             | 0            | 3921          | _     | 0     | 0        | 0             | _              |                  | 3            | 4906          |               |                | 26      | 43            | 88          |
| Apprch %          |       | 99.8             | 0.0          |               | 0.0   | 0.0   | 0.0      |               | 0.0            |                  | 0.1          |               | 39.5          |                |         |               |             |
| Total %           | 0.1   | 44.1             | 0.0          | 44.2          | 0.0   | 0.0   | 0.0      | 0.0           | 0.0            | 55.3             | 0.0          | 55.3          | 0.2           | 0.0            | 0.3     | 0.5           |             |
|                   |       |                  | ROA ST       |               | ·     |       |          |               | <del>.</del> - |                  | ROA ST       | ī.            |               |                | E DRIVE |               | -           |
| Chart Tiese       | Diebt |                  | bound        | App.          | D:-I: |       | tbound   | Арр.          | n:             |                  | hbound       | App.          | Diah          |                | tbound  | App.          |             |
| Start Time        | Right | inru             | Left         | Total         |       | Thru  | Left     | Total         |                | Thru             | Left         | Total         |               | Thru           | Left    | Total         | T           |

0 1202

0 319

99.9

305

0.0

0

02:15 PM

<< ACCUTEK >>
 << 21114 TRIGGER LANE >>
 << DIAMOND BAR, CA 91765 >>
 << (909) 595-6199 FAX: (909) 595-6022 >

CITY: N/S: E/W: CLIENT:

File Name : 319606 Site Code : 00319606 Start Date : 11/30/2002 Page No : 2

|                 |         | FIGUER<br>South |                 |               |          | West | bound |               |       | FIGUEI    | ROA ST.<br>bound |               |       |      | DRIVE<br>bound |               |               |
|-----------------|---------|-----------------|-----------------|---------------|----------|------|-------|---------------|-------|-----------|------------------|---------------|-------|------|----------------|---------------|---------------|
| Start Time      | Right   | Thru            | Left            | App.<br>Total | Right    | Thru | Left  | App.<br>Total | Right | Thru      | Left             | App.<br>Total | Right | Thru | Left           | App.<br>Total | Int.<br>Total |
| Peak Hour Fro   | m 06:30 | OPM to          | <b>0</b> 9:15 F | M - Pea       | k 1 of 1 |      |       |               |       |           |                  |               |       |      |                |               |               |
| Intersection    | 08:30   | PM              |                 |               |          |      |       |               |       |           |                  |               |       |      |                |               |               |
| Volume          | 0       | 469             | 0               | 469           | 0        | 0    | 0     | 0             | 0     | 863       | 0                | 863           | 7     | 0    | 20             | 27            | 1359          |
| Percent         | 0.0     | 100.<br>0       | 0.0             |               | 0.0      | 0.0  | 0.0   |               | 0.0   | 100.<br>0 | 0.0              |               | 25.9  | 0.0  | 74.1           |               |               |
| 09:15<br>Volume | 0       | 147             | 0               | 147           | 0        | 0    | 0     | 0             | 0     | 225       | 0                | 225           | 2     | 0    | 7              | 9             | 381           |
| Peak Factor     |         |                 |                 |               |          |      |       |               |       |           |                  |               |       |      |                |               | 0.892         |
| High Int.       | 09:15   | PM              |                 |               |          |      |       |               | 08:45 | PM        |                  |               | 08:45 | PM   |                |               |               |
| Volume          | 0       | 147             | 0               | 147           | 0        | 0    | 0     | 0             | 0     | 232       | 0                | 232           | 3     | 0    | 9              | 12            |               |
| Peak Factor     |         |                 |                 | 0.798         |          |      |       |               |       |           |                  | 0.930         |       |      |                | 0.563         |               |

CLIENT:

KAKU ASSOCIATES

PROJECT:

L.A. COLISEUM COINTS

DATE:

SATURDAY, NOVEMBER 30, 2002

PERIOD:

6:30 PM TO 9:30 PM

INTERSECTION

N/S FIGUEROA ST/ FLOWER ST.

ΕW

V 38TH PL

FILE NUMBER:

1-PM

|           | 1           |        |      |      |            |      |      |      |        |      |
|-----------|-------------|--------|------|------|------------|------|------|------|--------|------|
| 15 MINUTE | 2           | 3/38TH | 3F   | 4FI  | 5          | 6    | 4F   | 7F   | 7/38TH | 8    |
| TOTALS    | SBTH        | SBLT   | SBLT | WBRT | WBTH       | WBLT | WBRT | NBTR | NBRT   | NBTH |
|           |             |        |      |      |            |      |      |      | ·      |      |
| 630-645   | 120         | 1      | 2    | 1    | 33         | 3    | 3    | 6    | 8      | 105  |
| 645-700   | <b>1</b> 26 | 2      | 3    | 2    | 28         | 2    | 5    | 4    | 10     | 112  |
| 700-715   | 124         | 4      | 2    | 2    | <b>3</b> 5 | 4    | 6    | 8    | 15     | 109  |
| 715-730   | 133         | 3      | 1    | 2    | 40         | 2    | 3    | 6    |        | 111  |
| 730-745   | 134         | 2      | 2    | 3    | 34         | 3    | 1    | 4    |        | 105  |
| 745-800   | 128         | 4      | 0    | 3    | 28         | 2    | 4    | 7    | 18     | 104  |
| 800-815   | 126         | 3      | 2    | 5    | 33         | 10   | 8    | 6    | 20     | 112  |
| 815-830   | 112         | 5      | 2    | 7    | 45         | 9    | 10   | 10   |        | 118  |
| 830-845   | 100         | 10     | 2    | 8    | 38         | 8    | 16   | 10   | 49     | 122  |
| 845-900   | 105         | 8      | 3    | 5    | 60         | 18   | 12   | 8    |        | 112  |
| 900-915   | 119         | 7      | 7    | 3    | 42         |      | 19   | 7    |        | 105  |
| 915-930   | 109         | 6      | 5    | 6    |            | 10   |      | 7    | 37     | 112  |
|           |             | •      | Ü    | Ū    | 02         | 10   | 10   | •    | 31     | 112  |

| 1 HOUR    | 2    | 3/38TH | 3F   | 4FI  | 5    | 6    | 4F   | 7F   | 7/38TH | 8    |        |
|-----------|------|--------|------|------|------|------|------|------|--------|------|--------|
| TOTALS    | SBTH | SBLT   | SBLT | WBRT | WBTH | WBLT | WBRT | NBTR | NBRT   | NBTH | TOTALS |
|           |      |        |      |      |      |      | L    |      |        |      |        |
| 0630-0730 | 503  | 10     | 8    | 7    | 136  | 11   | 17   | 24   | 46     | 437  | 1199   |
| 0645-0745 | 517  | 11     | 8    | 9    | 137  | 11   | 15   | 22   | 57     | 437  | 1224   |
| 0700-0800 | 519  | 13     | 5    | 10   | 137  | 11   | 14   | 25   | 65     | 429  | 1228   |
| 0715-0815 | 521  | 12     | 5    | 13   | 135  | 17   | 16   | 23   | 70     | 432  | 1244   |
| 0730-0830 | 500  | 14     | 6    | 18   | 140  | 24   | 23   | 27   | 107    | 439  | 1298   |
| 0745-0845 | 466  | 22     | 6    | 23   | 144  | 29   | 38   | 33   | 137    | 456  | 1354   |
| 0800-0900 | 443  | 26     | 9    | 25   | 176  | 45   | 46   | 34   | 188    | 464  | 1456   |
| 0815-0915 | 436  | 30     | 14   | 23   | 185  | 42   | 57   | 35   | 218    | 457  | 1497   |
| 0830-0930 | 433  | 31     | 17   | 22   | 192  | 43   | 63   | 32   | 205    | 451  | 1489   |

CLIENT:

KAKU ASSOCIATES

PROJECT:

L.A. COLISEUM COINTS

DATE:

SATURDAY, NOVEMBER 30, 2002

PERIOD:

6:30 PM TO 9:30 PM

INTERSECTION

0830-0930

N/S I-110 NB OFF AND SB ON RAMP.

ΕW

39TH ST.

FILE NUMBER:

4-PM

| Į | 15 MINUTE         | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |        |
|---|-------------------|------|------|------|------|------|------|------|------|------|------|------|------|--------|
| Ì | TOTALS            | SBRT | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | ЕВТН | EBLT |        |
|   |                   |      |      |      |      |      |      |      |      |      |      |      |      |        |
|   | 630-645           | 0    | 0    | 0    | 0    | 10   | 1    | 3    | 0    | 38   | 10   | 6    | 0    |        |
|   | 645-700           | 0    | 0    | . 0  | 0    | 4    | 3    | 5    | 0    | 26   | 13   | 4    | 0    |        |
|   | 700-715           | 0    | 0    | 0    | 0    | 9    | 8    | 6    | 0    | 36   | 5    | 8    | 0    |        |
|   | 715-730           | 0    | 0    | 0    | 0    | 5    | 0    | 3    | 0    | 15   | 9    | 7    | 0    |        |
|   | <b>730-74</b> 5   | 0    | 0    | 0    | 0    | 8    | 6    | 1    | 0    | 22   | 6    | 6    | 0    |        |
|   | 745-800           | 0    | 0    | 0    | 0    | 18   | 5    | 4    | 0    | 15   | 7    | 9    | 0    |        |
|   | 800-815           | 0    | 0    | 0    | 0    | 7    | 18   | 8    | 0    | 24   | 18   | 11   | 0    |        |
|   | 815-830           | 0    | 0    | 0    | 0    | 12   | 9    | 10   | 0    | 8    | 14   | 10   | 0    |        |
|   | <b>830-</b> 845   | 0    | 0    | 0    | 0    | 9    | 28   | 26   | 0    | 12   | 19   | 23   | 0    |        |
|   | 845-900           | 0    | 0    | 0    | 0    | 11   | 16   | 22   | 0    | 17   | 5    | 18   | 0    |        |
|   | 900-915           | 0    | 0    | 0    | 0    | 8    | 18   | 29   | 0    | 8    | 15   | 22   | 0    |        |
|   | 915-930           | 0    | 0    | 0    |      | 7    | 10   | 17   | 0    | 8    | 10   | 8    | 0    |        |
|   |                   |      |      |      |      |      |      |      |      |      | O717 |      |      | _      |
|   | 1 HOUR            | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |        |
|   | TOTALS            | SBRT | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTALS |
|   |                   |      |      |      |      |      |      |      |      |      |      |      |      |        |
|   | <b>063</b> 0-0730 | 0    | 0    | 0    | ) (  | 28   | 12   | 17   | 0    | 115  | 37   | 25   | 0    | 234    |
|   | 0645-0745         | 0    | 0    | 0    | ) C  | 26   | 17   | 15   | o    | 99   | 33   | 25   | 0    | 215    |
|   | 0700-0800         | 0    | 0    | C    | ) (  | ) 40 | ) 19 | 14   | C    | 88   | 27   | 30   | 0    | 218    |
|   | 0715-0815         | 0    | 0    | C    | ) (  | 38   | 3 29 | 16   | C    | 76   | 40   | 33   | 0    | 23:    |
|   | 0730-0830         | 0    | 0    | ) (  | ) (  | ) 45 | 38   | 23   |      | 69   | 45   | 36   | 0    | 256    |
|   | 0745-0845         | 0    | 0    | ) c  | ) (  | ) 46 | 60   | 48   | C    | 59   | 58   | 53   | 0    | 324    |
|   | 0800-0900         | 0    | ) C  | ) (  | ) (  | 39   | 71   | 66   | 5 (  | 61   | 56   | 62   | . 0  | 35     |
|   | 0815-0915         | 0    | ) C  | ) (  | ) (  | ) 4( | 71   | 87   | , c  | ) 45 | 53   | 3 73 |      | 369    |
|   |                   |      |      |      |      |      |      |      |      |      |      |      |      |        |

0

35

72

94

0

45

366

CLIENT:

KAKU ASSOCIATES

PROJECT:

L.A. COLISEUM COINTS

DATE:

SATURDAY, NOVEMBER 30, 2002

PERIOD:

6:30 PM TO 9:30 PM

INTERSECTION

N/S FIGUEROA ST.

EW

39TH ST / COLISEUM.

FILE NUMBER:

2-PM

|           | 7    |      |      |      |      |      | -    | ~~~~~ |             |      |      |      |
|-----------|------|------|------|------|------|------|------|-------|-------------|------|------|------|
| 15 MINUTE | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8     | 9           | 10   | 11   | 12   |
| TOTALS    | SBRT | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH  | NBLT        | EBRT | EBTH | EBLT |
|           |      |      |      |      |      |      |      |       | <del></del> |      |      |      |
| 630-645   | 9    | 110  | 10   | 18   | 1    | 9    | 3    | 111   | 1           | 0    | 1    | 7    |
| 645-700   | 11   | 94   | 7    | 28   | 2    | 7    | 5    | 99    | 2           | 0    | 2    | . 8  |
| 700-715   | 6    | 100  | 6    | 25   | 1    | 8    | 6    | 105   | 3           | 2    | 1    | 6    |
| 715-730   | 6    | 107  | 8    | 19   | 2    | 7    | 3    | 81    | 0           | 0    | 3    | 6    |
| 730-745   | 9    | 132  | 8    | 17   | 2    | 10   | 1    | 91    | 0           | 1    | 2    | 3    |
| 745-800   | 1    | 128  | 6    | 16   | 0    | 2    | 4    | 82    | 1           | 0    | 10   | 2    |
| 800-815   | 7    | 127  | 10   | 16   | 0    | 10   | 8    | 92    | 2           | 0    | 6    | 8    |
| 815-830   | 8    | 119  | 7    | 35   | 1    | 8    | 10   | 152   | 0           | 0    | 10   | 8    |
| 830-845   | 1    | 113  | 17   | 37   | 1    | 10   | 16   | 132   | 1           | 1    | 24   | 0    |
| 845-900   | 5    | 102  | 10   | 25   | 1    | 20   | 12   | 103   | 0           | 0    | 13   | 1    |
| 900-915   | 5    | 107  | 22   | 33   | 2    |      | 19   | 113   | 0           | 0    | 12   | 1    |
| 915-930   | 4    | 87   | 19   | 40   | 1    | 16   | 16   | 112   | _           | 1    | 8    | 3    |

| 1 HOUR    | 1    | 2    | 3    | 4          | 5    | 6    | 7    | 8    | 9    | 10   | 11     | 12   |        |
|-----------|------|------|------|------------|------|------|------|------|------|------|--------|------|--------|
| TOTALS    | SBRT | SBTH | SBLT | WBRT       | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH   | EBLT | TOTALS |
|           |      |      |      |            |      |      |      |      |      | ·    | ······ |      |        |
| 0630-0730 | 32   | 411  | 31   | 90         | 6    | 31   | 17   | 396  | 6    | 2    | 7      | 27   | 1056   |
| 0645-0745 | 32   | 433  | 29   | 89         | 7    | 32   | 15   | 376  | 5    | 3    | 8      | 23   | 1052   |
| 0700-0800 | 22   | 467  | 28   | <b>7</b> 7 | 5    | 27   | 14   | 359  | 4    | 3    | 16     | 17   | 1039   |
| 0715-0815 | 23   | 494  | 32   | 68         | 4    | 29   | 16   | 346  | 3    | 1    | 21     | 19   | 1056   |
| 0730-0830 | 25   | 506  | 31   | 84         | 3    | 30   | 23   | 417  | 3    | 1    | 28     | 21   | 1172   |
| 0745-0845 | 17   | 487  | 40   | 104        | 2    | 30   | 38   | 458  | 4    | 1    | 50     | 18   | –      |
| 0800-0900 | 21   | 461  | 44   | 113        | 3    | 48   | 46   | 479  | 3    | 1    | 53     | 17   | 1289   |
| 0815-0915 | 19   | 441  | 56   | 130        | 5    | 51   | 57   | 500  | 1    | 1    | 59     | 11   | 1331   |
| 0830-0930 | 15   | 409  | 68   | 135        | 5    | 59   | 63   | 460  | 3    | 2    | 57     | 6    |        |

آ

CLIENT:

KAKU ASSOCIATES

PROJECT:

L.A. COLISEUM COINTS

DATE:

SATURDAY, NOVEMBER 30, 2002

PERIOD:

6:30 PM TO 9:300 PM

INTERSECTION N/S I-110 NB OFF-RAMP/HILL ST.

EW

M.L. KING BLVD.

FILE NUMBER:

6-PM

|   | 15 MINUTE | 1          | 2    | 3    | 4        | 5     | 6    | 7      | 8    | 9          | 10   | 11   | 12   |        |
|---|-----------|------------|------|------|----------|-------|------|--------|------|------------|------|------|------|--------|
| İ | TOTALS    | SBRT       | SBTH | SBLT | WBRT     | WBTH  | WBLT | NBRT   | NBTH | NBLT       | EBRT | EBTH | EBLT |        |
|   |           |            |      |      |          |       |      |        |      |            |      |      |      |        |
|   | 630-645   | 10         | 0    | 3    | 11       | 124   | 23   | 3      | 11   | 68         | 47   | 150  | 5    |        |
|   | 645-700   | 9          | 0    | 2    | 3        | 85    | 31   | 5      | 2    | 76         | 45   | 104  | 3    |        |
|   | 700-715   | 8          | 1    | 1    | 1        | 123   | 27   | 6      | 4    | 77         | 45   | 98   | 2    |        |
|   | 715-730   | 8          | 1    | 1    | 4        | 77    | 23   | 3      | 4    | 56         | 50   | 99   | 1    |        |
|   | 730-745   | 6          | 2    | 1    | 3        | 112   | 38   | 1      | 4    | 72         | 34   | 121  | 3    |        |
|   | 745-800   | 10         | 2    | 3    | 3        | 111   | 34   | 4      | 3    | 68         | 44   | 106  | 2    |        |
|   | 800-815   | 13         | 3    | 0    | 3        | 92    | 20   | 8      | 4    | 59         | 79   | 93   | 9    |        |
|   | 815-830   | 18         | 3    | 3    | 6        | 87    | 20   | 10     | 2    | <b>6</b> 5 | 77   | 69   | 3    |        |
|   | 830-845   | 44         | 8    | 5    | 2        | 119   | 43   | 16     | 2    | 65         | 132  | 115  | 7    |        |
|   | 845-900   | 30         | 6    | 4    | 3        | 97    | 50   | 12     | 5    | 60         | 134  | 57   | 4    |        |
|   | 900-915   | 56         | 12   | 7    | 8        | 110   | 52   | 19     | 6    | 66         | 130  | 66   | 8    |        |
|   | 915-930   | 32         | 4    | 3    | 5        | 106   | 34   | 16     | 1    | 73         | 137  | 62   | 12   |        |
|   |           |            | ·    |      | <b>V</b> |       |      | ****** |      | ···        |      | ·    |      | •      |
|   | 1 HOUR    | 11         | 2    | 3    | 4        | 5     | 6    | 7      | 8    | 9          | 10   | 11   | 12   |        |
|   | TOTALS    | SBRT       | SBTH | SBLT | WBRT     | WBTH  | WBLT | NBRT   | NBTH | NBLT       | EBRT | EBTH | EBLT | TOTALS |
|   | •         |            |      |      |          |       |      |        |      |            |      |      |      |        |
|   | 0630-0730 | <b>3</b> 5 |      |      |          |       |      |        |      |            | 187  |      | 11   |        |
|   | 0645-0745 | 31         |      |      |          |       |      |        |      |            | 174  |      |      |        |
|   | 0700-0800 | 32         |      |      |          |       |      |        |      |            |      |      |      |        |
|   | 0715-0815 | 37         |      |      |          |       |      |        |      |            |      |      |      |        |
|   | 0730-0830 | 47         |      |      |          |       |      |        |      |            |      |      |      |        |
|   | 0745-0845 | 85         | 16   | 11   | 14       | 409   | 117  | 38     | 11   | 257        | 332  |      |      |        |
|   | 0800-0900 | 105        |      |      |          |       |      |        |      |            |      |      |      |        |
|   | 0815-0915 | 148        |      |      |          |       |      |        |      |            |      |      |      |        |
|   | 0830-0930 | 162        | 30   | 19   | 18       | 3 432 | 179  | 63     | 14   | 1 264      | 533  | 300  | ) 31 | 2045   |
|   |           |            |      |      |          |       |      |        |      |            |      |      |      |        |

CLIENT:

KAKU ASSOCIATES

PROJECT:

L.A. COLISEUM COINTS

DATE:

SATURDAY, NOVEMBER 30, 2002

PERIOD:

6:30 PM TO 9:30 PM

INTERSECTION.

N/S

FLOWER ST. E/W M.L. KING BLVD.

FILE NUMBER:

5-PM

| 15 MINUTE       | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9        | 10   | 11   | 12   |
|-----------------|------|------|------|------|------|------|------|------|----------|------|------|------|
| TOTALS          | SBRT | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT     | EBRT | EBTH | EBLT |
|                 |      |      |      |      |      |      |      |      | <u> </u> |      |      |      |
| <b>630-64</b> 5 | 51   | 0    | 39   | 0    | 133  | 20   | 0    | 0    | 0        | 75   | 112  | 0    |
| 645-700         | 57   | 0    | 38   | 0    | 130  | 18   | 0    | 0    | 0        | 88   | 121  | 0    |
| 700-715         | 54   | 0    | · 37 | 0    | 130  | 26   | 0    | 0    | 0        | 82   | 108  | 0    |
| 715-730         | 60   | 0    | 41   | 0    | 133  | 25   | 0    | 0    | 0        | 76   | 123  | 0    |
| 730-745         | 58   | 0    | 38   | 0    | 145  | 33   | 0    | 0    | 0        | 87   | 107  | 0    |
| 745-800         | 57   | 0    | 33   | 0    | 152  | 18   | 0    | 0    | 0        | 105  | 113  | 0    |
| 800-815         | 60   | 0    | 37   | 0    | 162  | 22   | 0    | 0    | 0        | 95   | 132  | 0    |
| 815-830         | 38   | 0    | 42   | 0    | 160  | 23   | 0    | 0    | 0        | 98   | 140  | 0    |
| <b>830-84</b> 5 | 40   | 0    | 51   | 0    | 155  | 14   | 0    | 0    | 0        | 95   | 112  | 0    |
| 845-900         | 39   | 0    | 39   | 0    | 163  | 22   | 0    | 0    | 0        | 67   | 107  | 0    |
| 900-915         | 38   | 0    | 35   | 0    | 190  | 23   | 0    | 0    | 0        | 56   | 127  | 0    |
| 915-930         | 45   | 0    | 35   | 0    | 192  | 15   | 0    | 0    | 0        | 64   | 140  | 0    |

| 1 HOUR    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 1      |
|-----------|------|------|------|------|------|------|------|------|------|------|------|------|--------|
| TOTALS    | SBRT | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTALS |
|           |      |      |      |      |      |      |      |      |      |      |      |      | TOTALO |
| 0630-0730 | 222  | 0    | 155  | 0    | 526  | 89   | 0    | 0    | 0    | 321  | 464  | 0    | 1777   |
| 0645-0745 | 229  | 0    | 154  | 0    | 538  | 102  | 0    | 0    | 0    | 333  | 459  | 0    |        |
| 0700-0800 | 229  | 0    | 149  | 0    | 560  | 102  | 0    | 0    | 0    | 350  | 451  | 0    |        |
| 0715-0815 | 235  | 0    | 149  | 0    | 592  | 98   | 0    | 0    | 0    | 363  | 475  | 0    |        |
| 0730-0830 | 213  | 0    | 150  | 0    | 619  | 96   | 0    | 0    | 0    | 385  | 492  | 0    |        |
| 0745-0845 | 195  | 0    | 163  | 0    | 629  | 77   | 0    | 0    | 0    | 393  | 497  | 0    |        |
| 0800-0900 | 177  | 0    | 169  | 0    | 640  | 81   | 0    | 0    | 0    | 355  | 491  | 0    | 1913   |
| 0815-0915 | 155  | 0    | 167  | 0    | 668  | 82   | 0    | 0    | 0    | 316  | 486  | 0    | 1874   |
| 0830-0930 | 162  | 0    | 160  | 0    | 700  | 74   | 0    | 0    | 0    | 282  | 486  | 0    | 1864   |

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91006 626.446.7978

CLIENT:

KAKU ASSOCIATES

PROJECT:

L.A. COLISEUM COINTS

DATE:

SATURDAY, NOVEMBER 30, 2002

PERIOD:

6;30 PM TO 9:30 PM

INTERSECTION

FIGUEROA ST.

N/S

E/W M.L. KING BLVD.

FILE NUMBER:

3-PM

|                                                                                         | YY                                            |                                               |                                         |                                        |                                               | ·····                                        | Υ                                            |                                                      |                          |                                        |                                                      |                                                   |     |
|-----------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------|----------------------------------------|-----------------------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------------------|--------------------------|----------------------------------------|------------------------------------------------------|---------------------------------------------------|-----|
| 15 MINUTE                                                                               | 1                                             | 2                                             | 3                                       | 4                                      | 5                                             | 6                                            | 7                                            | 8                                                    | 9                        | 10                                     | 11                                                   | 12                                                |     |
| TOTALS                                                                                  | SBRT                                          | SBTH                                          | SBLT                                    | WBRT                                   | WBTH                                          | WBLT                                         | NBRT                                         | NBTH                                                 | NBLT                     | EBRT                                   | EBTH                                                 | EBLT                                              |     |
|                                                                                         |                                               |                                               |                                         |                                        |                                               |                                              |                                              |                                                      |                          |                                        |                                                      |                                                   |     |
| 630-645                                                                                 | 56                                            | <b>7</b> 6                                    | 24                                      | 18                                     | 183                                           | 26                                           | 3                                            | 86                                                   | 2                        | 19                                     | 192                                                  | 22                                                |     |
| 645-700                                                                                 | 27                                            | 74                                            | 27                                      | 12                                     | 169                                           | 17                                           | 5                                            | 81                                                   | 0                        | 23                                     | 172                                                  | 27                                                |     |
| 700-715                                                                                 | 59                                            | 56                                            | 26                                      | 12                                     | 171                                           | 23                                           | 6                                            | 70                                                   | 1                        | 28                                     | 187                                                  | 24                                                |     |
| 715-730                                                                                 | 39                                            | 82                                            | 22                                      | <b>3</b> 5                             | 149                                           | 26                                           | 3                                            | 60                                                   | 4                        | 21                                     | 170                                                  | 27                                                |     |
| 730-745                                                                                 | 79                                            | 62                                            | 28                                      | 16                                     | 182                                           | 42                                           | 1                                            | 72                                                   | 0                        | 21                                     | 209                                                  | 31                                                |     |
| 745-800                                                                                 | 46                                            | 58                                            | 10                                      | 15                                     | 158                                           | 28                                           | 4                                            | 60                                                   | 0                        | 17                                     | 171                                                  | 17                                                |     |
| 800-815                                                                                 | 31                                            | 75                                            | 0                                       | 10                                     | 147                                           | 23                                           | 8                                            | 53                                                   | 0                        | 12                                     | 214                                                  | 24                                                |     |
| 815-830                                                                                 | 41                                            | 111                                           | 5                                       | 26                                     | 151                                           | 26                                           | 10                                           | 95                                                   | 2                        | 16                                     | 225                                                  | 28                                                |     |
| 830-845                                                                                 | 47                                            | 117                                           | 0                                       | 36                                     | 162                                           | 31                                           | 16                                           | 98                                                   | 0                        | 27                                     | 206                                                  | 25                                                |     |
| 845-900                                                                                 | 33                                            | 88                                            | 5                                       | 26                                     | 158                                           | 20                                           | 12                                           | 128                                                  | 0                        | 8                                      | 166                                                  | 28                                                |     |
| 900-915                                                                                 | 48                                            | 78                                            | 2                                       | 17                                     | 139                                           | 31                                           | 19                                           | 98                                                   | 0                        | 2                                      | 189                                                  | 48                                                |     |
| 915-930                                                                                 | 76                                            | 77                                            | 7                                       | 26                                     | 110                                           | 24                                           | 16                                           | 103                                                  | 0                        | 10                                     | 196                                                  | 42                                                |     |
|                                                                                         |                                               | _                                             |                                         |                                        |                                               |                                              |                                              |                                                      |                          |                                        |                                                      |                                                   |     |
| 1 HOUR                                                                                  | 1                                             | 2                                             | 3                                       |                                        |                                               |                                              |                                              |                                                      |                          |                                        |                                                      |                                                   |     |
| TOTALS                                                                                  |                                               | 2                                             | 3                                       | 4                                      | 5                                             | 6                                            | 7                                            | 8                                                    | 9                        | 10                                     | 11                                                   | 12                                                |     |
| 1017160                                                                                 | SBRT                                          | ∠<br>SBTH                                     | SBLT                                    | 4<br>WBRT                              | 5<br>WBTH                                     | 6<br>WBLT                                    | 7<br>NBRT                                    | 8<br>NBTH                                            | 9<br>NBLT                | 10<br>EBRT                             | 11<br>EBTH                                           | 12<br>EBLT                                        | тот |
| 101110                                                                                  | SBRT                                          |                                               |                                         |                                        |                                               |                                              |                                              |                                                      |                          |                                        |                                                      |                                                   | тот |
| 0630-0730                                                                               | SBRT<br>181                                   |                                               |                                         |                                        |                                               |                                              |                                              | NBTH                                                 |                          | EBRT                                   |                                                      |                                                   |     |
|                                                                                         |                                               | SBTH                                          | SBLT                                    | WBRT                                   | WBTH                                          | WBLT                                         | NBRT                                         | NBTH 297                                             | NBLT                     | EBRT<br>91                             | EBTH 721                                             | EBLT                                              |     |
| 0630-0730                                                                               | 181                                           | SBTH 288                                      | SBLT<br>99                              | WBRT                                   | WBTH 672                                      | WBLT<br>92                                   | NBRT                                         | NBTH<br>297<br>283                                   | NBLT 7 5                 | EBRT<br>91<br>93                       | EBTH<br>721<br>738                                   | EBLT<br>100                                       |     |
| 0630-0730<br>0645-0745                                                                  | 181<br>204                                    | SBTH<br>288<br>274                            | SBLT<br>99<br>103                       | WBRT 77 75                             | WBTH<br>672<br>671                            | 92<br>108                                    | NBRT<br>17<br>15                             | NBTH<br>297<br>283<br>262                            | NBLT 7 5 5               | EBRT<br>91<br>93<br>87                 | 721<br>738<br>737                                    | 100<br>109<br>99                                  |     |
| 0630-0730<br>0645-0745<br>0700-0800                                                     | 181<br>204<br>223                             | 288<br>274<br>258                             | 99<br>103<br>86                         | WBRT<br>77<br>75<br>78                 | WBTH<br>672<br>671<br>660                     | 92<br>108<br>119                             | NBRT<br>17<br>15<br>14                       | NBTH<br>297<br>283<br>262<br>245                     | NBLT<br>7<br>5<br>5      | EBRT<br>91<br>93<br>87<br>71           | 721<br>738<br>737<br>764                             | 100<br>109<br>99<br>99                            |     |
| 0630-0730<br>0645-0745<br>0700-0800<br>0715-0815                                        | 181<br>204<br>223<br>195                      | 288<br>274<br>258<br>277                      | SBLT<br>99<br>103<br>86<br>60           | WBRT 77 75 78 76                       | 672<br>671<br>660<br>636                      | 92<br>108<br>119<br>119                      | NBRT<br>17<br>15<br>14<br>16                 | 297<br>283<br>262<br>245<br>280                      | NBLT 7 5 5 4 2           | 91<br>93<br>87<br>71<br>66             | 721<br>738<br>737<br>764<br>819                      | 100<br>109<br>99<br>99                            |     |
| 0630-0730<br>0645-0745<br>0700-0800<br>0715-0815<br>0730-0830                           | 181<br>204<br>223<br>195<br>197               | 288<br>274<br>258<br>277<br>306               | 99<br>103<br>86<br>60<br>43             | 777 75 78 76 67                        | 672<br>671<br>660<br>636<br>638<br>618        | 92<br>108<br>119<br>119<br>119<br>108        | 17<br>15<br>14<br>16<br>23                   | 297<br>283<br>262<br>245<br>280<br>306               | NBLT 7 5 5 4 2 2         | 91<br>93<br>87<br>71<br>66             | 721<br>738<br>737<br>764<br>819<br>816               | 100<br>109<br>99<br>99<br>100                     |     |
| 0630-0730<br>0645-0745<br>0700-0800<br>0715-0815<br>0730-0830<br>0745-0845              | 181<br>204<br>223<br>195<br>197<br>165        | 288<br>274<br>258<br>277<br>306<br>361        | 99<br>103<br>86<br>60<br>43<br>15       | 77<br>75<br>78<br>76<br>67<br>87       | 672<br>671<br>660<br>636<br>638<br>618        | 92<br>108<br>119<br>119<br>119<br>108<br>100 | 17<br>15<br>14<br>16<br>23<br>38             | 297<br>283<br>262<br>245<br>280<br>306<br>374        | NBLT 7 5 5 4 2 2 2 2     | 91<br>93<br>87<br>71<br>66<br>72       | 721<br>738<br>737<br>764<br>819<br>816<br>811        | 100<br>109<br>99<br>99<br>100<br>94<br>105        |     |
| 0630-0730<br>0645-0745<br>0700-0800<br>0715-0815<br>0730-0830<br>0745-0845<br>0800-0900 | 181<br>204<br>223<br>195<br>197<br>165<br>152 | 288<br>274<br>258<br>277<br>306<br>361<br>391 | 99<br>103<br>86<br>60<br>43<br>15<br>10 | 77<br>75<br>78<br>76<br>67<br>87<br>98 | 672<br>671<br>660<br>636<br>638<br>618<br>618 | 92<br>108<br>119<br>119<br>119<br>108<br>100 | 17<br>15<br>14<br>16<br>23<br>38<br>46<br>57 | 297<br>283<br>262<br>245<br>280<br>306<br>374<br>419 | NBLT 7 5 5 4 2 2 2 2 2 2 | 91<br>93<br>87<br>71<br>66<br>72<br>63 | 721<br>738<br>737<br>764<br>819<br>816<br>811<br>786 | 100<br>109<br>99<br>99<br>100<br>94<br>105<br>129 |     |



## INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:

KAKU ASSOCIATES

PROJECT:

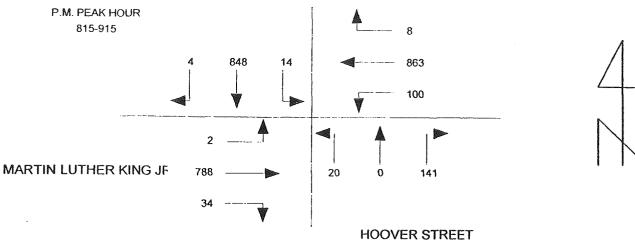
LOS ANGELES COLISEUM TRAFFIC COUNTS

DATE:

SATURDAY, NOVEMBER 30th, 2002

PERIOD:

6:30 PM TO 9:30 PM


INTERSECTION: N/S

**HOOVER STREET** 

Ε/W

MARTIN LUTHER KING JR. BOULEVARD

| 45 48141 6 | \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ |      |      |      |      |      |      |      |      |      |      |      |       |
|------------|----------------------------------------|------|------|------|------|------|------|------|------|------|------|------|-------|
| 15 MIN C   | COUNTS                                 | 5    |      |      |      |      |      |      |      |      |      |      |       |
|            | 1                                      | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| PERIOD     | SBRT                                   | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 630-645    | 2                                      | 1    | 3    | 5    | 216  | 12   | 38   | 6    | 31   | 41   | 104  | 0    | 459   |
| 645-700    | 1                                      | 4    | 3    | 6    | 186  | 15   | 21   | 2    | 29   | 24   | 137  | 0    | 428   |
| 700-715    | 4                                      | 2    | 11   | 7    | 207  | 17   | 10   | 2    | 33   | 19   | 197  | 0    | 509   |
| 715-730    | 3                                      | 0    | 3    | 9    | 182  | 10   | 17   | 3    | 45   | 21   | 208  | 2    | 503   |
| 730-745    | 6                                      | 2    | 1    | 8    | 199  | 6    | 20   | 2    | 26   | 28   | 168  | 1    | 467   |
| 745-800    | 4                                      | 4    | 8    | 14   | 190  | 36   | 15   | 1    | 20   | 29   | 202  | 5    | 528   |
| 800-815    | 9                                      | 48   | 4    | 4    | 172  | 17   | 16   | 4    | 8    | 25   | 204  | 1    | 512   |
| 815-830    | 0                                      | 147  | 0    | 5    | 201  | 22   | 46   | 0    | 6    | 22   | 252  | 2    | 703   |
| 830-845    | 4                                      | 202  | 0    | 3    | 211  | 24   | 54   | 0    | 4    | 9    | 230  | 0    | 741   |
| 845-900    | 0                                      | 288  | 1    | 0    | 226  | 23   | 14   | 0    | 7    | 0    | 153  | 0    | 712   |
| 900-915    | 0                                      | 211  | 13   | 0    | 225  | 31   | 27   | 0    | 3    | 3    | 153  | 0    | 666   |
| 915-930    | 12                                     | 105  | 17   | 0    | 257  | 33   | 30   | 0    | 0    | 4    | 79   | 0    | 537   |
| HOUR TO    | OTALS                                  |      |      |      |      |      |      |      |      |      |      |      |       |
|            | 1                                      | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| TIME       | SBRT                                   | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 630-730    | 10                                     | 7    | 20   | 27   | 791  | 54   | 86   | 13   | 138  | 105  | 646  | 2    | 1899  |
| 645-745    | 14                                     | 8    | 18   | 30   | 774  | 48   | 68   | 9    | 133  | 92   | 710  | 3    | 1907  |
| 700-800    | 17                                     | 8    | 23   | 38   | 778  | 69   | 62   | 8    | 124  | 97   | 775  | 8    | 2007  |
| 715-815    | 22                                     | 54   | 16   | 35   | 743  | 69   | 68   | 10   | 99   | 103  | 782  | 9    | 2010  |
| 730-830    | 19                                     | 201  | 13   | 31   | 762  | 81   | 97   | 7    | 60   | 104  | 826  | 9    | 2210  |
| 745-845    | 17                                     | 401  | 12   | 26   | 774  | 99   | 131  | 5    | 38   | 85   | 888  | 8    | 2484  |
| 800-900    | 13                                     | 685  | 5    | 12   | 810  | 86   | 130  | 4    | 25   | 56   | 839  | 3    | 2668  |
| 815-915    | 4                                      | 848  | 14   | 8    | 863  | 100  | 141  | 0    | 20   | 34   | 788  | 2    | 2822  |
| 830-930    | 16                                     | 806  | 31   | 3    | 919  | 111  | 125  | 0    | 14   | 16   | 615  | 0    | 2656  |



Phone: (626) 564-1944 Fax: (

Fax: (626) 564-0969

### INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:

KAKU ASSOCIATES

PROJECT:

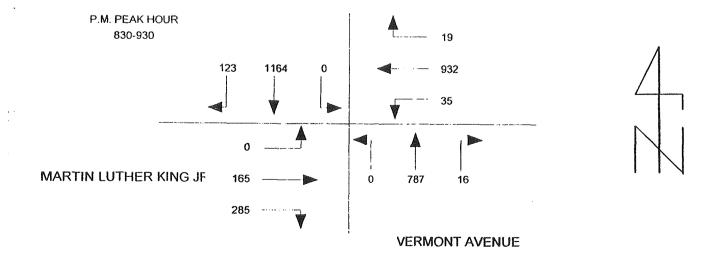
LOS ANGELES COLISEUM TRAFFIC COUNTS

DATE:

SATURDAY, NOVEMBER 30th, 2002

PERIOD:

6:30 PM TO 9:30 PM


INTERSECTION: N/S

**VERMONT AVENUE** 

Ε/W

MARTIN LUTHER KING JR. BOULEVARD

| 15 MIN C        | OUNT  | S    |      |      |                                         |      |      |      |      |      |          |      |       |
|-----------------|-------|------|------|------|-----------------------------------------|------|------|------|------|------|----------|------|-------|
|                 | 1     | 2    | 3    | 4    | 5                                       | 6    | 7)   | 8    | 9    | 10   | 11       | 12   |       |
| PERIOD          | SBRT  | SBTH | SBLT | WBRT | WBTH                                    | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH     | EBLT | TOTAL |
| 630-645         | 15    | 134  | 34   | 46   | 190                                     | 10   | 15   | 104  | 28   | 26   | 202      | 17   | 821   |
| 645-700         | 16    | 132  | 49   | 48   | 177                                     | 11   | 16   | 122  | 24   | 39   | 151      | 20   | 805   |
| 700-715         | 17    | 131  | 37   | 50   | 178                                     | 9    | 8    | 112  | 28   | 25   | 192      | 29   | 816   |
| 715-730         | 22    | 126  | 44   | 55   | 175                                     | 8    | 7    | 114  | 30   | 25   | 154      | 18   | 778   |
| 730-745         | 19    | 110  | 31   | 49   | 166                                     | 7    | 9    | 94   | 28   | 29   | 146      | 20   | 708   |
| 745-800         | 20    | 98   | 49   | 39   | 156                                     | 6    | 14   | 96   | 23   | 27   | 174      | 23   | 725   |
| 800-815         | 25    | 159  | 8    | 30   | 147                                     | 10   | 30   | 112  | 41   | 19   | 182      | 9    | 772   |
| 815-830         | 21    | 240  | 9    | 28   | 138                                     | 4    | 36   | 126  | 0    | 20   | 177      | 0    | 799   |
| 830-845         | 25    | 283  | 0    | 16   | 223                                     | 12   | 15   | 220  | 0    | 27   | 162      | 0    | 983   |
| 845-900         | 38    | 283  | 0    | 0    | 263                                     | 5    | 1    | 193  | 0    | 68   | 2        | 0    | 853   |
| 900-915         | 32    | 284  | 0    | 1    | 233                                     | 12   | 0    | 194  | 0    | 77   | 1        | 0    | 834   |
| 915-930         | 28    | 314  | 0    | 2    | 213                                     | 6    | 0    | 180  | 0    | 113  | 0        | 0    | 856   |
| HOUR TO         | OTALS |      |      |      | *************************************** |      |      |      |      |      | <u>-</u> |      |       |
|                 | 1     | 2    | 3    | 4    | 5                                       | 6    | 7    | 8    | 9    | 10   | 11       | 12   |       |
| TIME            | SBRT  | SBTH | SBLT | WBRT | WBTH                                    | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH     | EBLT | TOTAL |
| 630-730         | 70    | 523  | 164  | 199  | 720                                     | 38   | 46   | 452  | 110  | 115  | 699      | 84   | 3220  |
| 645-745         | 74    | 499  | 161  | 202  | 696                                     | 35   | 40   | 442  | 110  | 118  | 643      | 87   | 3107  |
| <b>700</b> -800 | 78    | 465  | 161  | 193  | 675                                     | 30   | 38   | 416  | 109  | 106  | 666      | 90   | 3027  |
| 715-815         | 86    | 493  | 132  | 173  | 644                                     | 31   | 60   | 416  | 122  | 100  | 656      | 70   | 2983  |
| <b>730</b> -830 | 85    | 607  | 97   | 146  | 607                                     | 27   | 89   | 428  | 92   | 95   | 679      | 52   | 3004  |
| 745-845         | 91    | 780  | 66   | 113  | 664                                     | 32   | 95   | 554  | 64   | 93   | 695      | 32   | 3279  |
| 800-900         | 109   | 965  | 17   | 74   | 771                                     | 31   | 82   | 651  | 41   | 134  | 523      | 9    | 3407  |
| 815-915         | 116   | 1090 | 9    | 45   | 857                                     | 33   | 52   | 733  | 0    | 192  | 342      | 0    | 3469  |
| 830-930         | 123   | 1164 | 0    | 19   | 932                                     | 35   | 16   | 787  | 0    | 285  | 165      | 0    | 3526  |



CLIENT:

KAKU ASSOCIATES

PROJECT:

LOS ANGELES COLISEUM TRAFFIC COUNTS

DATE:

SATURDAY, NOVEMBER 30th, 2002

PERIOD:

6:30 PM TO 9:30 PM

INTERSECTION: N/S

**VERMONT AVENUE** 

Ε/W

39TH STREET

| 15 MIN C | COUNTS | 3    |      |      |      |          |      |      |      |      |      |      |       |
|----------|--------|------|------|------|------|----------|------|------|------|------|------|------|-------|
|          | 1      | 2    | 3    | 4    | 5    | 6        | 7    | 8    | 9    | 10   | 11   | 12   |       |
| PERIOD   | SBRT   | SBTH | SBLT | WBRT | WBTH | WBLT     | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 630-645  | 14     | 144  | 2    | 1    | 0    | 0        | 1    | 136  | 15   | 10   | 0    | 11   | 334   |
| 645-700  | 14     | 168  | 2    | 6    | 2    | 2        | 11   | 159  | 9    | 15   | 2    | 11   | 401   |
| 700-715  | 12     | 158  | 1    | 4    | 0    | 1        | 4    | 203  | 11   | 18   | 2    | 18   | 432   |
| 715-730  | 9      | 165  | 0    | 2    | 2    | 3        | 2    | 117  | 13   | 11   | 0    | 15   | 339   |
| 730-745  | 14     | 137  | 1    | 1    | 0    | 0        | 4    | 131  | 7    | 18   | 1    | 11   | 325   |
| 745-800  | 8      | 128  | 0    | 2    | 0    | 3        | 7    | 158  | 16   | 16   | 2    | 16   | 356   |
| 800-815  | 10     | 153  | 1    | 16   | 0    | 4        | 4    | 134  | 9    | 28   | 0    | 29   | 388   |
| 815-830  | 15     | 204  | 0    | 1    | 2    | 10       | 2    | 118  | 10   | 27   | 0    | 32   | 421   |
| 830-845  | 15     | 214  | 0    | 16   | 6    | 3        | 7    | 202  | 10   | 34   | 2    | 33   | 542   |
| 845-900  | 20     | 249  | 0    | 26   | 11   | 13       | 2    | 272  | 13   | 47   | 3    | 75   | 731   |
| 900-915  | 17     | 200  | 0    | 14   | 18   | 19       | 4    | 111  | 8    | 17   | 4    | 34   | 446   |
| 915-930  | 22     | 252  | 0    | 15   | 2    | 3        | 7    | 188  | 17   | 22   | 5    | 36   | 569   |
| HOUR TO  | OTALS  |      |      |      |      | <u>-</u> |      |      |      |      | 1    |      |       |
|          | 1      | 2    | 3    | 4    | 5    | 6        | 7    | 8    | 9    | 10   | 11   | 12   |       |
| TIME     | SBRT   | SBTH | SBLT | WBRT | WBTH | WBLT     | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 630-730  | 49     | 635  | 5    | 13   | 4    | 6        | 18   | 615  | 48   | 54   | 4    | 55   | 1506  |
| 645-745  | 49     | 628  | 4    | 13   | 4    | - 6      | 21   | 610  | 40   | 62   | 5    | 55   | 1497  |
| 700-800  | 43     | 588  | 2    | 9    | 2    | 7        | 17   | 609  | 47   | 63   | 5    | 60   | 1452  |
| 715-815  | 41     | 583  | 2    | 21   | 2    | 10       | 17   | 540  | 45   | 73   | 3    | 71   | 1408  |
| 730-830  | 47     | 622  | 2    | 20   | 2    | 17       | 17   | 541  | 42   | 89   | 3    | 88   | 1490  |
| 745-845  | 48     | 699  | 1    | 35   | 8!   | 20       | 20   | 612  | 45   | 105  | 4    | 110  | 1707  |
| 800-900  | 60     | 820  | 1    | 59   | 19   | 30       | 15   | 726  | 42   | 136  | 5    | 169  | 2082  |
| 815-915  | 67     | 867  | 0    | 57   | 37   | 45       | 15   | 703  | 41   | 125  | 9    | 174  | 2140  |
| 830-930  | 74     | 915  | 0    | 71   | 37   | 38       | 20   | 773  | 48   | 120  | 14   | 178  | 2288  |



Phone: (626) 564-1944

Fax: (626) 564-0969

## INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:

KAKU ASSOCIATES

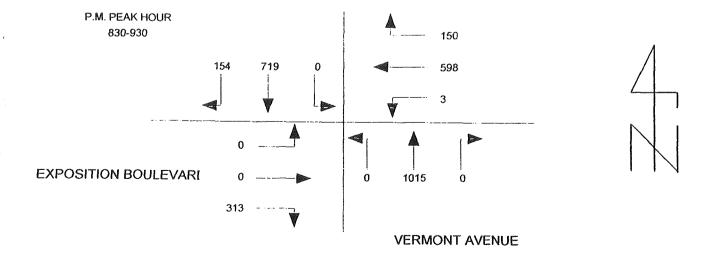
PROJECT:

LOS ANGELES COLISEUM TRAFFIC COUNTS

DATE:

SATURDAY, NOVEMBER 30th, 2002

PERIOD:


6:30 PM TO 9:30 PM

INTERSECTION: N/S

**VERMONT AVENUE** 

E/W

| [        |        |          |      |      |      |      |      |      |      |      |      |      |       |
|----------|--------|----------|------|------|------|------|------|------|------|------|------|------|-------|
| 15 MIN C | COUNTS | <u>S</u> |      |      |      |      |      |      |      |      |      |      |       |
|          | 1      | 2        | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| PERIOD   | SBRT   | SBTH     | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 630-645  | 32     | 160      | 2    | 7    | 1    | 2    | 16   | 143  | 0    | 17   | 87   | 0    | 467   |
| 645-700  | 22     | 164      | 1    | 3    | 2    | 1    | 8    | 155  | 1    | 17   | 90   | 3    | 467   |
| 700-715  | 30     | 164      | 0    | 10   | 6    | 1    | 19   | 172  | 2    | 19   | 111  | 0    | 534   |
| 715-730  | 31     | 153      | 2    | 10   | 5    | 1    | 11   | 180  | 3    | 8    | 70   | 1    | 475   |
| 730-745  | 41     | 163      | 0    | 1    | 1    | 1    | 8    | 90   | 0    | 8    | 61   | 0    | 374   |
| 745-800  | 21     | 125      | 0    | 4    | 5    | 1    | 10   | 144  | 1    | 7    | 57   | 3    | 378   |
| 800-815  | 33     | 161      | 0    | 5    | 9    | 0    | 9    | 151  | 1    | 14   | 19   | 1    | 403   |
| 815-830  | 27     | 161      | 1    | 20   | 9    | 4    | 1    | 210  | 0    | 54   | 0    | 1    | 488   |
| 830-845  | 40     | 152      | 0    | 1    | 167  | 3    | 0    | 285  | 0    | 69   | 0    | 0    | 717   |
| 845-900  | 35     | 172      | 0    | 11   | 157  | 0    | 0    | 238  | 0    | 61   | 0    | 0    | 674   |
| 900-915  | 32     | 185      | 0    | 37   | 194  | 0    | 0    | 276  | 0    | 91   | 0    | 0    | 815   |
| 915-930  | 47     | 210      | 0    | 101  | 80   | 0    | 0    | 216  | 0    | 92   | 0    | 0    | 746   |
| HOUR TO  | OTALS  |          |      |      |      |      |      |      |      |      |      |      |       |
|          | 1      | 2        | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| TIME     | SBRT   | SBTH     | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 630-730  | 115    | 641      | 5    | 30   | 14   | 5    | 54   | 650  | 6    | 61   | 358  | 4    | 1943  |
| 645-745  | 124    | 644      | 3    | 24   | 14   | 4    | 46   | 597  | 6    | 52   | 332  | 4    | 1850  |
| 700-800  | 123    | 605      | 2    | 25   | 17   | 4    | 48   | 586  | 6    | 42   | 299  | 4    | 1761  |
| 715-815  | 126    | 602      | 2    | 20   | 20   | 3    | 38   | 565  | 5    | 37   | 207  | 5    | 1630  |
| 730-830  | 122    | 610      | 1    | 30   | 24   | 6    | 28   | 595  | 2    | 83   | 137  | 5    | 1643  |
| 745-845  | 121    | 599      | 1    | 30   | 190  | 8    | 20   | 790  | 2    | 144  | 76   | 5    | 1986  |
| 800-900  | 135    | 646      | 1    | 37   | 342  | 7.   | 10   | 884  | 1    | 198  | 19   | 2    | 2282  |
| 815-915  | 134    | 670      | 1    | 69   | 527  | 7    | 1    | 1009 | 0    | 275  | 0    | 1    | 2694  |
| 830-930  | 154    | 719      | 0    | 150  | 598  | 3    | 0    | 1015 | 0    | 313  | 0    | 0    | 2952  |





Phone: (626) 564-1944

Fax: (626) 564-0969

### INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:

KAKU ASSOCIATES

PROJECT:

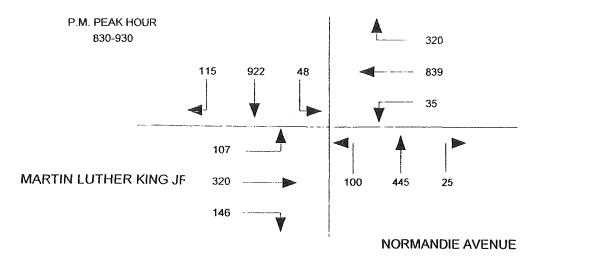
LOS ANGELES COLISEUM TRAFFIC COUNTS

DATE:

SATURDAY, NOVEMBER 30th, 2002

PERIOD:

6:30 PM TO 9:30 PM


INTERSECTION: N/S

**NORMANDIE AVENUE** 

Ε/W

MARTIN LUTHER KING JR. BOULEVARD

| AF BAIRLO        | OLINITO | `    |              | V-14    |      |      |      |      |      |      |      |      |       |
|------------------|---------|------|--------------|---------|------|------|------|------|------|------|------|------|-------|
| 15 MIN C         | OUNT    |      | <del>,</del> |         |      |      |      |      |      |      |      |      |       |
|                  | 1       | 2    | 3            | 4       | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| PERIOD           | SBRT    | SBTH | SBLT         | WBRT    | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 630-645          | 10      | 82   | 12           | 22      | 135  | 11   | 17   | 173  | 25   | 21   | 182  | 28   | 718   |
| 645-700          | 22      | 127  | 14           | 30      | 140  | 14   | 11   | 130  | 23   | 22   | 164  | 22   | 719   |
| 700-715          | 23      | 161  | 23           | 23      | 205  | 13   | 5    | 126  | 22   | 11   | 129  | 25   | 766   |
| 715-730          | 17      | 127  | 16           | 24      | 124  | 17   | 5    | 128  | 15   | 12   | 134  | 21   | 640   |
| 730-745          | 16      | 107  | 14           | 25      | 164  | 6    | 6    | 77   | 16   | 8    | 151  | 26   | 616   |
| 745-800          | 26      | 116  | 32           | 19      | 145  | 10   | 8    | 99   | 21   | 14   | 126  | 18   | 634   |
| 800-815          | 19      | 140  | 40           | 25      | 152  | 8    | 10   | 100  | 21   | 9    | 137  | 19   | 680   |
| 815-830          | 26      | 139  | 41           | 35      | 167  | 12   | 9    | 76   | 18   | 14   | 86   | 20   | 643   |
| 830-845          | 31      | 170  | 44           | 57      | 196  | 16   | 10   | 115  | 22   | 13   | 90   | 21   | 785   |
| 845-900          | 20      | 213  | 4            | 87      | 192  | 5    | 7    | 94   | 24   | 17   | 98   | 23   | 784   |
| 900-915          | 38      | 285  | 0            | 89      | 257  | 7    | 4    | 114  | 29   | 62   | 49   | 29   | 963   |
| 915-930          | 26      | 254  | 0            | 87      | 194  | 7    | 4    | 122  | 25   | 54   | 83   | 34   | 890   |
| HOUR TO          | OTALS   |      |              | 1 2 2 - |      |      |      |      |      |      |      |      |       |
|                  | 1       | 2    | 3            | 4       | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| TIME             | SBRT    | SBTH | SBLT         | WBRT    | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 6 <b>30</b> -730 | 72      | 497  | 65           | 99      | 604  | 55   | 38   | 557  | 85   | 66   | 609  | 96   | 2843  |
| 645-745          | 78      | 522  | 67           | 102     | 633  | 50   | 27   | 461  | 76   | 53   | 578  | 94   | 2741  |
| 700-800          | 82      | 511  | 85           | 91      | 638  | 46   | 24   | 430  | 74   | 45   | 540  | 90   | 2656  |
| 715-815          | 78      | 490  | 102          | 93      | 585  | 41   | 29   | 404  | 73   | 43   | 548  | 84   | 2570  |
| 730-830          | 87      | 502  | 127          | 104     | 628  | 36   | 33   | 352  | 76   | 45   | 500  | 83   | 2573  |
| 745-845          | 102     | 565  | 157          | 136     | 660  | 46   | 37   | 390  | 82   | 50   | 439  | 78   | 2742  |
| 800-900          | 96      | 662  | 129          | 204     | 707  | 41   | 36   | 385  | 85   | 53   | 411  | 83   | 2892  |
| 815-915          | 115     | 807  | 89           | 268     | 812  | 40   | 30   | 399  | 93   | 106  | 323  | 93   | 3175  |
| 830-930          | 115     | 922  | 48           | 320     | 839  | 35   | 25   | 445  | 100  | 146  | 320  | 107  | 3422  |



CLIENT:

KAKU ASSOCIATES

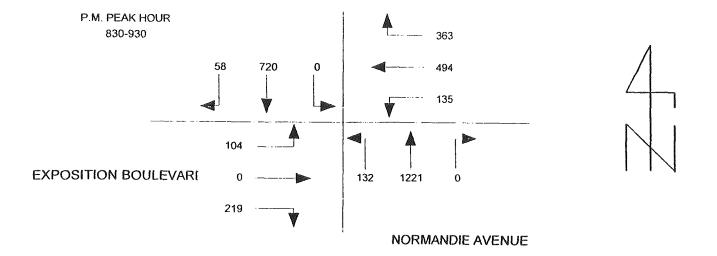
PROJECT:

LOS ANGELES COLISEUM TRAFFIC COUNTS

DATE:

SATURDAY, NOVEMBER 30th, 2002

PERIOD:


6:30 PM TO 9:30 PM

INTERSECTION: N/S

NORMANDIE AVENUE

Ε/W

| 15 MIN C    | ·OLINITO | 2    |      |      |      |      |      |      |      |      |      |      |       |
|-------------|----------|------|------|------|------|------|------|------|------|------|------|------|-------|
| 10 101114 C | 11100    | 2    | 3    | 4    | 5    | 6    | 7    |      |      | 4-1  |      |      |       |
| PERIOD      | SBRT     | SBTH | SBLT | WBRT | WBTH | - 1  | -    | 8    | 9    | 10   | 11   | 12   |       |
| 630-645     | 26       | 165  | 18   | 7    |      | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 645-700     | 23       | 208  | 12   |      | 20   | 5    | 8    | 185  | 15   | 13   | 57   | 22   | 541   |
| 700-715     | 19       | 216  |      | 9    | 29   | 6    | 9    | 184  | 10   | 15   | 79   | 13   | 597   |
| 715-730     |          |      | 14   | 6    | 35   | 3    | 15   | 177  | 12   | 16   | 67   | 15   | 595   |
| 730-745     | 8        | 186  | 11   | 8    | 27   | 7    | 12   | 183  | 20   | 12   | 50   | 15   | 539   |
|             | 15       | 146  | 16   | 9    | 26   | 1    | 13   | 125  | 16   | 15   | 51   | 12   | 445   |
| 745-800     | 12       | 166  | 3    | 6    | 21   | 3    | 4    | 150  | 7    | 21   | 37   | 16   | 446   |
| 800-815     | 15       | 185  | 0    | 6    | 18   | 5    | 0    | 155  | 13   | 51   | 0    | 30   | 478   |
| 815-830     | 15       | 168  | 1    | 56   | 53   | 13   | 0    | 206  | 10   | 33   | 0    | 45   | 600   |
| 830-845     | 12       | 171  | 0    | 114  | 96   | 21   | 0    | 295  | 23   | 52   | 0    | 36   | 820   |
| 845-900     | 15       | 201  | 0    | 106  | 106  | 30   | 0    | 305  | 20   | 48   | 0    | 23   | 854   |
| 900-915     | 15       | 179  | 0    | 104  | 209  | 56   | 0    | 338  | 54   | 59   | 0    | 19   | 1033  |
| 915-930     | 16       | 169  | 0    | 39   | 83   | 28   | 0    | 283  | 35   | 60   | 0    | 26   | 739   |
| HOUR TO     | DTALS    |      |      |      |      |      |      |      |      |      | ···· |      |       |
|             | 1        | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| TIME        | SBRT     | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 630-730     | 76       | 775  | 55   | 30   | 111  | 21   | 44   | 729  | 57   | 56   | 253  | 65   | 2272  |
| 645-745     | 65       | 756  | 53   | 32   | 117  | 17   | 49   | 669  | 58   | 58   | 247  | 55   | 2176  |
| 700-800     | 54       | 714  | 44   | 29   | 109  | 14   | 44   | 635  | 55   | 64   | 205  | 58   | 2025  |
| 715-815     | 50       | 683  | 30   | 29   | 92   | 16   | 29   | 613  | 56   | 99   | 138  | 73   | 1908  |
| 730-830     | 57       | 665  | 20   | 77   | 118  | 22   | 17   | 636  | 46   | 120  | 88   | 103  | 1969  |
| 745-845     | 54       | 690  | 4    | 182  | 188  | 42   | 4    | 806  | 53   | 157  | 37   | 127  | 2344  |
| 800-900     | 57       | 725  | 1    | 282  | 273  | 69   | 0    | 961  | 66   | 184  | 0    | 134  | 2752  |
| 815-915     | 57       | 719  | 1    | 380  | 464  | 120  | 0    | 1144 | 107  | 192  | 0    | 123  | 3307  |
| 830-930     | 58       | 720  | 0    | 363  | 494  | 135  | 0    | 1221 | 132  | 219  | 0    | 104  | 3446  |



Prepared by: Southland Car Counters

Prepared For:

KAKU Associates

Client's Project Name

| Prepared         | For:       | KAKU      | Associa | tes   | Cli   | ents Pr   | oject Na      | me      |        |        |        |          |          |
|------------------|------------|-----------|---------|-------|-------|-----------|---------------|---------|--------|--------|--------|----------|----------|
| Saturday,        | Nove       | mber 30,  | 2002    |       | CI    | ient's Re | <i>f:</i> P30 | 84      |        | Projec | t No   | 02-1     | 1514-002 |
| N-S Stree        | 21         | Vermoni   | ! Ave.  |       | E-W   | Street    | Jeffe         | rson Bl | vd.    | A      | rea:   | Los Ange | eles     |
|                  | N          | orthBo    | ound    | So    | uthBo | und       | Εd            | astBoi  | ınd    | W      | 'estBa | ound     |          |
|                  | NL         | NT        | NR      | SL    | ST    | SR        | EL            | ET      | ER     | WL     | WT     | WR       | Total    |
| Lanes:           | _1         | 2         | 1       | 1     | 2     | 1         | 1             | 1.5     | .5     | 1      | 2      | 1        |          |
| 6:30 PM          | 5          | 168       | 20      | 7     | 142   | 15        | 21            | 77      | 16     | 55     | 116    | 19       | 661      |
| 6:45 PM          | 12         | 172       | 23      | 9     | 154   | 18        | 24            | 81      | 17     | 61     | 124    | 20       | 715      |
| 7:00 PM          | 6          | 167       | 28      | 13    | 138   | 22        | 21            | 75      | 15     | 65     | 121    | 22       | 693      |
| 7:15 PM          | 7          | 137       | 25      | 15    | 173   | 20        | 19            | 66      | 14     | 60     | 99     | 20       | 655      |
| 7:30 PM          | 7          | 128       | 24      | 17    | 184   | 19        | 19            | 57      | 13     | 56     | 96     | 22       | 642      |
| 7:45 PM          | 9          | 136       | 27      | 12    | 120   | 20        | 11            | 38      | 8      | 45     | 102    | 18       | 546      |
| 8:00 PM          | 9          | 208       | 6       | · 1   | 157   | 20        | 0             | 30      | 16     | 24     | 154    | 13       | 638      |
| 8:15 PM          | 5          | 375       | 6       | 0     | 146   | 21        | 0             | 55      | 18     | 10     | 162    | 42       | 840      |
| 8:30 PM          | 4          | 457       | 5       | 1     | 134   | 24        | 0             | 61      | 23     | 1      | 190    | 52       | 952      |
| 8:45 PM          | <b>1</b> 6 | 508       | 0       | 0     | 157   | 41        | 1             | 57      | 17     | 5      | 198    | 0        | 1000     |
| 9:00 PM          | 22         | 442       | 3       | 0     | 125   | 32        | 0             | 91      | 17     | 3      | 198    | 2        | 935      |
| 9:15 PM          | 11         | 427       | 2       | 0     | 122   | 21        | 0             | 62      | 15     | 1      | 181    | 0        | 842      |
| Totals:          | 113        | 3325      | 169     | 75    | 1752  | 273       | 116           | 750     | 189    | 386    | 1741   | 230      | 9119     |
| PM Peak          | Hour       | Begins at | f 8:3   | 30 PM |       | 15 N      | lin. Pea      | k: 8    | :45 PM |        |        |          |          |
| Peak<br>Volumes: | 53         | 1834      | 10      | 1     | 538   | 118       | 1             | 271     | 72     | 10     | 767    | 54       | 3729     |

Intersection Control: Signalized

Volumes:

Prepared by: Southland Car Counters

Prepared For:

KAKU Associates

Client's Project Name

Saturday, November 30, 2002

Client's Ref: P3084

Project No

02-1514-001

| Saturday,        | MOVE   | mber 50,  | 2002     |      | Cit   | ents Re | g. rsu     | 04      |        | Projec | 1140   | 02-1     | 314-001 |
|------------------|--------|-----------|----------|------|-------|---------|------------|---------|--------|--------|--------|----------|---------|
| N-S Street       | 1      | Norman    | die Ave. |      | E-W   | Street  | Jeffe      | rson Bl | vd.    | A      | rea:   | Los Ange | eles    |
|                  | N      | orthBo    | ound     | So   | uthBo | und     | Ec         | istBoi  | und    | W      | estB e | ound     |         |
|                  | NL     | NT        | NR       | SL   | ST    | SR      | EL         | ΕT      | ER     | WL     | WT     | WR       | Total   |
| Lanes:           |        |           |          |      |       |         |            |         |        |        |        |          |         |
| 6:30 PM          | 23     | 150       | 28       | 16   | 175   | 13      | 14         | 99      | 21     | 44     | 103    | 11       | 697     |
| 6:45 PM          | 19     | 140       | 31       | 14   | 187   | 19      | 9          | 85      | 24     | 47     | 96     | 13       | 684     |
| 7:00 PM          | 31     | 172       | 35       | 23   | 191   | 22      | 16         | 91      | 27     | 41     | 85     | 9        | 743     |
| 7:15 PM          | 25     | 158       | 24       | 20   | 206   | 25      | 25         | 97      | 31     | 52     | 108    | 15       | 786     |
| 7:30 PM          | 27     | 132       | 16       | 13   | 182   | 17      | 20         | 63      | 33     | 48     | 91     | 12       | 654     |
| 7:45 PM          | 18     | 139       | 2        | 3    | 156   | 19      | 37         | 13      | 29     | 39     | 86     | 11       | 552     |
| 8:00 PM          | 15     | 170       | 1        | 0    | 135   | 13      | 35         | 10      | 35     | 46     | 81     | 9        | 550     |
| 8:15 PM          | 21     | 238       | 1        | 2    | 156   | 11      | 33         | 12      | 28     | 41     | 73     | 16       | 632     |
| 8:30 PM          | 28     | 478       | 2        | 1    | 132   | 14      | 52         | 16      | 39     | 58     | 144    | 37       | 1001    |
| 8:45 PM          | 31     | 445       | 0        | 0    | 193   | 10      | 51         | 21      | 48     | 64     | 136    | 39       | 1038    |
| 9:00 PM          | 33     | 431       | 1        | 0    | 172   | 15      | <b>4</b> 9 | 15      | 45     | 56     | 154    | 45       | 1016    |
| 9:15 PM          | 30     | 410       | 3        | 1    | 151   | 16      | <b>4</b> 2 | 8       | 38     | 49     | 129    | 50       | 927     |
| Totals:          | 301    | 3063      | 144      | 93   | 2036  | 194     | 383        | 530     | 398    | 585    | 1286   | 267      | 9280    |
| PM Peak I        | lour l | Begins at | 8:30     | ) PM |       | 15 N    | lin. Pea   | k: 8    | :45 PM |        |        |          |         |
| Peak<br>Volumes: | 122    | 1764      | 6        | 2    | 648   | 55      | 194        | 60      | 170    | 227    | 563    | 171      | 3982    |

Intersection Control: Signalized; At 7:40 PM EB Jefferson was closed to all traffic

Prepared by: Southland Car Counters

Prepared For:

Volumes:

KAKU Associates

Client's Project Name

| riepareu  | roi.   | MANO     | ASSOCIA | æs    | CII   | emsri    | ojeci wa       | me      |         |        |        |          |         |
|-----------|--------|----------|---------|-------|-------|----------|----------------|---------|---------|--------|--------|----------|---------|
| Saturday  | , Nove | mber 30, | 2002    |       | Cli   | ent's Re | <i>f</i> : P30 | 084     |         | Projec | t No   | 02-1     | 514-004 |
| N-S Stree | et     | Vermon   | t Ave.  |       | E-W   | Street   | Adar           | ns Blvd |         | A      | rea: 1 | Los Ange | eles    |
|           | N      | orthB    | ound    | So    | uthBo | und      | $E_{\epsilon}$ | astBo   | und     | W      | 'estBo | und      |         |
|           | NL     | NT       | NR      | SL    | ST    | SR       | EL             | ET      | ER      | WL     | WT     | WR       | Total   |
| Lanes:    | 1      | 2        | 1       | 1     | 2     | 0        | 1              | 2       | 0       | 1      | 2      | 0        |         |
| 6:30 PM   | 19     | 141      | 27      | 24    | 136   | 25       | 31             | 86      | 21      | 23     | 124    | 21       | 678     |
| 6:45 PM   | 21     | 156      | 29      | 28    | 155   | 16       | 29             | 77      | 13      | 24     | 87     | 24       | 659     |
| 7:00 PM   | 24     | 145      | 25      | 39    | 131   | 19       | 34             | 62      | 14      | 26     | 94     | 32       | 645     |
| 7:15 PM   | 23     | 136      | 26      | 30    | 198   | 25       | 37             | 74      | 16      | 18     | 127    | 36       | 746     |
| 7:30 PM   | 19     | 146      | 14      | 42    | 156   | 31       | 29             | 59      | 11      | 21     | 96     | 18       | 642     |
| 7:45 PM   | 18     | 130      | 32      | 33    | 127   | 14       | 32             | 72      | 26      | 35     | 111    | 19       | 649     |
| 8:00 PM   | 25     | 228      | 38      | 29    | 140   | 28       | 27             | 75      | 17      | 22     | 85     | 23       | 737     |
| 8:15 PM   | 30     | 382      | 67      | 46    | 155   | 26       | 33             | 79      | 18      | 36     | 106    | 34       | 1012    |
| 8:30 PM   | 16     | 346      | 53      | 41    | 117   | 25       | 35             | 68      | 20      | 41     | 93     | 47       | 902     |
| 8:45 PM   | 11     | 422      | 62      | 35    | 138   | 23       | 63             | 121     | 17      | 37     | 134    | 56       | 1119    |
| 9:00 PM   | 14     | 385      | 76      | 47    | 121   | 18       | 61             | 108     | 15      | 42     | 129    | 44       | 1060    |
| 9:15 PM   | 18     | 351      | 54      | 41    | 120   | 21       | 46             | 133     | 12      | 28     | 163    | 74       | 1061    |
| Totals:   | 238    | 2968     | 503     | 435   | 1694  | 271      | 457            | 1014    | 200     | 353    | 1349   | 428      | 9910    |
| PM Peak   | Hour   | Begins a | nt 8:3  | 30 PM |       | 15 N     | ⁄lin. Pea      | ak: 8   | 3:45 PM |        |        |          |         |
| Peak      | 59     | 1504     | 245     | 164   | 496   | 87       | 205            | 430     | 64      | 148    | 519    | 221      | 4142    |

Intersection Control: Signalized; Officer directing traffic at 8:00 PM

Prepared by: Southland Car Counters

Prepared For:

KAKU Associates

Client's Project Name

| Saturday, I      | Vover  | mber 30, | 2002     |      | Cli   | ent's Re | f: P30  | 84       |            | Projec | t No   | 02-1    | 514-003 |
|------------------|--------|----------|----------|------|-------|----------|---------|----------|------------|--------|--------|---------|---------|
| N-S Street       | ! ,    | Norman   | die Ave. |      | E-W   | Street   | Adan    | ns Blvd. |            | Ai     | rea: L | os Ange | eles    |
|                  | No     | orthBa   | ound     | So   | uthBo | und      | E       | astBot   | und        | W      | estBo  | und     |         |
|                  | NL     | NT       | NR       | SL   | ST    | SR       | EL      | ET       | ER         | WL     | WT     | WR      | Total   |
| Lanes:           | 1      | 2        | 0        | 1    | 2     | 0        | 1       | 2        | 0          | 1      | 2      | 0       |         |
| 6:30 PM          | 17     | 175      | 19       | 23   | 166   | 19       | 20      | 113      | 17         | 19     | 111    | 28      | 727     |
| 6:45 PM          | 13     | 149      | 23       | 20   | 171   | 17       | 14      | 118      | <b>1</b> 5 | 22     | 90     | 26      | 678     |
| 7:00 PM          | 16     | 187      | 20       | 21   | 148   | 21       | 18      | 133      | 18         | 17     | 117    | 23      | 739     |
| 7:15 PM          | 18     | 178      | 18       | 17   | 182   | 20       | 12      | 118      | 14         | 15     | 132    | 20      | 744     |
| 7:30 PM          | 21     | 152      | 17       | 19   | 158   | 18       | 19      | 120      | 7          | 13     | 114    | 21      | 679     |
| 7:45 PM          | 24     | 160      | 15       | 21   | 172   | 15       | 22      | 121      | 10         | 16     | 129    | 19      | 724     |
| 8:00 PM          | 26     | 181      | 28       | 25   | 160   | 20       | 19      | 128      | 23         | 32     | 138    | 24      | 804     |
| 8:15 PM          | 29     | 249      | 30       | 23   | 158   | 28       | 21      | 116      | 25         | 45     | 120    | 30      | 874     |
| 8:30 PM          | 31     | 439      | 39       | 20   | 149   | 30       | 19      | 109      | 28         | 30     | 98     | 22      | 1014    |
| 8:45 PM          | 27     | 411      | 42       | 34   | 141   | 27       | 14      | 97       | 24         | 23     | 107    | 32      | 979     |
| 9:00 PM          | 28     | 402      | 36       | 26   | 151   | 21       | 16      | 91       | 20         | 24     | 112    | 38      | 965     |
| 9:15 PM          | 26     | 375      | 34       | 22   | 125   | 22       | 17      | 89       | 21         | 20     | 101    | 26      | 878     |
| Totals:          | 276    | 3058     | 321      | 271  | 1881  | 258      | 211     | 1353     | 222        | 276    | 1369   | 309     | 9805    |
| PM Peak I        | lour l | Begins a | t 8:3    | 0 PM |       | 15 N     | in. Pea | nk: 8    | :30 PM     |        |        |         |         |
| Peak<br>Volumes: | 112    | 1627     | 151      | 102  | 566   | 100      | 66      | 386      | 93         | 97     | 418    | 118     | 3836    |

Intersection Control: Signalized

Prepared by: Southland Car Counters

Prepared For:

KAKU Associates

Client's Project Name

Saturday, November 30, 2002 Client's Ref: P3084 Project No 02-1514-007 I-10 EB Ramps N-S Street Vermont Ave. E-W Street Area: Los Angeles NorthBound SouthBound EastBound WestBound NT ST ΕT WT NL NR SL SR EL ER WL WR Total Lanes: .5 .5 6:30 PM 6:45 PM 7:00 PM 7:15 PM 7:30 PM 7:45 PM 8:00 PM 8:15 PM 8:30 PM 8:45 PM 9:00 PM 9:15 PM Totals: PM Peak Hour Begins at 8:15 PM 15 Min. Peak: 9:00 PM Peak Volumes:

٤.2

\*\*\*

مين نستة

Intersection Control: Signalized

Prepared by: Southland Car Counters

Prepared For:

**KAKU Associates** 

Client's Project Name

Saturday, November 30, 2002 Client's Ref: P3084 Project No 02-1514-005 E-W Street N-S Street Normandie Ave. I-10 EB Ramps Area: Los Angeles NorthBound SouthBound EastBound WestBound NL. NT NR ST EL ΕT ER WL WT WR SL SR Total Lanes: 1.3 .3 .3 6:30 PM 6:45 PM 7:00 PM 7:15 PM 7:30 PM 7:45 PM 8:00 PM 8:15 PM 8:30 PM 8:45 PM 9:00 PM 9:15 PM Totals: PM Peak Hour Begins at 8:30 PM 15 Min. Peak: 8:30 PM Peak 

Intersection Control: Signalized

Volumes:

Prepared by: Southland Car Counters

Prepared For:

KAKU Associates

Client's Project Name

| Saturday,        | Nover  | nber 30, : | 2002 |      | Cli   | ent's Re | f: P308   | 4     |         | Project | No    | 02-1     | 514-008 |
|------------------|--------|------------|------|------|-------|----------|-----------|-------|---------|---------|-------|----------|---------|
| N-S Stree        | et .   | Vermont    | Ave. |      | E-W   | Street   | I-10 W    | B Rai | mps     | Ar      | ea:   | Los Ange | eles    |
|                  | Na     | orthBo     | und  | So   | uthBo | und      | Eas       | stBol | und     | W       | estBo | und      |         |
|                  | NL     | NT         | NR   | SL   | ST    | SR       | EL        | ET    | ER      | WL      | WT    | WR       | Total   |
| Lanes:           | 2      | 2          |      |      | 2     | 0        |           |       |         | .5      | .5    | 1        |         |
| 6:30 PM          | 43     | 207        |      |      | 219   | 72       |           |       |         | 31      | 0     | 102      | 674     |
| 6:45 PM          | 32     | 254        |      |      | 226   | 52       |           |       |         | 36      | 0     | 118      | 718     |
| 7:00 PM          | 43     | 232        |      |      | 256   | 78       |           |       |         | 30      | 0     | 74       | 713     |
| 7:15 PM          | 31     | 215        |      |      | 237   | 49       |           |       |         | 55      | 0     | 55       | 642     |
| 7:30 PM          | 44     | 246        |      |      | 299   | 75       |           |       |         | 32      | 0     | 120      | 816     |
| 7:45 PM          | 32     | 167        |      |      | 227   | 66       |           |       |         | 43      | 1     | 84       | 620     |
| 8:00 PM          | 66     | 159        |      |      | 266   | 74       |           |       |         | 32 -    | 0     | 79       | 676     |
| 8:15 PM          | 112    | 189        |      |      | 190   | 49       |           |       |         | 30      | 0     | 55       | 625     |
| 8:30 PM          | 193    | 261        |      |      | 265   | 67       |           |       |         | 54      | 0     | 80       | 920     |
| 8:45 PM          | 162    | 202        |      |      | 189   | 95       |           |       |         | 48      | 0     | 92       | 788     |
| 9:00 PM          | 202    | 186        |      |      | 266   | 81       |           |       |         | 94      | 1     | 159      | 989     |
| 9:15 PM          | 197    | 191        |      |      | 217   | 70       |           |       |         | 49      | 0     | 158      | 882     |
| Totals:          | 1157   | 2509       |      |      | 2857  | 828      |           |       |         | 534     | 2     | 1176     | 9063    |
| PM Peak          | Hour E | Begins at  | 8:3  | 0 PM |       | 15 M     | lin. Peak | : 9   | ):00 PM |         |       |          |         |
| Peak<br>Volumes: | 754    | 840        |      |      | 937   | 313      |           |       |         | 245     | 1     | 489      | 3579    |

Intersection Control: Signalized;

Prepared by: Southland Car Counters

Prepared For:

Intersection Control: Signalized

KAKU Associates

Client's Project Name

| Saturday,        | Nover  | mber 30, 2 | 2002     |             | Cli   | ent's Re | f: P308   | 4                     |         | Project | No    | 02-1    | 514-006 |
|------------------|--------|------------|----------|-------------|-------|----------|-----------|-----------------------|---------|---------|-------|---------|---------|
| N-S Stree        | 1 .    | Normana    | die Ave. |             | E-W   | Street   | I-10 V    | VB Ra                 | mps     | Ar      | ea: [ | os Ange | eles    |
|                  | No     | orthBo     | und      | So          | uthBo | und      | Ea        | stBo                  | und     | W       | estBo | und     |         |
|                  | NL     | NT         | NR       | SL          | ST    | SR       | EL        | ET                    | ER      | WL      | WT    | WR      | Total   |
| Lanes:           | 1      | 2          |          |             | 2     | 1        |           |                       |         | 1.3     | .3    | .3      |         |
| 6:30 PM          | 37     | 178        |          |             | 221   | 14       |           |                       |         | 42      | 0     | 71      | 563     |
| 6:45 PM          | 36     | 163        |          |             | 241   | 15       |           |                       |         | 44      | 1     | 75      | 575     |
| 7:00 PM          | 40     | 202        |          |             | 257   | 22       |           |                       |         | 41      | 0     | 74      | 636     |
| 7:15 PM          | 44     | 220        |          |             | 262   | 23       |           |                       |         | 50      | 0     | 77      | 676     |
| 7:30 PM          | 27     | 208        |          |             | 241   | 21       |           |                       |         | 41      | 0     | 72      | 610     |
| 7:45 PM          | 33     | 168        |          |             | 197   | 22       |           |                       |         | 40      | 0     | 76      | 536     |
| 8:00 PM          | 33     | 209        |          |             | 200   | 32       |           |                       |         | 46      | 0     | 71      | 591     |
| 8:15 PM          | 67     | 145        |          |             | 280   | 33       |           |                       |         | 37      | 0     | 60      | 622     |
| 8:30 PM          | 78     | 220        |          |             | 219   | 32       |           |                       |         | 41      | 1     | 70      | 661     |
| 8:45 PM          | 77     | 252        |          |             | 171   | 55       |           |                       |         | 39      | 0     | 69      | 663     |
| 9:00 PM          | 86     | 251        |          |             | 159   | 63       |           |                       |         | 35      | 0     | 63      | 657     |
| 9:15 PM          | 75     | 232        |          |             | 147   | 45       |           |                       |         | 31      | 0     | 54      | 584     |
| Totals:          | 633    | 2448       |          | 7 7 PPPPPPP | 2595  | 377      |           | and the second second |         | 487     | 2     | 832     | 7374    |
| PM Peak I        | lour E | Begins at  | 8:15     | 5 PM        |       | 15 M     | lin. Peak | : 8                   | 3:45 PM |         |       |         |         |
| Peak<br>Volumes: | 308    | 868        |          |             | 829   | 183      |           |                       |         | 152     | 1     | 262     | 2603    |

Weekday Count Data 4:00-7:00 p.m.



### INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:

KAKU ASSOCIATES

PROJECT:

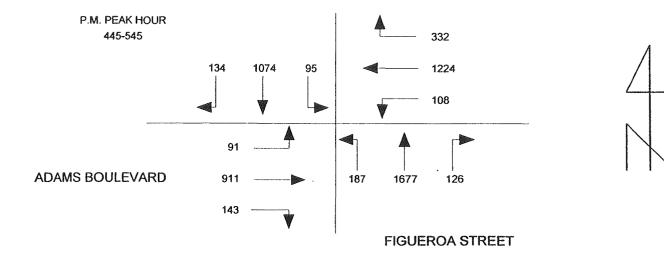
LA COLISEUM PM COUNTS

DATE:

THURSDAY, APRIL 24th, 2003

PERIOD:

4:00 PM TO 7:00 PM


INTERSECTION: N/S

FIGUEROA STREET

E/W

ADAMS BOULEVARD

| 15 MIN C        | OUNTS | 3    |      |      |      |      |      |      |      |      |      | THE PARTY OF THE P |       |
|-----------------|-------|------|------|------|------|------|------|------|------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                 | 1     | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| PERIOD          | SBRT  | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TOTAL |
| 400-415         | 31    | 224  | 26   | 66   | 262  | 21   | 33   | 350  | 31   | 37   | 178  | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1284  |
| 415-430         | 30    | 231  | 25   | 77   | 263  | 24   | 28   | 385  | 31   | 51   | 165  | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1328  |
| 430-445         | 32    | 248  | 26   | 70   | 263  | 23   | 31   | 420  | 58   | 41   | 205  | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1451  |
| 445-500         | 31    | 274  | 23   | 75   | 276  | 24   | 25   | 420  | 43   | 32   | 216  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1463  |
| 500-515         | 34    | 252  | 24   | 83   | 318  | 25   | 30   | 411  | 44   | 38   | 203  | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1483  |
| 515-530         | 39    | 297  | 23   | 83   | 303  | 23   | 36   | 430  | 56   | 42   | 267  | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1624  |
| 530-545         | 30    | 251  | 25   | 91   | 327  | 36   | 35   | 416  | 44   | 31   | 225  | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1532  |
| 545-600         | 23    | 232  | 30   | 94   | 280  | 31   | 24   | 372  | 54   | 38   | 207  | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1416  |
| 600-615         | 40    | 234  | 29   | 82   | 294  | 27   | 27   | 398  | 46   | 45   | 201  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1447  |
| 615-630         | 26    | 235  | 29   | 98   | 303  | 37   | 19   | 316  | 52   | 47   | 168  | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1355  |
| 630-645         | 25    | 195  | 23   | 81   | 249  | 37   | 32   | 331  | 35   | 39   | 189  | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1268  |
| 645-700         | 25    | 174  | 27   | 110  | 205  | 29   | 16   | 337  | 49   | 35   | 134  | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1171  |
| HOUR TO         | OTALS |      |      |      |      |      |      |      |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                 | 1     | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| TIME            | SBRT  | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TOTAL |
| 400-500         | 124   | 977  | 100  | 288  | 1064 | 92   | 117  | 1575 | 163  | 161  | 764  | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5526  |
| 415-515         | 127   | 1005 | 98   | 305  | 1120 | 96   | 114  | 1636 | 176  | 162  | 789  | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5725  |
| <b>430-</b> 530 | 136   | 1071 | 96   | 311  | 1160 | 95   | 122  | 1681 | 201  | 153  | 891  | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6021  |
| 445-545         | 134   | 1074 | 95   | 332  | 1224 | 108  | 126  | 1677 | 187  | 143  | 911  | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6102  |
| 500-600         | 126   | 1032 | 102  | 351  | 1228 | 115  | 125  | 1629 | 198  | 149  | 902  | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6055  |
| 515-615         | 132   | 1014 | 107  | 350  | 1204 | 117  | 122  | 1616 | 200  | 156  | 900  | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6019  |
| 530-630         | 119   | 952  | 113  | 365  | 1204 | 131  | 105  | 1502 | 196  | 161  | 801  | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5750  |
| 545-645         | 114   | 896  | 111  | 355  | 1126 | 132  | 102  | 1417 | 187  | 169  | 765  | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5486  |
| 600-700         | 116   | 838  | 108  | 371  | 1051 | 130  | 94   | 1382 | 182  | 166  | 692  | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5241  |





Phone: (626) 564-1944

Fax: (626) 564-0969

### INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:

KAKU ASSOCIATES

PROJECT:

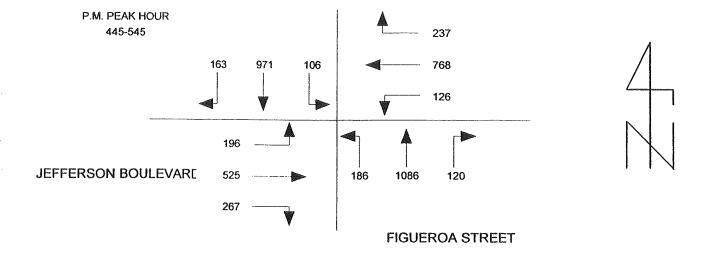
LA COLISEUM PM COUNTS

DATE:

THURSDAY, APRIL 24th, 2003

PERIOD:

4:00 PM TO 7:00 PM


INTERSECTION: N/S

FIGUEROA STREET

Ε/W

JEFFERSON BOULEVARD

| 15 MIN C    | OUNTS | 3    |      |      |      |      |      |      | *************************************** |      |      |      |       |
|-------------|-------|------|------|------|------|------|------|------|-----------------------------------------|------|------|------|-------|
| 10 101114 0 | 1     | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9                                       | 10   | 11   | 12   |       |
| PERIOD      | SBRT  | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT                                    | EBRT | EBTH | EBLT | TOTAL |
| 400-415     | 37    | 187  | 29   | 62   | 142  | 34   | 37   | 250  | 57                                      | 53   | 141  | 69   | 1098  |
| 415-430     | 31    | 197  | 26   | 59   | 149  | 34   | 32   | 293  | 43                                      | 74   | 189  | 82   | 1209  |
| 430-445     | 39    | 231  | 24   | 56   | 150  | 40   | 29   | 278  | 41                                      | 64   | 121  | 37   | 1110  |
| 445-500     | 36    | 202  | 25   | 58   | 149  | 27   | 32   | 286  | 51                                      | 58   | 127  | 58   | 1109  |
| 500-515     | 44    | 268  | 32   | 49   | 209  | 29   | 30   | 260  | 50                                      | 75   | 116  | 45   | 1207  |
| 515-530     | 44    | 262  | 29   | 57   | 208  | 36   | 29   | 264  | 44                                      | 77   | 144  | 44   | 1238  |
| 530-545     | 39    | 239  | 20   | 73   | 202  | 34   | 29   | 276  | 41                                      | 57   | 138  | 49   | 1197  |
| 545-600     | 35    | 244  | 20   | 54   | 193  | 37   | 24   | 245  | 35                                      | 58   | 117  | 30   | 1092  |
| 600-615     | 50    | 243  | 26   | 52   | 206  | 43   | 27   | 241  | 56                                      | 48   | 113  | 41   | 1146  |
| 615-630     | 31    | 228  | 23   | 45   | 166  | 41   | 20   | 259  | 45                                      | 63   | 133  | 48   | 1102  |
| 630-645     | 38    | 175  | 23   | 41   | 160  | 25   | 31   | 209  | 41                                      | 33   | 101  | 32   | 909   |
| 645-700     | 38    | 165  | 14   | 42   | 132  | 24   | 16   | 203  | 35                                      | 23   | 102  | 48   | 842   |
| HOUR TO     | OTALS |      |      |      |      |      |      |      |                                         |      |      |      |       |
|             | 1     | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9                                       | 10   | 11   | 12   |       |
| TIME        | SBRT  | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT                                    | EBRT | EBTH | EBLT | TOTAL |
| 400-500     | 143   | 817  | 104  | 235  | 590  | 135  | 130  | 1107 | 192                                     | 249  | 578  | 246  | 4526  |
| 415-515     | 150   | 898  | 107  | 222  | 657  | 130  | 123  | 1117 | 185                                     | 271  | 553  | 222  | 4635  |
| 430-530     | 163   | 963  | 110  | 220  | 716  | 132  | 120  | 1088 | 186                                     | 274  | 508  | 184  | 4664  |
| 445-545     | 163   | 971  | 106  | 237  | 768  | 126  | 120  | 1086 | 186                                     | 267  | 525  | 196  | 4751  |
| 500-600     | 162   | 1013 | 101  | 233  | 812  | 136  | 112  | 1045 | 170                                     | 267  | 515  | 168  | 4734  |
| 515-615     | 168   | 988  | 95   | 236  | 809  | 150  | 109  | 1026 | 176                                     | 240  | 512  | 164  | 4673  |
| 530-630     | 155   | 954  | 89   | 224  | 767  | 155  | 100  | 1021 | 177                                     | 226  | 501  | 168  | 4537  |
| 545-645     | 154   | 890  | 92   | 192  | 725  | 146  | 102  | 954  | 177                                     | 202  | 464  | 151  | 4249  |
| 600-700     | 157   | 811  | 86   | 180  | 664  | 133  | 94   | 912  | 177                                     | 167  | 449  | 169  | 3999  |





#### INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:

KAKU ASSOCIATES

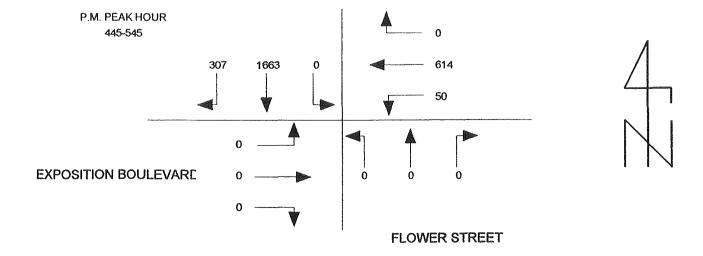
PROJECT:

LA COLISEUM PM COUNTS

DATE:

THURSDAY, APRIL 24th, 2003

PERIOD:


4:00 PM TO 7:00 PM

INTERSECTION: N/S

FLOWER STREET

E/W

| 15 MIN C   | OLINITS | 2      |      |      |      |      |      |      |      |      |      |      |       |
|------------|---------|--------|------|------|------|------|------|------|------|------|------|------|-------|
| 13 MIIIA C | 1       | 2<br>2 | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| PERIOD     | SBRT    | SBTH   | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 400-415    | 54      | 322    | 0    | 0    | 104  | 18   | 0    | 0    | 0    | 0    | 0    | 0    | 498   |
| 415-430    | 55      | 359    | 0    | 0    | 124  | 12   | 0    | 0    | 0    | 0    | 0    | 0    | 550   |
| 430-445    | 50      | 345    | 0    | 0    | 101  | 14   | 0    | 0    | 0    | 0    | 0    | 0    | 510   |
| 445-500    | 59      | 402    | 0    | 0    | 135  | 11   | 0    | 0    | o    | 0    | 0    | 0    | 607   |
| 500-515    | 93      | 444    | 0    | 0    | 182  | 20   | 0    | 0    | 0    | 0    | 0    | 0    | 739   |
| 515-530    | 79      | 404    | 0    | 0    | 148  | 9    | 0    | 0    | o    | 0    | 0    | 0    | 640   |
| 530-545    | 76      | 413    | 0    | 0    | 149  | 10   | 0    | 0    | 0    | 0    | 0    | 0    | 648   |
| 545-600    | 90      | 329    | 0    | 0    | 136  | 9    | 0    | 0    | 0    | 0    | 0    | 0    | 564   |
| 600-615    | 78      | 341    | 0    | 0    | 138  | 8    | 0    | 0    | 0    | 0    | 0    | 0    | 565   |
| 615-630    | 55      | 302    | 0    | 0    | 128  | 6    | 0    | 0    | 0    | 0    | 0    | 0    | 491   |
| 630-645    | 48      | 307    | 0    | 0    | 112  | 5    | 0    | 0    | 0    | 0    | 0    | 0    | 472   |
| 645-700    | 24      | 226    | 0    | 0    | 88   | 2    | 0    | 0    | 0    | 0    | 0    | 0    | 340   |
| HOUR TO    | DTALS   |        |      |      | •    |      |      |      |      |      | 1    |      |       |
|            | 1       | 2      | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| TIME       | SBRT    | SBTH   | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 400-500    | 218     | 1428   | 0    | 0    | 464  | 55   | 0    | 0    | 0    | 0    | 0    | 0    | 2165  |
| 415-515    | 257     | 1550   | 0    | 0    | 542  | 57   | 0    | 0    | 0    | 0    | 0    | 0    | 2406  |
| 430-530    | 281     | 1595   | 0    | 0    | 566  | 54   | 0    | 0    | 0    | 0    | 0    | 0    | 2496  |
| 445-545    | 307     | 1663   | 0    | 0    | 614  | 50   | 0    | 0    | 0    | 0    | 0    | 0    | 2634  |
| 500-600    | 338     | 1590   | 0    | 0    | 615  | 48   | 0    | 0    | 0    | 0    | 0    | 0    | 2591  |
| 515-615    | 323     | 1487   | 0    | 0    | 571  | 36   | 0    | 0    | 0    | 0    | 0    | 0    | 2417  |
| 530-630    | 299     | 1385   | 0    | 0    | 551  | 33   | 0    | 0    | 0    | 0    | 0    | 0    | 2268  |
| 545-645    | 271     | 1279   | 0    | 0    | 514  | 28   | 0    | 0    | 0    | 0    | 0    | 0    | 2092  |
| 600-700    | 205     | 1176   | 0    | 0    | 466  | 21   | 0    | 0    | 0    | 0    | 0    | 0    | 1868  |





#### INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:

KAKU ASSOCIATES

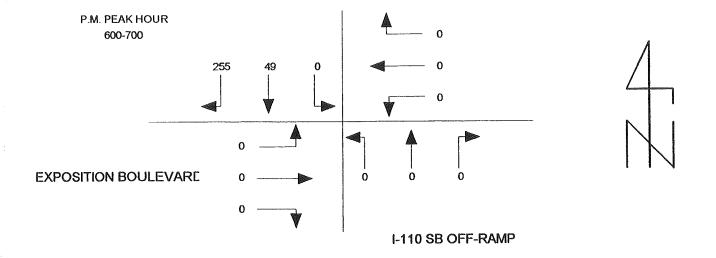
PROJECT:

LA COLISEUM PM COUNTS

DATE:

THURSDAY, APRIL 24th, 2003

PERIOD:


4:00 PM TO 7:00 PM

INTERSECTION: N/S

I-110 SB OFF-RAMP

Ε/W

| 15 MIN C   | OUNTS | 3    |      |      |      |      |      | ····· | , ,p |      |      |      |       |
|------------|-------|------|------|------|------|------|------|-------|------|------|------|------|-------|
| 10 11111 0 | 1     | 2    | 3    | 4    | 5    | 6    | 7    | 8     | 9    | 10   | 11   | 12   |       |
| PERIOD     | SBRT  | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH  | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 400-415    | 56    | 18   | 0    | 0    | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 74    |
| 415-430    | 53    | 13   | 0    | 0    | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 66    |
| 430-445    | 50    | 15   | 0    | 0    | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 65    |
| 445-500    | 65    | 22   | 0    | 0    | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 87    |
| 500-515    | 58    | 15   | 0    | 0    | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 73    |
| 515-530    | 49    | 14   | 0    | 0    | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 63    |
| 530-545    | 50    | 15   | 0    | 0    | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 65    |
| 545-600    | 56    | 14   | 0    | 0    | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 70    |
| 600-615    | 58    | 18   | 0    | 0    | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 76    |
| 615-630    | 48    | 8    | 0    | 0    | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 56    |
| 630-645    | 71    | 13   | 0    | 0    | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 84    |
| 645-700    | 78    | 10   | 0    | 0    | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 88    |
| HOUR TO    | OTALS |      |      |      |      |      |      |       |      |      |      |      |       |
|            | 1     | 2    | 3    | 4    | 5    | 6    | 7    | 8     | 9    | 10   | 11   | 12   |       |
| TIME       | SBRT  | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH  | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 400-500    | 224   | 68   | 0    | 0    | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 292   |
| 415-515    | 226   | 65   | 0    | 0    | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 1     |
| 430-530    | 222   | 66   | 0    | 0    | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0    |       |
| 445-545    | 222   | 66   | 0    | 0    | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 288   |
| 500-600    | 213   | 58   | 0    | 0    | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0    |       |
| 515-615    | 213   | 61   | 0    | 0    | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 1     |
| 530-630    | 212   | 55   | 0    | 0    | 0    | 0    | 0    | 0     | 0    | . 0  | 0    | 0    |       |
| 545-645    | 233   | 53   | 0    | 0    | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0    |       |
| 600-700    | 255   | 49   | 0    | 0    | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 304   |



2.8

### INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:

KAKU ASSOCIATES

PROJECT:

LA COLISEUM PM COUNTS

DATE:

THURSDAY, APRIL 24th, 2003

PERIOD:

4:00 PM TO 7:00 PM

INTERSECTION: N/S

I-110 OFF-RAMP & FLOWER STREET

E/W EXPO

| 15 MIN C | COUNTS | 3    |      |      |      |      |      |      |      |      |      |      |       |
|----------|--------|------|------|------|------|------|------|------|------|------|------|------|-------|
|          | 1      | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| PERIOD   | SBRT   | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 400-415  | 110    | 340  | 0    | 0    | 104  | 18   | 0    | 0    | 0    | 0    | 0    | 0    | 572   |
| 415-430  | 108    | 372  | 0    | 0    | 124  | 12   | 0    | 0    | 0    | 0    | 0    | 0    | 616   |
| 430-445  | 100    | 360  | 0    | 0    | 101  | 14   | 0    | 0    | 0    | 0    | 0    | 0    | 575   |
| 445-500  | 124    | 424  | 0    | 0    | 135  | 11   | 0    | 0    | 0    | 0    | 0    | 0    | 694   |
| 500-515  | 151    | 459  | 0    | 0    | 182  | 20   | 0    | 0    | 0    | 0    | 0    | 0    | 812   |
| 515-530  | 128    | 418  | 0    | 0    | 148  | 9    | 0    | 0    | 0    | 0    | 0    | 0    | 703   |
| 530-545  | 126    | 428  | 0    | 0    | 149  | 10   | 0    | 0    | 0    | 0    | 0    | 0    | 713   |
| 545-600  | 146    | 343  | 0    | 0    | 136  | 9    | 0    | 0    | 0    | 0    | 0    | 0    | 634   |
| 600-615  | 136    | 359  | 0    | 0    | 138  | 8    | 0    | 0    | 0    | 0    | 0    | 0    | 641   |
| 615-630  | 103    | 310  | 0    | 0    | 128  | 6    | 0    | 0    | 0    | 0    | 0    | 0    | 547   |
| 630-645  | 119    | 320  | 0    | 0    | 112  | 5    | 0    | 0    | 0    | 0    | 0    | 0    | 556   |
| 645-700  | 102    | 236  | 0    | 0    | 88   | 2    | 0    | 0    | 0    | 0    | 0    | 0    | 428   |
| HOUR TO  | OTALS  |      |      |      |      |      |      |      |      |      |      |      |       |
|          | 1      | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| TIME     | SBRT   | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 400-500  | 442    | 1496 | 0    | 0    | 464  | 55   | 0    | 0    | 0    | 0    | 0    | 0    | 2457  |
| 415-515  | 483    | 1615 | 0    | 0    | 542  | 57   | 0    | 0    | 0    | 0    | 0    | 0    | 2697  |
| 430-530  | 503    | 1661 | 0    | 0    | 566  | 54   | 0    | 0    | 0    | 0    | 0    | 0    | 2784  |
| 445-545  | 529    | 1729 | 0    | 0    | 614  | 50   | 0    | 0    | 0    | 0    | 0    | 0    | 2922  |
| 500-600  | 551    | 1648 | 0    | 0    | 615  | 48   | 0    | 0    | 0    | 0    | 0    | 0    | 2862  |
| 515-615  | 536    | 1548 | 0    | . 0  | 571  | 36   | 0    | 0    | 0    | 0    | 0    | 0    | 2691  |
| 530-630  | 511    | 1440 | 0    | 0    | 551  | 33   | 0    | 0    | 0    | 0    | 0    | 0    | 2535  |
| 545-645  | 504    | 1332 | 0    | 0    | 514  | 28   | 0    | 0    | 0    | 0    | 0    | 0    | 2378  |
| 600-700  | 460    | 1225 | 0    | 0    | 466  | 21   | 0    | 0    | 0    | 0    | 0    | 0    | 2172  |





### INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:

KAKU ASSOCIATES

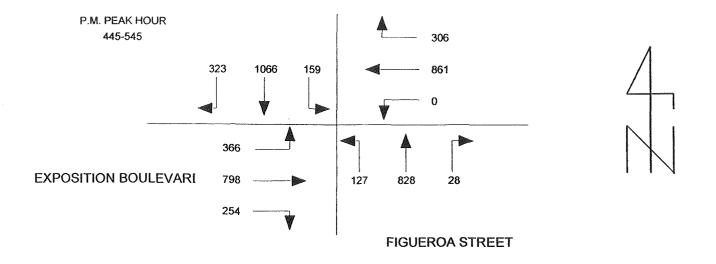
PROJECT:

LA COLISEUM PM COUNTS

DATE:

THURSDAY, APRIL 24th, 2003

PERIOD:


4:00 PM TO 7:00 PM

INTERSECTION: N/S

FIGUEROA STREET

E/W

| 15 MIN C        | CLINITO | 2    |      |      |      |      | 77.000 m. |      | · · · · · · · · · · · · · · · · · · · |      |      |      |       |
|-----------------|---------|------|------|------|------|------|-----------------------------------------------|------|---------------------------------------|------|------|------|-------|
| 13 WIIIV C      | OUNT    | ·    |      |      |      |      |                                               |      |                                       |      |      |      |       |
|                 | 1       | 2    | 3    | 4    | 5    | 6    | 7                                             | 8    | 9                                     | 10   | 11   | 12   |       |
| PERIOD          | SBRT    | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT                                          | NBTH | NBLT                                  | EBRT | EBTH | EBLT | TOTAL |
| 400-415         | 60      | 218  | 34   | 55   | 166  | 0    | 11                                            | 191  | 27                                    | 56   | 193  | 77   | 1088  |
| 415-430         | 68      | 206  | 35   | 57   | 152  | 0    | 4                                             | 220  | 34                                    | 39   | 177  | 85   | 1077  |
| 430-445         | 74      | 223  | 40   | 63   | 153  | 0    | 2                                             | 230  | 40                                    | 60   | 167  | 77   | 1129  |
| 445-500         | 70      | 240  | 28   | 82   | 190  | 0    | 6                                             | 219  | 32                                    | 61   | 191  | 92   | 1211  |
| 500-515         | 79      | 276  | 40   | 75   | 225  | 0    | 9                                             | 197  | 30                                    | 69   | 227  | 83   | 1310  |
| 515-530         | 85      | 270  | 49   | 69   | 232  | 0    | 4                                             | 195  | 30                                    | 72   | 203  | 93   | 1302  |
| 530-545         | 89      | 280  | 42   | 80   | 214  | 0    | 9                                             | 217  | 35                                    | 52   | 177  | 98   | 1293  |
| 545-600         | 93      | 246  | 34   | 91   | 207  | 0    | 6                                             | 172  | 35                                    | 44   | 139  | 92   | 1159  |
| 600-615         | 73      | 234  | 36   | 67   | 192  | 0    | 8                                             | 200  | 33                                    | 48   | 140  | 70   | 1101  |
| 615-630         | 78      | 262  | 51   | 68   | 192  | 0    | 5                                             | 186  | 31                                    | 46   | 128  | 63   | 1110  |
| 630-645         | 71      | 200  | 26   | 64   | 143  | 0    | 10                                            | 162  | 28                                    | 34   | 120  | 58   | 916   |
| 645-700         | 58      | 155  | 36   | 71   | 125  | 0    | 7                                             | 163  | 31                                    | 39   | 126  | 51   | 862   |
| HOUR TO         | OTALS   |      |      |      |      | 1    |                                               |      |                                       |      |      |      |       |
|                 | 1       | 2    | 3    | 4    | 5    | 6    | 7                                             | 8    | 9                                     | 10   | 11   | 12   |       |
| TIME            | SBRT    | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT                                          | NBTH | NBLT                                  | EBRT | EBTH | EBLT | TOTAL |
| 400-500         | 272     | 887  | 137  | 257  | 661  | 0    | 23                                            | 860  | 133                                   | 216  | 728  | 331  | 4505  |
| 415-515         | 291     | 945  | 143  | 277  | 720  | 0    | 21                                            | 866  | 136                                   | 229  | 762  | 337  | 4727  |
| <b>430-53</b> 0 | 308     | 1009 | 157  | 289  | 800  | 0    | 21                                            | 841  | 132                                   | 262  | 788  | 345  | 4952  |
| 445-545         | 323     | 1066 | 159  | 306  | 861  | 0    | 28                                            | 828  | 127                                   | 254  | 798  | 366  | 5116  |
| 500-600         | 346     | 1072 | 165  | 315  | 878  | 0    | 28                                            | 781  | 130                                   | 237  | 746  | 366  | 5064  |
| 515-615         | 340     | 1030 | 161  | 307  | 845  | 0    | 27                                            | 784  | 133                                   | 216  | 659  | 353  | 4855  |
| 530-630         | 333     | 1022 | 163  | 306  | 805  | 0    | 28                                            | 775  | 134                                   | 190  | 584  | 323  | 4663  |
| 545-645         | 315     | 942  | 147  | 290  | 734  | 0    | 29                                            | 720  | 127                                   | 172  | 527  | 283  | 4286  |
| 600-700         | 280     | 851  | 149  | 270  | 652  | 0    | 30                                            | 711  | 123                                   | 167  | 514  | 242  | 3989  |





Phone: (626) 564-1944

Fax: (626) 564-0969

6.2

## INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:

KAKU ASSOCIATES

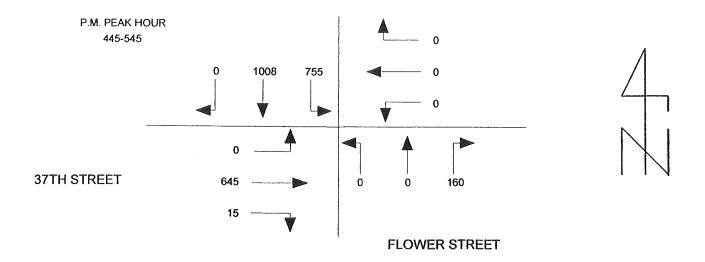
PROJECT:

LA COLISEUM PM COUNTS

DATE:

THURSDAY, APRIL 24th, 2003

PERIOD:


4:00 PM TO 7:00 PM

INTERSECTION: N/S

FLOWER STREET

E/W 37TH STREET

| 15 MIN C | COUNT | S    |      |      |      |      |      |      |      | <del></del> |      |      |       |
|----------|-------|------|------|------|------|------|------|------|------|-------------|------|------|-------|
|          | 1     | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10          | 11   | 12   |       |
| PERIOD   | SBRT  | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT        | EBTH | EBLT | TOTAL |
| 400-415  | 0     | 171  | 197  | 0    | 0    | 0    | 18   | 0    | 0    | 1           | 167  | 0    | 554   |
| 415-430  | 0     | 189  | 201  | 0    | 0    | 0    | 33   | 0    | 0    | 2           | 163  | 0    | 588   |
| 430-445  | 0     | 169  | 195  | 0    | 0    | 0    | 20   | 0    | 0    | 3           | 137  | 0    | 524   |
| 445-500  | 0     | 212  | 187  | 0    | 0    | 0    | 28   | 0    | 0    | 5           | 126  | 0    | 558   |
| 500-515  | 0     | 272  | 208  | 0    | 0    | 0    | 36   | 0    | 0    | 4           | 190  | 0    | 710   |
| 515-530  | 0     | 285  | 187  | 0    | 0    | 0    | 57   | 0    | 0    | 3           | 191  | 0    | 723   |
| 530-545  | 0     | 239  | 173  | 0    | 0    | 0    | 39   | 0    | 0    | 3           | 138  | 0    | 592   |
| 545-600  | 0     | 170  | 173  | 0    | 0    | 0    | 20   | 0    | 0    | 1           | 110  | 0    | 474   |
| 600-615  | 0     | 165  | 193  | 0    | 0    | 0    | 24   | 0    | 0    | 3           | 108  | 0    | 493   |
| 615-630  | 0     | 141  | 194  | 0    | 0    | 0    | 12   | 0    | 0    | 4           | 102  | 0    | 453   |
| 630-645  | 0     | 101  | 208  | 0    | 0    | 0    | 16   | 0    | 0    | 0           | 95   | 0    | 420   |
| 645-700  | 0     | 71   | 174  | 0    | 0    | 0    | 10   | 0    | 0    | 3           | 85   | 0    | 343   |
| HOUR TO  | OTALS |      |      |      |      |      |      |      |      |             |      |      |       |
|          | 1     | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10          | 11   | 12   |       |
| TIME     | SBRT  | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT        | EBTH | EBLT | TOTAL |
| 400-500  | 0     | 741  | 780  | 0    | 0    | 0    | 99   | 0    | 0    | 11          | 593  | 0    | 2224  |
| 415-515  | 0     | 842  | 791  | 0    | 0    | 0    | 117  | 0    | 0    | 14          | 616  | 0    | 2380  |
| 430-530  | 0     | 938  | 777  | 0    | 0    | 0    | 141  | 0    | 0    | 15          | 644  | 0    | 2515  |
| 445-545  | 0     | 1008 | 755  | 0    | 0    | 0    | 160  | 0    | 0    | 15          | 645  | 0    | 2583  |
| 500-600  | 0     | 966  | 741  | 0    | 0    | 0    | 152  | 0    | 0    | 11          | 629  | 0    | 2499  |
| 515-615  | 0     | 859  | 726  | 0    | 0    | 0    | 140  | 0    | 0    | 10          | 547  | 0    | 2282  |
| 530-630  | 0     | 715  | 733  | 0    | 0    | 0    | 95   | 0    | 0    | 11          | 458  | 0    | 2012  |
| 545-645  | 0     | 577  | 768  | 0    | 0    | 0    | 72   | 0    | 0    | 8           | 415  | 0    | 1840  |
| 600-700  | 0     | 478  | 769  | 0    | 0    | 0    | 62   | , O  | 0    | 10          | 390  | 0    | 1709  |



## INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:

KAKU ASSOCIATES

PROJECT:

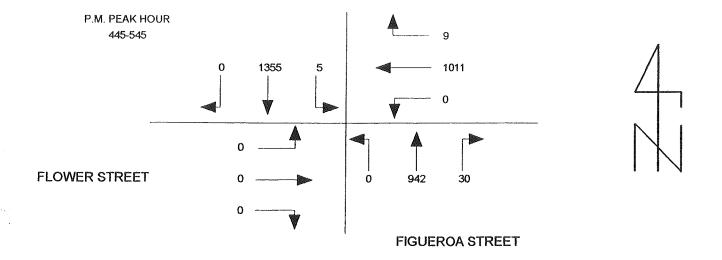
LA COLISEUM PM COUNTS

DATE:

WEDNESDAY, MAY 21st, 2003

PERIOD:

4:00 PM TO 7:00 PM


INTERSECTION: N/S

FIGUEROA STREET

Ε/W

FLOWER STREET

| 4 = 1 411 1 0 | ~ · · · · · · · · · · · · · · · · · · · |      |      |      |      |      |      |      |      |      |      |      |       |
|---------------|-----------------------------------------|------|------|------|------|------|------|------|------|------|------|------|-------|
| 15 MIN C      | COUNT                                   | S    |      |      |      |      |      |      |      |      |      |      |       |
|               | 1                                       | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| PERIOD        | SBRT                                    | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 400-415       | 0                                       | 243  | 2    | 1    | 133  | 0    | 11   | 240  | 0    | 0    | 0    | 0    | 630   |
| 415-430       | 0                                       | 241  | 2    | 3    | 154  | 0    | 5    | 228  | 0    | 0    | 0    | 0    | 633   |
| 430-445       | 0                                       | 254  | 0    | 6    | 161  | 0    | 3    | 242  | 0    | 0    | 0    | 0    | 666   |
| 445-500       | 0                                       | 336  | 0    | 2    | 218  | 0    | 7    | 233  | 0    | 0    | 0    | 0    | 796   |
| 500-515       | 0                                       | 366  | 4    | 0    | 271  | 0    | 8    | 242  | 0    | 0    | 0    | 0    | 891   |
| 515-530       | 0                                       | 342  | 0    | 3    | 297  | 0    | 7    | 252  | 0    | 0    | 0    | 0    | 901   |
| 530-545       | 0                                       | 311  | 1    | 4    | 225  | 0    | 8    | 215  | 0    | 0    | 0    | 0    | 764   |
| 545-600       | 0                                       | 335  | 2    | 0    | 225  | 0    | 2    | 213  | 0    | 0    | 0    | 0    | 777   |
| 600-615       | 0                                       | 303  | 1    | 0    | 161  | 0    | 5    | 199  | 0    | 0    | 0    | 0    | 669   |
| 615-630       | 0                                       | 251  | 1    | 2    | 135  | 0    | 6    | 202  | 0    | 0    | 0    | 0    | 597   |
| 630-645       | 0                                       | 227  | 0    | 2    | 113  | 0    | 4    | 198  | 0    | 0    | 0    | 0    | 544   |
| 645-700       | 0                                       | 189  | 0    | 1    | 85   | 0    | 5    | 170  | 0    | 0    | 0    | 0    | 450   |
| HOUR TO       | <b>DTALS</b>                            |      |      |      |      |      |      |      |      |      |      |      |       |
|               | 1                                       | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| TIME          | SBRT                                    | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 400-500       | 0                                       | 1074 | 4    | 12   | 666  | 0    | 26   | 943  | 0    | 0    | 0    | 0    | 2725  |
| 415-515       | 0                                       | 1197 | 6    | 11   | 804  | 0    | 23   | 945  | 0    | 0    | 0    | 0    | 2986  |
| 430-530       | 0                                       | 1298 | 4    | 11   | 947  | 0    | 25   | 969  | 0    | 0    | 0    | 0    | 3254  |
| 445-545       | 0                                       | 1355 | 5    | 9    | 1011 | 0    | 30   | 942  | 0    | 0    | 0    | 0    | 3352  |
| 500-600       | 0                                       | 1354 | 7    | 7    | 1018 | 0    | 25   | 922  | 0    | 0    | 0    | 0    | 3333  |
| 515-615       | 0                                       | 1291 | 4    | 7    | 908  | 0    | 22   | 879  | 0    | 0    | 0    | 0    | 3111  |
| 530-630       | 0                                       | 1200 | 5    | 6    | 746  | 0    | 21   | 829  | 0    | 0    | 0    | 0    | 2807  |
| 545-645       | 0                                       | 1116 | 4    | 4    | 634  | 0    | 17   | 812  | 0    | 0    | 0    | 0    | 2587  |
| 600-700       | 0                                       | 970  | 2    | 5    | 494  | 0    | 20   | 769  | 0    | 0    | 0    | 0    | 2260  |



N.

#### INTERSECTION TURNING MOVEMENT COUNT SUMMARY

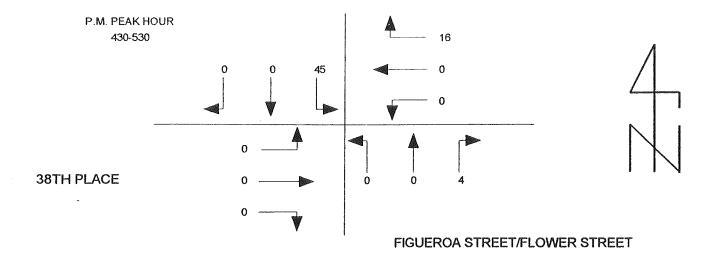
CLIENT:

KAKU ASSOCIATES

PROJECT:

LA COLISEUM PM COUNTS WEDNESDAY, MAY 21st, 2003

DATE: PERIOD:


4:00 PM TO 7:00 PM

INTERSECTION: N/S

FIGUEROA STREET/FLOWER STREET

E/W 38TH PLACE

| 15 MIN C | OUNTS | 3    |      |      |      |      | ,    | ,,,  |      |      |      |      |       |
|----------|-------|------|------|------|------|------|------|------|------|------|------|------|-------|
|          | 1     | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| PERIOD   | SBRT  | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 400-415  | 0     | 0    | 5    | 6    | 0    | 0    | 2    | 0    | 0    | 0    | 0    | 0    | 13    |
| 415-430  | - 0   | 0    | 3    | 5    | 0    | 0    | 2    | 0    | 0    | 0    | 0    | 0    | 10    |
| 430-445  | 0     | 0    | 8    | 2    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 10    |
| 445-500  | 0     | 0    | 14   | 10   | 0    | 0    | 1    | 0    | 0    | 0    | 0    | 0    | 25    |
| 500-515  | 0     | 0    | 6    | 1    | 0    | 0    | 1    | 0    | 0    | 0    | 0    | 0    | 8     |
| 515-530  | 0     | 0    | 17   | 3    | 0    | 0    | 2    | 0    | 0    | 0    | 0    | 0    | 22    |
| 530-545  | 0     | 0    | 9    | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 10    |
| 545-600  | 0     | 0    | 7    | 3    | 0    | 0    | 2    | 0    | 0    | 0    | 0    | 0    | 12    |
| 600-615  | 0     | 0    | 3    | 3    | 0    | 0    | 1    | 0    | 0    | 0    | 0    | 0    | 7     |
| 615-630  | 0     | 0    | 4    | 1    | 0    | 0    | 1    | 0    | 0    | 0    | 0    | 0    | 6     |
| 630-645  | 0     | 0    | 5    | 4    | 0    | 0    | 1    | 0    | 0    | 0    | 0    | 0    | 10    |
| 645-700  | 0     | 0    | 3    | 9    | 0    | 0    | 1    | 0    | 0    | 0    | 0    | 0    | 13    |
| HOUR TO  | OTALS |      |      |      |      |      |      |      |      |      |      |      |       |
|          | 1     | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| TIME     | SBRT  | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 400-500  | 0     | 0    | 30   | 23   | 0    | 0    | 5    | 0    | 0    | 0    | 0    | 0    | 58    |
| 415-515  | 0     | 0    | 31   | 18   | 0    | 0    | 4    | 0    | 0    | 0    | 0    | 0    | 53    |
| 430-530  | 0     | 0    | 45   | 16   | 0    | 0    | 4    | 0    | 0    | 0    | 0    | 0    | 65    |
| 445-545  | 0     | 0    | 46   | 15   | 0    | 0    | 4    | 0    | 0    | 0    | 0    | 0    | 65    |
| 500-600  | 0     | 0    | 39   | 8    | 0    | 0    | 5    | 0    | 0    | 0    | 0    | 0    | 52    |
| 515-615  | 0     | 0    | 36   | 10   | 0    | 0    | 5    | 0    | 0    | 0    | 0    | 0    | 51    |
| 530-630  | 0     | 0    | 23   | 8    | 0    | 0    | 4    | 0    | 0    | 0    | 0    | 0    | 35    |
| 545-645  | 0     | 0    | 19   | 11   | 0    | 0    | 5    | 0    | 0    | 0    | 0    | 0    | 35    |
| 600-700  | 0     | 0    | 15   | 17   | 0    | 0    | 4    | О    | 0    | 0    | 0    | 0    | 36    |





## INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:

KAKU ASSOCIATES

PROJECT:

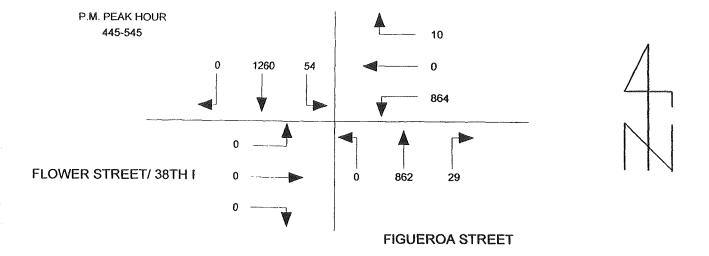
LA COLISEUM PM COUNTS

DATE:

WEDNESDAY, APRIL 23nd, 2003

PERIOD:

4:00 PM TO 7:00 PM


INTERSECTION: N/S

FIGUEROA STREET

E/W

FLOWER STREET/ 38TH PLACE

| 15 MIN C | COUNT | <u>S</u> |      |      |      |      |      |      |      |      |      |      |       |
|----------|-------|----------|------|------|------|------|------|------|------|------|------|------|-------|
|          | 1     | 2        | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| PERIOD   | SBRT  | SBTH     | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 400-415  | 0     | 225      | 2    | 4    | 0    | 120  | 8    | 255  | 0    | Ō    | 0    | 0    | 614   |
| 415-430  | 0     | 226      | 4    | 2    | 0    | 136  | 9    | 251  | 0    | 0    | 0    | 0    | 628   |
| 430-445  | 0     | 236      | 5    | 2    | 0    | 159  | 10   | 243  | 0    | 0    | 0    | 0    | 655   |
| 445-500  | 0     | 312      | 9    | 2    | 0    | 180  | 10   | 220  | 0    | 0    | 0    | 0    | 733   |
| 500-515  | 0     | 351      | 13   | 4    | 0    | 257  | 10   | 220  | 0    | 0    | 0    | 0    | 855   |
| 515-530  | 0     | 320      | 20   | 0    | 0    | 223  | 5    | 204  | 0    | 0    | 0    | 0    | 772   |
| 530-545  | 0     | 277      | 12   | 4    | 0    | 204  | 4    | 218  | 0    | 0    | 0    | 0    | 719   |
| 545-600  | 0     | 308      | 9    | 2    | 0    | 172  | 6    | 192  | 0    | 0    | 0    | 0    | 689   |
| 600-615  | 0     | 263      | 5    | 0    | 0    | 139  | 9    | 191  | 0    | 0    | 0    | 0    | 607   |
| 615-630  | 0     | 231      | 5    | 1    | 0    | 115  | 4    | 175  | 0    | 0    | 0    | 0.   | 531   |
| 630-645  | 0     | 205      | 4    | 1    | 0    | 105  | 9    | 157  | 0    | 0    | 0    | 0    | 481   |
| 645-700  | 0     | 157      | 8    | 3    | 0    | 69   | 8    | 199  | 0    | 0    | 0    | 0    | 444   |
| HOUR TO  | SJATC |          |      |      |      |      |      |      |      |      |      |      |       |
|          | 1     | 2        | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| TIME     | SBRT  | SBTH     | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 400-500  | 0     | 999      | 20   | 10   | 0    | 595  | 37   | 969  | 0    | 0    | 0    | 0    | 2630  |
| 415-515  | 0     | 1125     | 31   | 10   | 0    | 732  | 39   | 934  | 0    | 0    | 0    | 0    | 2871  |
| 430-530  | 0     | 1219     | 47   | 8    | 0    | 819  | 35   | 887  | 0    | 0    | 0    | 0    | 3015  |
| 445-545  | 0     | 1260     | 54   | 10   | 0    | 864  | 29   | 862  | 0    | 0    | 0    | 0    | 3079  |
| 500-600  | 0     | 1256     | 54   | 10   | 0    | 856  | 25   | 834  | 0    | 0    | 0    | 0    | 3035  |
| 515-615  | 0     | 1168     | 46   | 6    | 0    | 738  | 24   | 805  | 0    | 0    | 0    | 0    | 2787  |
| 530-630  | 0     | 1079     | 31   | 7    | 0    | 630  | 23   | 776  | 0    | 0    | 0    | 0    | 2546  |
| 545-645  | 0     | 1007     | 23   | 4    | 0    | 531  | 28   | 715  | 0    | 0    | 0    | 0    | 2308  |
| 600-700  | 0     | 856      | 22   | 5    | 0    | 428  | 30   | 722  | 0    | 0    | 0    | 0    | 2063  |



CLIENT:

KAKU ASSOCIATES

PROJECT:

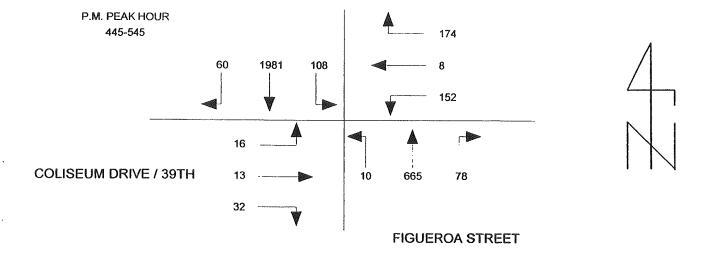
LA COLISEUM PM COUNTS

DATE:

WEDNESDAY, APRIL 23nd, 2003

PERIOD:

4:00 PM TO 7:00 PM


INTERSECTION: N/S

FIGUEROA STREET

E/W

COLISEUM DRIVE / 39TH STREET

| 15 MIN C | COUNTS | S    |      |      |      |      |      |      |      |      |      |      |       |
|----------|--------|------|------|------|------|------|------|------|------|------|------|------|-------|
|          | 1      | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| PERIOD   | SBRT   | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 400-415  | 8      | 317  | 30   | 35   | 1    | 26   | 17   | 220  | 2    | 2    | 0    | 4    | 662   |
| 415-430  | 11     | 397  | 31   | 54   | 2    | 32   | 23   | 194  | 3    | 2    | 5    | 9    | 763   |
| 430-445  | 7      | 402  | 19   | 35   | 2    | 20   | 22   | 197  | 5    | 12   | 2    | 3    | 726   |
| 445-500  | 9      | 468  | 24   | 41   | 1    | 32   | 19   | 182  | 2    | 7    | 0    | 1    | 786   |
| 500-515  | 14     | 514  | 29   | 34   | 1    | 47   | 19   | 184  | 3    | 13   | 6    | 6    | 870   |
| 515-530  | 15     | 494  | 28   | 42   | 2    | 43   | 23   | 154  | 2    | 9    | 5    | 4    | 821   |
| 530-545  | 22     | 505  | 27   | 57   | 4    | 30   | 17   | 145  | 3    | 3    | 2    | 5    | 820   |
| 545-600  | 10     | 435  | 30   | 46   | 3    | 38   | 24   | 153  | 0    | 1    | 5    | 9    | 754   |
| 600-615  | 5      | 379  | 27   | 34   | 1    | 23   | 26   | 163  | 3    | 4    | 0    | 1    | 666   |
| 615-630  | 4      | 341  | 25   | 24   | 0    | 22   | 16   | 144  | 1    | 4    | 0    | 3    | 584   |
| 630-645  | 2      | 290  | 28   | 30   | 0    | 26   | 13   | 135  | 2    | 9    | 1    | 4    | 540   |
| 645-700  | 5      | 223  | 20   | 27   | 0    | 17   | 18   | 158  | 1    | 1    | 0    | 4    | 474   |
| HOUR TO  | SLATC  |      |      |      |      |      |      |      |      |      |      |      |       |
|          | 1      | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| TIME     | SBRT   | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 400-500  | 35     | 1584 | 104  | 165  | 6    | 110  | 81   | 793  | 12   | 23   | 7    | 17   | 2937  |
| 415-515  | 41     | 1781 | 103  | 164  | 6    | 131  | 83   | 757  | 13   | 34   | 13   | 19   | 3145  |
| 430-530  | 45     | 1878 | 100  | 152  | 6    | 142  | 83   | 717  | 12   | 41   | 13   | 14   | 3203  |
| 445-545  | 60     | 1981 | 108  | 174  | 8    | 152  | 78   | 665  | 10   | 32   | 13   | 16   | 3297  |
| 500-600  | 61     | 1948 | 114  | 179  | 10   | 158  | 83   | 636  | 8    | 26   | 18   | 24   | 3265  |
| 515-615  | 52     | 1813 | 112  | 179  | 10   | 134  | 90   | 615  | 8    | 17   | 12   | 19   | 3061  |
| 530-630  | 41     | 1660 | 109  | 161  | 8    | 113  | 83   | 605  | 7    | 12   | 7    | 18   | 2824  |
| 545-645  | 21     | 1445 | 110  | 134  | 4    | 109  | 79   | 595  | 6    | 18   | 6    | 17   | 2544  |
| 600-700  | 16     | 1233 | 100  | 115  | 1    | 88   | 73   | 600  | 7    | 18   | 1    | 12   | 2264  |





Phone: (626) 564-1944

Fax: (626) 564-0969

### INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:

KAKU ASSOCIATES

PROJECT:

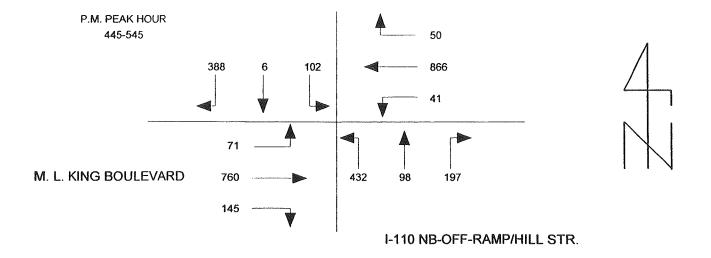
LA COLISEUM PM COUNTS

DATE:

TUESDAY, APRIL 22nd, 2003

PERIOD:

4:00 PM TO 7:00 PM


INTERSECTION: N/S

I-110 NB-OFF-RAMP/HILL STR.

E/W M. L. k

M. L. KING BOULEVARD

| 15 MIN COUNTS   |            |      |      |      |      |      |      |      |      |      |      |      |       |
|-----------------|------------|------|------|------|------|------|------|------|------|------|------|------|-------|
|                 | 1          | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| PERIOD          | SBRT       | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 400-415         | 68         | 0    | 10   | 19   | 195  | 11   | 55   | 31   | 87   | 41   | 186  | 10   | 713   |
| 415-430         | 79         | 3    | 19   | 11   | 183  | 8    | 57   | 30   | 81   | 55   | 168  | 22   | 716   |
| 430-445         | 86         | 1    | 16   | 10   | 193  | 8    | 41   | 41   | 100  | 30   | 212  | 25   | 763   |
| 445-500         | 93         | 4    | 28   | 11   | 209  | 8    | 59   | 38   | 107  | 37   | 190  | 19   | 803   |
| 500-515         | 103        | 0    | 22   | 10   | 208  | 14   | 38   | 25   | 115  | 41   | 175  | 15   | 766   |
| 515-530         | 100        | 1    | 24   | 16   | 217  | 8    | 44   | 19   | 103  | 25   | 181  | 15   | 753   |
| 530-545         | 92         | 1    | 28   | 13   | 232  | 11   | 56   | 16   | 107  | 42   | 214  | 22   | 834   |
| 545-600         | <b>6</b> 6 | 3    | 28   | 12   | 252  | 6    | 35   | 19   | 90   | 31   | 217  | 16   | 775   |
| 600-615         | 67         | 1    | 20   | 10   | 244  | 7    | 45   | 17   | 84   | 46   | 213  | 10   | 764   |
| 615-630         | 49         | 1    | 16   | 15   | 212  | 14   | 42   | 12   | 78   | 32   | 180  | 16   | 667   |
| 630-645         | 35         | 2    | 10   | 15   | 196  | 11   | 37   | 15   | 87   | 39   | 200  | 15   | 662   |
| 645-700         | 24         | 3    | 10   | 10   | 144  | 14   | 38   | 12   | 74   | 29   | 201  | 7    | 566   |
| HOUR TO         | OTALS      |      |      |      |      |      |      |      |      |      |      |      |       |
|                 | 1          | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| TIME            | SBRT       | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| <b>400</b> -500 | 326        | 8    | 73   | 51   | 780  | 35   | 212  | 140  | 375  | 163  | 756  | 76   | 2995  |
| <b>415</b> -515 | 361        | 8    | 85   | 42   | 793  | 38   | 195  | 134  | 403  | 163  | 745  | 81   | 3048  |
| <b>430</b> -530 | 382        | 6    | 90   | 47   | 827  | 38   | 182  | 123  | 425  | 133  | 758  | 74   | 3085  |
| 445-545         | 388        | 6    | 102  | 50   | 866  | 41   | 197  | 98   | 432  | 145  | 760  | 71   | 3156  |
| 500-600         | 361        | 5    | 102  | 51   | 909  | 39   | 173  | 79   | 415  | 139  | 787  | 68   | 3128  |
| 515-615         | 325        | 6    | 100  | 51   | 945  | 32   | 180  | 71   | 384  | 144  | 825  | 63   | 3126  |
| <b>530</b> -630 | 274        | 6    | 92   | 50   | 940  | 38   | 178  | 64   | 359  | 151  | 824  | 64   | 3040  |
| 545-645         | 217        | 7    | 74   | 52   | 904  | 38   | 159  | 63   | 339  | 148  | 810  | 57   | 2868  |
| <b>600-7</b> 00 | 175        | 7    | 56   | 50   | 796  | 46   | 162  | 56   | 323  | 146  | 794  | 48   | 2659  |





Phone: (626) 564-1944 F

Fax: (626) 564-0969

#### INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:

KAKU ASSOCIATES

PROJECT:

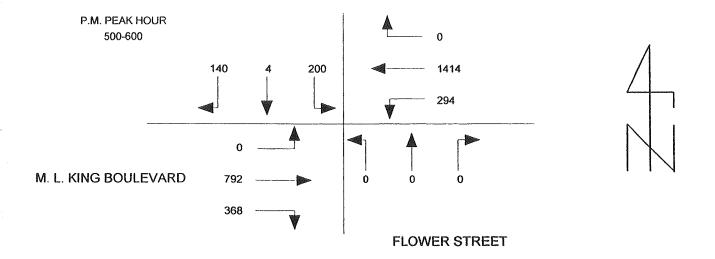
LA COLISEUM PM COUNTS

DATE:

TUESDAY, APRIL 22nd, 2003

PERIOD:

4:00 PM TO 7:00 PM


INTERSECTION: N/S

FLOWER STREET

E/W

M. L. KING BOULEVARD

| 15 MIN C | CLINITO | <br>S |      |      |      |      |      |      |      |      |      |      |       |
|----------|---------|-------|------|------|------|------|------|------|------|------|------|------|-------|
| 10 MILLA | TOON I  | 2     | 3    | 4    | 5    | 6    | 7    | 0    | 9    | 40   | 441  | 40   |       |
| PERIOD   | SBRT    | SBTH  | SBLT | WBRT | WBTH | - 1  |      | 8    | - 1  | 10   | 11   | 12   | TOTAL |
|          | 21      |       |      |      |      | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 400-415  |         | 2     | 47   | 0    | 284  | 58   | 0    | 0    | 0    | 77   | 197  | 0    | 686   |
| 415-430  | 29      | 0     | 65   | 0    | 304  | 62   | 0    | 0    | 0    | 86   | 202  | 0    | 748   |
| 430-445  | 30      | 1     | 64   | 0    | 341  | 68   | 0    | 0    | 0    | 67   | 189  | 0    | 760   |
| 445-500  | 35      | 1     | 39   | 0    | 316  | 68   | 0    | 0    | 0    | 81   | 188  | 0    | 728   |
| 500-515  | 39      | 1     | 46   | 0    | 348  | 74   | 0    | 0    | 0    | 94   | 185  | 0    | 787   |
| 515-530  | 43      | 1     | 42   | 0    | 369  | 70   | 0    | 0    | 0    | 106  | 211  | 0    | 842   |
| 530-545  | 37      | 1     | 57   | 0    | 372  | 75   | 0    | 0    | 0    | 83   | 203  | 0    | 828   |
| 545-600  | 21      | 1     | 55   | 0    | 325  | 75   | 0    | 0    | 0    | 85   | 193  | 0    | 755   |
| 600-615  | 36      | 1     | 62   | 0    | 324  | 83   | 0    | 0    | 0    | 68   | 205  | 0    | 779   |
| 615-630  | 22      | 1     | 57   | 0    | 275  | 69   | 0    | 0    | 0    | 79   | 190  | 0    | 693   |
| 630-645  | 19      | 7     | 69   | 0    | 235  | 59   | 0    | 0    | 0    | 90   | 190  | 0    | 669   |
| 645-700  | 18      | 4     | 65   | 0    | 205  | 51   | 0    | 0    | 0    | 84   | 174  | 0    | 601   |
| HOUR TO  | OTALS   |       |      |      |      |      |      |      |      |      |      |      |       |
|          | 1       | 2     | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| TIME     | SBRT    | SBTH  | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 400-500  | 115     | 4     | 215  | 0    | 1245 | 256  | 0    | 0    | 0    | 311  | 776  | 0    | 2922  |
| 415-515  | 133     | 3     | 214  | 0    | 1309 | 272  | 0    | 0    | 0    | 328  | 764  | 0    | 3023  |
| 430-530  | . 147   | 4     | 191  | 0    | 1374 | 280  | 0    | 0    | 0    | 348  | 773  | 0    | 3117  |
| 445-545  | 154     | 4     | 184  | 0    | 1405 | 287  | 0    | 0    | 0    | 364  | 787  | 0    | 3185  |
| 500-600  | 140     | 4     | 200  | 0    | 1414 | 294  | 0    | 0    | 0    | 368  | 792  | 0    | 3212  |
| 515-615  | 137     | 4     | 216  | 0    | 1390 | 303  | 0    | 0    | 0    | 342  | 812  | 0    | 3204  |
| 530-630  | 116     | 4     | 231  | 0    | 1296 | 302  | 0    | 0    | 0    | 315  | 791  | 0    | 3055  |
| 545-645  | 98      | 10    | 243  | 0    | 1159 | 286  | 0    | 0    | 0    | 322  | 778  | 0    | 2896  |
| 600-700  | 95      | 13    | 253  | 0    | 1039 | 262  | 0    | 0    | 0    | 321  | 759  | 0    | 2742  |





Phone: (626) 564-1944

Fax: (626) 564-0969

## INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:

KAKU ASSOCIATES

PROJECT:

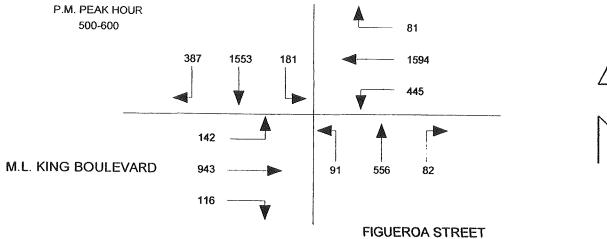
LA COLISEUM PM COUNTS

DATE:

THURSDAY, APRIL 24th, 2003

PERIOD:

4:00 PM TO 7:00 PM


INTERSECTION: N/S

FIGUEROA STREET

Ε/W

M.L. KING BOULEVARD

| 15 MIN C  | OLINITO      | 0    | ······································ |      |      |      |      |      |      |      |      |      | · · · · · · · · · · · · · · · · · · · |
|-----------|--------------|------|----------------------------------------|------|------|------|------|------|------|------|------|------|---------------------------------------|
| 13 MIIN C | COUNT        |      |                                        |      |      |      |      |      |      |      |      |      |                                       |
| 050100    | 1            | 2    | 3                                      | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |                                       |
| PERIOD    | SBRT         | SBTH | SBLT                                   | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL                                 |
| 400-415   | 65           | 277  | 49                                     | 21   | 354  | 90   | 20   | 151  | 23   | 20   | 226  | 37   | 1333                                  |
| 415-430   | 88           | 305  | 54                                     | 23   | 382  | 99   | 17   | 147  | 16   | 18   | 229  | 33   | 1411                                  |
| 430-445   | 65           | 329  | 34                                     | 41   | 411  | 112  | 20   | 147  | 15   | 20   | 227  | 33   | 1454                                  |
| 445-500   | 84           | 357  | 51                                     | 21   | 400  | 100  | 22   | 145  | 20   | 21   | 239  | 36   | 1496                                  |
| 500-515   | 105          | 376  | 46                                     | 19   | 376  | 106  | 19   | 152  | 26   | 44   | 240  | _ 39 | 1548                                  |
| 515-530   | 100          | 383  | 51                                     | 22   | 417  | 111  | 16   | 132  | 19   | 25   | 247  | 31   | 1554                                  |
| 530-545   | 100          | 401  | 40                                     | 25   | 382  | 124  | 24   | 131  | 24   | 20   | 232  | 35   | 1538                                  |
| 545-600   | 82           | 393  | 44                                     | 15   | 419  | 104  | 23   | 141  | 22   | 27   | 224  | 37   | 1531                                  |
| 600-615   | 75           | 335  | 36                                     | 20   | 369  | 117  | 18   | 136  | 24   | 29   | 210  | 55   | 1424                                  |
| 615-630   | 61           | 331  | 21                                     | 19   | 316  | 92   | 18   | 148  | 25   | 34   | 206  | 44   | 1315                                  |
| 630-645   | 63           | 237  | 24                                     | 19   | 285  | 83   | 19   | 110  | 13   | 23   | 210  | 48   | 1134                                  |
| 645-700   | 30           | 178  | 26                                     | 15   | 222  | 54   | 16   | 111  | 21   | 16   | 186  | 32   | 907                                   |
| HOUR TO   | <b>OTALS</b> |      |                                        |      |      |      |      |      |      |      |      |      |                                       |
|           | 1            | 2    | 3                                      | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |                                       |
| TIME      | SBRT         | SBTH | SBLT                                   | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL                                 |
| 400-500   | 302          | 1268 | 188                                    | 106  | 1547 | 401  | 79   | 590  | 74   | 79   | 921  | 139  | 5694                                  |
| 415-515   | 342          | 1367 | 185                                    | 104  | 1569 | 417  | 78   | 591  | 77   | 103  | 935  | 141  | 5909                                  |
| 430-530   | 354          | 1445 | 182                                    | 103  | 1604 | 429  | 77   | 576  | 80   | 110  | 953  | 139  | 6052                                  |
| 445-545   | 389          | 1517 | 188                                    | 87   | 1575 | 441  | 81   | 560  | 89   | 110  | 958  | 141  | 6136                                  |
| 500-600   | 387          | 1553 | 181                                    | 81   | 1594 | 445  | 82   | 556  | 91   | 116  | 943  | 142  | 6171                                  |
| 515-615   | 357          | 1512 | 171                                    | 82   | 1587 | 456  | 81   | 540  | 89   | 101  | 913  | 158  | 6047                                  |
| 530-630   | 318          | 1460 | 141                                    | 79   | 1486 | 437  | 83   | 556  | 95   | 110  | 872  | 171  | 5808                                  |
| 545-645   | 281          | 1296 | 125                                    | 73   | 1389 | 396  | 78   | 535  | 84   | 113  | 850  | 184  | 5404                                  |
| 600-700   | 229          | 1081 | 107                                    | 73   | 1192 | 346  | 71   | 505  | 83   | 102  | 812  | 179  | 4780                                  |



4

Section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the sectio



## INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:

KAKU ASSOCIATES

PROJECT:

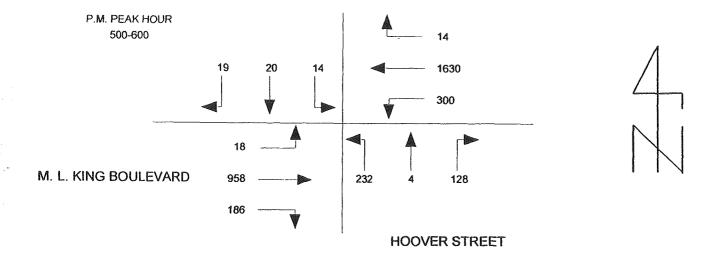
LA COLISEUM PM COUNTS

DATE:

TUESDAY, APRIL 22nd, 2003

PERIOD:

4:00 PM TO 7:00 PM


INTERSECTION: N/S

**HOOVER STREET** 

Ε/W

M. L. KING BOULEVARD

| 15 MIN C | CLINITO | 3    |      |      |      |      | 1    |      |      |      |      |      |       |
|----------|---------|------|------|------|------|------|------|------|------|------|------|------|-------|
| 13 MIN C | CONT    |      |      |      |      |      |      |      |      |      |      |      |       |
|          | 1       | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| PERIOD   | SBRT    | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 400-415  | 5       | 2    | 2    | 4    | 391  | 51   | 31   | 1    | 62   | 28   | 223  | 1    | 801   |
| 415-430  | 7       | 2    | 3    | 5    | 420  | 54   | 28   | 2    | 73   | 39   | 240  | 2    | 875   |
| 430-445  | 3       | 4    | 2    | 3    | 415  | 53   | 34   | 0    | 62   | 29   | 231  | 3    | 839   |
| 445-500  | 5       | 1    | 1    | 3    | 375  | 61   | 27   | 3    | 61   | 30   | 210  | 5    | 782   |
| 500-515  | 0       | 3    | 2    | 7    | 435  | 76   | 34   | 1    | 60   | 39   | 232  | 6    | 895   |
| 515-530  | 4       | 5    | 3    | 2    | 382  | 63   | 35   | 1    | 63   | 47   | 263  | 3    | 871   |
| 530-545  | 8       | 8    | 3    | 2    | 415  | 86   | 24   | 1    | 52   | 57   | 212  | 2    | 870   |
| 545-600  | 7       | 4    | 6    | 3    | 398  | 75   | 35   | 1    | 57   | 43   | 251  | 7    | 887   |
| 600-615  | 2       | 2    | 2    | 1    | 355  | 59   | 41   | 0    | 43   | 47   | 230  | 0    | 782   |
| 615-630  | 1       | 1    | 4    | 4    | 319  | 59   | 35   | 2    | 54   | 44   | 243  | 5    | 771   |
| 630-645  | 1       | 1    | 2    | 3    | 332  | 42   | 20   | 2    | 58   | 34   | 240  | 1    | 736   |
| 645-700  | 3       | 3    | 1    | 1    | 303  | 36   | 25   | 0    | 43   | 38   | 236  | 1    | 690   |
| HOUR TO  | OTALS   |      |      |      |      |      |      |      |      |      |      |      |       |
|          | 1       | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| TIME     | SBRT    | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 400-500  | 20      | 9    | 8    | 15   | 1601 | 219  | 120  | 6    | 258  | 126  | 904  | 11   | 3297  |
| 415-515  | 15      | 10   | 8    | 18   | 1645 | 244  | 123  | 6    | 256  | 137  | 913  | 16   | 3391  |
| 430-530  | 12      | 13   | 8    | 15   | 1607 | 253  | 130  | 5    | 246  | 145  | 936  | 17   | 3387  |
| 445-545  | 17      | 17   | 9    | 14   | 1607 | 286  | 120  | 6    | 236  | 173  | 917  | 16   | 3418  |
| 500-600  | 19      | 20   | 14   | 14   | 1630 | 300  | 128  | 4    | 232  | 186  | 958  | 18   | 3523  |
| 515-615  | 21      | 19   | 14   | 8    | 1550 | 283  | 135  | 3    | 215  | 194  | 956  | 12   | 3410  |
| 530-630  | 18      | 15   | 15   | 10   | 1487 | 279  | 135  | 4    | 206  | 191  | 936  | 14   | 3310  |
| 545-645  | 11      | 8    | 14   | 11   | 1404 | 235  | 131  | 5    | 212  | 168  | 964  | 13   | 3176  |
| 600-700  | 7       | 7    | 9    | 9    | 1309 | 196  | 121  | 4    | 198  | 163  | 949  | 7    | 2979  |





Phone: (626) 564-1944

Fax: (626) 564-0969

## INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:

KAKU ASSOCIATES

PROJECT:

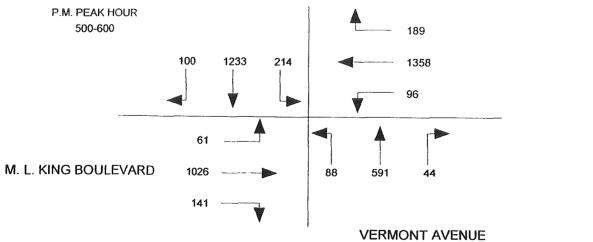
LA COLISEUM PM COUNTS

DATE:

TUESDAY, APRIL 22nd, 2003

PERIOD:

4:00 PM TO 7:00 PM


INTERSECTION: N/S

**VERMONT AVENUE** 

Ε/W

M. L. KING BOULEVARD

| 15 MIN C        | COUNT | S    | ,074.1 |      |      |      |      |      |      |      |      |      |       |
|-----------------|-------|------|--------|------|------|------|------|------|------|------|------|------|-------|
|                 | 1     | 2    | 3      | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| PERIOD          | SBRT  | SBTH | SBLT   | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 400-415         | 26    | 253  | 50     | 54   | 291  | 19   | 11   | 130  | 21   | 12   | 165  | 23   | 1055  |
| 415-430         | 44    | 266  | 45     | 58   | 319  | 16   | 12   | 156  | 29   | 18   | 211  | 26   | 1200  |
| 430-445         | 40    | 247  | 37     | 40   | 281  | 17   | 10   | 145  | 32   | 23   | 230  | 29   | 1131  |
| 445-500         | 40    | 250  | 53     | 50   | 310  | 27   | 8    | 158  | 20   | 28   | 203  | 18   | 1165  |
| 500-515         | 30    | 302  | 58     | 38   | 327  | 20   | 16   | 157  | 19   | 41   | 248  | 16   | 1272  |
| 515-530         | 31    | 332  | 60     | 52   | 350  | 23   | 12   | 129  | 23   | 29   | 226  | 12   | 1279  |
| 530-545         | 19    | 295  | 46     | 48   | 324  | 27   | 9    | 168  | 23   | 38   | 274  | 19   | 1290  |
| 545-600         | 20    | 304  | 50     | 51   | 357  | 26   | 7    | 137  | 23   | 33   | 278  | 14   | 1300  |
| 600-615         | 32    | 236  | 48     | 38   | 345  | 35   | 12   | 149  | 34   | 40   | 226  | 18   | 1213  |
| 615-630         | 26    | 215  | 42     | 44   | 298  | 28   | 5    | 119  | 24   | 29   | 213  | 12   | 1055  |
| <b>630-64</b> 5 | 28    | 199  | 31     | 35   | 316  | 27   | 8    | 115  | 24   | 31   | 236  | 10   | 1060  |
| 645-700         | 16    | 193  | 42     | 36   | 288  | 10   | 7    | 114  | 22   | 22   | 197  | 11   | 958   |
| HOUR TO         | OTALS |      |        |      |      |      |      |      | L    |      |      |      |       |
|                 | 1     | 2    | 3      | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| TIME            | SBRT  | SBTH | SBLT   | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 400-500         | 150   | 1016 | 185    | 202  | 1201 | 79   | 41   | 589  | 102  | 81   | 809  | 96   | 4551  |
| 415-515         | 154   | 1065 | 193    | 186  | 1237 | 80   | 46   | 616  | 100  | 110  | 892  | 89   | 4768  |
| 430-530         | 141   | 1131 | 208    | 180  | 1268 | 87   | 46   | 589  | 94   | 121  | 907  | 75   | 4847  |
| <b>445-54</b> 5 | 120   | 1179 | 217    | 188  | 1311 | 97   | 45   | 612  | 85   | 136  | 951  | 65   | 5006  |
| <b>500-6</b> 00 | 100   | 1233 | 214    | 189  | 1358 | 96   | 44   | 591  | 88   | 141  | 1026 | 61   | 5141  |
| <b>515-6</b> 15 | 102   | 1167 | 204    | 189  | 1376 | 111  | 40   | 583  | 103  | 140  | 1004 | 63   | 5082  |
| <b>530-6</b> 30 | 97    | 1050 | 186    | 181  | 1324 | 116  | 33   | 573  | 104  | 140  | 991  | 63   | 4858  |
| 545-645         | 106   | 954  | 171    | 168  | 1316 | 116  | 32   | 520  | 105  | 133  | 953  | 54   | 4628  |
| 600-700         | 102   | 843  | 163    | 153  | 1247 | 100  | 32   | 497  | 104  | 122  | 872  | 51   | 4286  |



4



## INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:

KAKU ASSOCIATES

PROJECT:

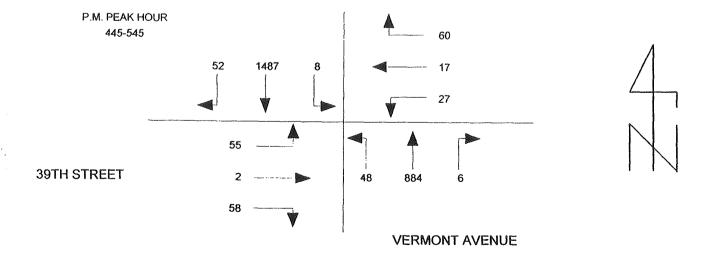
LA COLISEUM PM COUNTS

DATE:

TUESDAY, APRIL 22nd, 2003

PERIOD:

4:00 PM TO 7:00 PM


INTERSECTION: N/S

**VERMONT AVENUE** 

E/W

39TH STREET

| 15 MIN C   | COUNT | 5    |      |      |      |      | <u></u> |      |      |      |      |            |            |
|------------|-------|------|------|------|------|------|---------|------|------|------|------|------------|------------|
| 10 1111111 | 1     | 2    | 3    | 4    | 5    | 6    | 7       | 8    | 9    | 10   | 11   | 12         |            |
| PERIOD     | SBRT  | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT    | NBTH | NBLT | EBRT | EBTH | 1          | TOTAL      |
| 400-415    | 13    | 298  | 2    | 6    | 3    | 2    | 2       | 236  | 10   | 6    | 3    | EBLT<br>10 | TOTAL      |
| 415-430    | 14    | 314  | 2    | 5    | 2    | 1    | 2       | 245  | 9    | 7    | 4    | 7          | 591        |
| 430-445    | 18    | 332  | 6    | 12   | 1    | 7    | 1       | 227  | 10   | 11   | 0    | 11         | 612        |
| 445-500    | 19    | 342  | 4    | 13   | 4    | 2    | 0       | 206  | 19   | 13   | 0    | 17         | 636<br>639 |
| 500-515    | 10    | 370  | 4    | 19   | 6    | 16   | 2       | 220  | 7    | 19   | 1    | 17         | 639        |
| 515-530    | 13    | 396  | 0    | 17   | 5    | 6    | 3       | 212  | 12   | 15   | 1    | 17         | 692        |
| 530-545    | 10    | 379  | 0    | 11   | 2    | 3    | 1       | 246  | 10   | 11   | 0    | 9          | 682        |
| 545-600    | 13    | 357  | 0    | 5    | 5    | 0    | 1       | 203  | 11   | 6    | 1    | 10         | 612        |
| 600-615    | 13    | 353  | 4    | 6    | 2    | 1    | 1       | 208  | 15   | 16   | 2    | 17         | 638        |
| 615-630    | 10    | 335  | 4    | 3    | 0    | 1    | 1       | 197  | 12   | 19   | 0    | 11         | 593        |
| 630-645    | 9     | 293  | 1    | 3    | 0    | 0    | 1       | 183  | 5    | 8    | 1    | 11         | 515        |
| 645-700    | 7     | 275  | 1    | 0    | 0    | 1    | 1       | 177  | 7    | 9    | 0    | 8          | 486        |
| HOUR TO    | OTALS |      |      |      |      | 1    |         |      |      | 1    |      |            | 400        |
|            | 1     | 2    | 3    | 4    | 5    | 6    | 7       | 8    | 9    | 10   | 11   | 12         |            |
| TIME       | SBRT  | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT    | NBTH | NBLT | EBRT | EBTH | EBLT       | TOTAL      |
| 400-500    | 64    | 1286 | 14   | 36   | 10   | 12   | 5       | 914  | 48   | 37   | 7    | 45         | 2478       |
| 415-515    | 61    | 1358 | 16   | 49   | 13   | 26   | 5       | 898  | 45   | 50   | 5    | 52         | 2578       |
| 430-530    | 60    | 1440 | 14   | 61   | 16   | 31   | 6       | 865  | 48   | 58   | 2    | 57         | 2658       |
| 445-545    | 52    | 1487 | 8    | 60   | 17   | 27   | 6       | 884  | 48   | 58   | 2    | 55         | 2704       |
| 500-600    | 46    | 1502 | 4    | 52   | 18   | 25   | 7       | 881  | 40   | 51   | 3    | 48         | 2677       |
| 515-615    | 49    | 1485 | 4    | 39   | 14   | 10   | 6       | 869  | 48   | 48   | 4    | 48         | 2624       |
| 530-630    | 46    | 1424 | 8    | 25   | 9    | 5    | 4       | 854  | 48   | 52   | 3    | 47         | 2525       |
| 545-645    | 45    | 1338 | 9    | 17   | 7    | 2    | 4       | 791  | 43   | 49   | 4    | 49         | 2358       |
| 600-700    | 39    | 1256 | 10   | 12   | 2    | 3    | 4       | 765  | 39   | 52   | 3    | 47         | 2232       |





#### INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:

KAKU ASSOCIATES

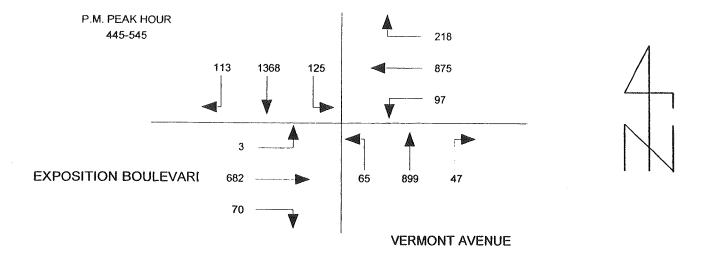
PROJECT:

LA COLISEUM PM COUNTS

DATE:

TUESDAY, APRIL 22nd, 2003

PERIOD:


4:00 PM TO 7:00 PM

INTERSECTION: N/S

**VERMONT AVENUE** 

Ε/W

| 15 MIN C | CLINITO | <u> </u> |      |      |         |      |      |      |      |      |       |      |       |
|----------|---------|----------|------|------|---------|------|------|------|------|------|-------|------|-------|
| 10 MILLA | 1 1100  |          | 2    | - 41 | <u></u> |      |      |      |      |      |       |      |       |
| DEDIOD   | CODT    | 2        | 3    | 4    | 5       | 6    | 7    | 8    | 9    | 10   | 11    | 12   |       |
| PERIOD   | SBRT    | SBTH     | SBLT | WBRT | WBTH    | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH  | EBLT | TOTAL |
| 400-415  | 33      | 288      | 39   | 60   | 148     | 11   | 15   | 220  | 14   | 17   | 189   | 0    | 1034  |
| 415-430  | 27      | 299      | 39   | 58   | 174     | 10   | 13   | 212  | 19   | 18   | 180   | 0    | 1049  |
| 430-445  | 21      | 296      | 22   | 51   | 172     | 21   | 10   | 226  | 13   | 21   | · 207 | 0    | 1060  |
| 445-500  | 27      | 354      | 43   | 59   | 182     | 28   | 10   | 206  | 15   | 14   | 164   | 1    | 1103  |
| 500-515  | 23      | 332      | 22   | 56   | 212     | 21   | 13   | 244  | 13   | 16   | 174   | 2    | 1128  |
| 515-530  | 36      | 339      | 22   | 52   | 245     | 28   | 9    | 218  | 19   | 16   | 174   | 0    | 1158  |
| 530-545  | 27      | 343      | 38   | 51   | 236     | 20   | 15   | 231  | 18   | 24   | 170   | 0    | 1173  |
| 545-600  | 34      | 305      | 24   | 47   | 225     | 20   | 9    | 193  | 8    | 13   | 201   | 2    | 1081  |
| 600-615  | 36      | 313      | 37   | 50   | 179     | 12   | 9    | 208  | 11   | 16   | 164   | 1    | 1036  |
| 615-630  | 29      | 297      | 31   | 46   | 191     | 15   | 9    | 167  | 11   | 21   | 143   | 2    | 962   |
| 630-645  | 31      | 266      | 39   | 43   | 163     | 14   | 10   | 171  | 12   | 21   | 135   | 2    | 907   |
| 645-700  | 25      | 234      | 23   | 39   | 169     | 17   | 10   | 168  | 10   | 14   | 135   | 1    | 845   |
| HOUR TO  | OTALS   |          |      |      |         |      |      |      |      |      |       |      |       |
|          | 1       | 2        | 3    | 4    | 5       | 6    | 7    | 8    | 9    | 10   | 11    | 12   |       |
| TIME     | SBRT    | SBTH     | SBLT | WBRT | WBTH    | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH  | EBLT | TOTAL |
| 400-500  | 108     | 1237     | 143  | 228  | 676     | 70   | 48   | 864  | 61   | 70   | 740   | 1    | 4246  |
| 415-515  | 98      | 1281     | 126  | 224  | 740     | 80   | 46   | 888  | 60   | 69   | 725   | 3    | 4340  |
| 430-530  | 107     | 1321     | 109  | 218  | 811     | 98   | 42   | 894  | 60   | 67   | 719   | 3    | 4449  |
| 445-545  | 113     | 1368     | 125  | 218  | 875     | 97   | 47   | 899  | 65   | 70   | 682   | 3    | 4562  |
| 500-600  | 120     | 1319     | 106  | 206  | 918     | 89   | 46   | 886  | 58   | 69   | 719   | 4    | 4540  |
| 515-615  | 133     | 1300     | 121  | 200  | 885     | 80   | 42   | 850  | 56   | 69   | 709   | 3    | 4448  |
| 530-630  | 126     | 1258     | 130  | 194  | 831     | 67   | 42   | 799  | 48   | 74   | 678   | 5    | 4252  |
| 545-645  | 130     | 1181     | 131  | 186  | 758     | 61   | 37   | 739  | 42   | 71   | 643   | 7    | 3986  |
| 600-700  | 121     | 1110     | 130  | 178  | 702     | 58   | 38   | 714  | 44   | 72   | 577   | 6    | 3750  |





Phone: (626) 564-1944

Fax: (626) 564-0969

## INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:

KAKU ASSOCIATES

PROJECT:

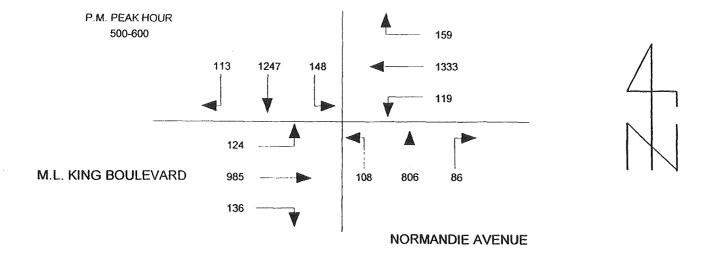
LA COLISEUM PM COUNTS

DATE:

TUESDAY, APRIL 22nd, 2003

PERIOD:

4:00 PM TO 7:00 PM


INTERSECTION: N/S

NORMANDIE AVENUE

E/W

M.L. KING BOULEVARD

| 15 MIN C | :OUNT        | S    |      |      |      |      |      |      |      |      |      |      |       |
|----------|--------------|------|------|------|------|------|------|------|------|------|------|------|-------|
|          | 1            | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| PERIOD   | SBRT         | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 400-415  | 26           | 243  | 35   | 29   | 314  | 22   | 15   | 201  | 29   | 24   | 228  | 31   | 1197  |
| 415-430  | 31           | 271  | 34   | 30   | 282  | 22   | 12   | 189  | 24   | 32   | 214  | 32   | 1173  |
| 430-445  | 25           | 266  | 30   | 37   | 283  | 17   | 10   | 220  | 28   | 35   | 252  | 34   | 1237  |
| 445-500  | 34           | 265  | 29   | 35   | 329  | 26   | 10   | 194  | 20   | 27   | 237  | 30   | 1236  |
| 500-515  | 18           | 320  | 26   | 44   | 320  | 25   | 22   | 209  | 25   | 26   | 241  | 27   | 1303  |
| 515-530  | 25           | 325  | 35   | 38   | 347  | 29   | 20   | 189  | 28   | 32   | 250  | 31   | 1349  |
| 530-545  | 30           | 309  | 40   | 33   | 324  | 30   | 17   | 235  | 29   | 44   | 264  | 34   | 1389  |
| 545-600  | 40           | 293  | 47   | 44   | 342  | 35   | 27   | 173  | 26   | 34   | 230  | 32   | 1323  |
| 600-615  | 28           | 262  | 35   | 27   | 293  | 26   | 24   | 175  | 30   | 30   | 204  | 31   | 1165  |
| 615-630  | 21           | 252  | 36   | 39   | 319  | 36   | 18   | 180  | 29   | 30   | 228  | 30   | 1218  |
| 630-645  | 27           | 253  | 50   | 42   | 318  | 32   | 16   | 164  | 21   | 34   | 218  | 31   | 1206  |
| 645-700  | 26           | 236  | 38   | 40   | 295  | 25   | 15   | 171  | 24   | 29   | 213  | 34   | 1146  |
| HOUR TO  | <b>OTALS</b> |      |      |      |      |      |      |      |      |      |      |      |       |
|          | 1            | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| TIME     | SBRT         | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 400-500  | 116          | 1045 | 128  | 131  | 1208 | 87   | 47   | 804  | 101  | 118  | 931  | 127  | 4843  |
| 415-515  | 108          | 1122 | 119  | 146  | 1214 | 90   | 54   | 812  | 97   | 120  | 944  | 123  | 4949  |
| 430-530  | 102          | 1176 | 120  | 154  | 1279 | 97   | 62   | 812  | 101  | 120  | 980  | 122  | 5125  |
| 445-545  | 107          | 1219 | 130  | 150  | 1320 | 110  | 69   | 827  | 102  | 129  | 992  | 122  | 5277  |
| 500-600  | 113          | 1247 | 148  | 159  | 1333 | 119  | 86   | 806  | 108  | 136  | 985  | 124  | 5364  |
| 515-615  | 123          | 1189 | 157  | 142  | 1306 | 120  | 88   | 772  | 113  | 140  | 948  | 128  | 5226  |
| 530-630  | 119          | 1116 | 158  | 143  | 1278 | 127  | 86   | 763  | 114  | 138  | 926  | 127  | 5095  |
| 545-645  | 116          | 1060 | 168  | 152  | 1272 | 129  | 85   | 692  | 106  | 128  | 880  | 124  | 4912  |
| 600-700  | 102          | 1003 | 159  | 148  | 1225 | 119  | 73   | 690  | 104  | 123  | 863  | 126  | 4735  |



## INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:

KAKU ASSOCIATES

PROJECT:

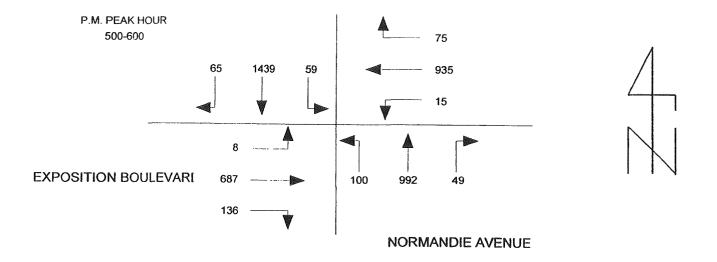
LA COLISEUM PM COUNTS

DATE:

TUESDAY, APRIL 22nd, 2003

PERIOD:

4:00 PM TO 7:00 PM


INTERSECTION: N/S

NORMANDIE AVENUE

E/W

**EXPOSITION BOULEVARD** 

| 15 MIN C | COUNT | S    |      |      |      |      |      |      |      |      |      |      |       |
|----------|-------|------|------|------|------|------|------|------|------|------|------|------|-------|
|          | 1     | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| PERIOD   | SBRT  | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 400-415  | 13    | 310  | 15   | 13   | 167  | 5    | 10   | 222  | 22   | 22   | 164  | 5    | 968   |
| 415-430  | 14    | 329  | 19   | 27   | 172  | 1    | 19   | 247  | 19   | 24   | 202  | 5    | 1078  |
| 430-445  | 17    | 329  | 15   | 19   | 180  | 2    | 25   | 224  | 19   | 29   | 165  | 0    | 1024  |
| 445-500  | 22    | 367  | 16   | 15   | 188  | 5    | 10   | 248  | 19   | 26   | 167  | 1    | 1084  |
| 500-515  | 12    | 360  | 19   | 17   | 229  | 1    | 15   | 265  | 25   | 29   | 165  | 1    | 1138  |
| 515-530  | 17    | 399  | 13   | 27   | 277  | 5    | 14   | 224  | 24   | 41   | 177  | 0    | 1218  |
| 530-545  | 16    | 341  | 11   | 15   | 200  | 2    | 10   | 279  | 31   | 31   | 170  | 2    | 1108  |
| 545-600  | 20    | 339  | 16   | 16   | 229  | 7    | 10   | 224  | 20   | 35   | 175  | 5    | 1096  |
| 600-615  | 24    | 334  | 13   | 13   | 188  | 10   | 10   | 233  | 17   | 26   | 180  | 11   | 1059  |
| 615-630  | 18    | 294  | 14   | 29   | 173  | 11   | 6    | 242  | 15   | 34   | 139  | 13   | 988   |
| 630-645  | 13    | 326  | 22   | 18   | 161  | 15   | 9    | 228  | 19   | 31   | 137  | 9    | 988   |
| 645-700  | 16    | 246  | 17   | 20   | 141  | 10   | 7    | 210  | 17   | 27   | 123  | 7    | 841   |
| HOUR TO  | SLATC |      |      |      |      |      |      |      |      |      |      | I    |       |
|          | 1     | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| TIME     | SBRT  | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 400-500  | 66    | 1335 | 65   | 74   | 707  | 13   | 64   | 941  | 79   | 101  | 698  | 11   | 4154  |
| 415-515  | 65    | 1385 | 69   | 78   | 769  | 9    | 69   | 984  | 82   | 108  | 699  | 7    | 4324  |
| 430-530  | 68    | 1455 | 63   | 78   | 874  | 13   | 64   | 961  | 87   | 125  | 674  | 2    | 4464  |
| 445-545  | 67    | 1467 | 59   | 74   | 894  | 13   | 49   | 1016 | 99   | 127  | 679  | 4    | 4548  |
| 500-600  | 65    | 1439 | 59   | 75   | 935  | 15   | 49   | 992  | 100  | 136  | 687  | 8    | 4560  |
| 515-615  | 77    | 1413 | 53   | 71   | 894  | 24   | 44   | 960  | 92   | 133  | 702  | 18   | 4481  |
| 530-630  | 78    | 1308 | 54   | 73   | 790  | 30   | 36   | 978  | 83   | 126  | 664  | 31   | 4251  |
| 545-645  | 75    | 1293 | 65   | 76   | 751  | 43   | 35   | 927  | 71   | 126  | 631  | 38   | 4131  |
| 600-700  | 71    | 1200 | 66   | 80   | 663  | 46   | 32   | 913  | 68   | 118  | 579  | 40   | 3876  |



Phone: (626) 564-1944

Fax: (626) 564-0969

## INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:

KAKU ASSOCIATES

PROJECT:

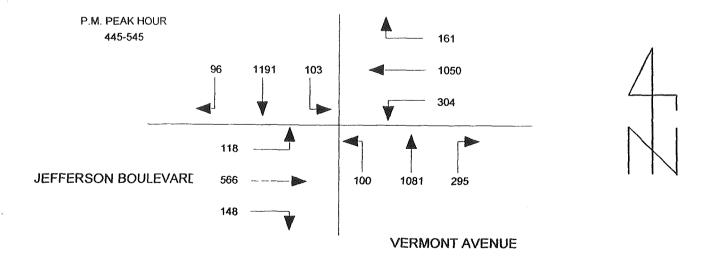
LA COLISEUM PM COUNTS

DATE:

TUESDAY, APRIL 22nd, 2003

PERIOD:

4:00 PM TO 7:00 PM


INTERSECTION: N/S

**VERMONT AVENUE** 

Ε/W

JEFFERSON BOULEVARD

| AE BAILLO |       | `    |      |      |      |      | -    |      |      |         |      |             |       |
|-----------|-------|------|------|------|------|------|------|------|------|---------|------|-------------|-------|
| 15 MIN C  | COUNT |      |      |      |      |      |      |      |      |         |      |             |       |
|           | 1     | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10      | 11   | 12          |       |
| PERIOD    | SBRT  | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT    | EBTH | EBLT        | TOTAL |
| 400-415   | 17    | 280  | 34   | 43   | 197  | 76   | 87   | 240  | 27   | 42      | 132  | 29          | 1204  |
| 415-430   | 28    | 270  | 30   | 40   | 204  | 83   | 71   | 241  | 21   | 36      | 127  | 28          | 1179  |
| 430-445   | 16    | 281  | 23   | 27   | 193  | 75   | 83   | 270  | 34   | 34      | 126  | 22          | 1184  |
| 445-500   | 27    | 314  | 23   | 31   | 217  | 73   | 80   | 241  | 22   | 39      | 144  | 33          | 1244  |
| 500-515   | 27    | 272  | 28   | 45   | 266  | 81   | 76   | 294  | 20   | 33      | 136  | 25          | 1303  |
| 515-530   | 19    | 305  | 27   | 44   | 285  | 73   | 75   | 304  | 38   | 44      | 148  | 38          | 1400  |
| 530-545   | 23    | 300  | 25   | 41   | 282  | 77   | 64   | 242  | 20   | 32      | 138  | 22          | 1266  |
| 545-600   | 22    | 306  | 31   | 33   | 221  | 92   | 65   | 210  | 22   | 32      | 121  | 22          | 1177  |
| 600-615   | 15    | 286  | 24   | 41   | 212  | 67   | 71   | 269  | 25   | 35      | 147  | 38          | 1230  |
| 615-630   | 21    | 267  | 32   | 51   | 234  | 85   | 76   | 189  | 16   | 31      | 118  | 31          | 1151  |
| 630-645   | 29    | 232  | 27   | 57   | 209  | 80   | 85   | 193  | 26   | 28      | 109  | 26          | 1101  |
| 645-700   | 29    | 234  | 34   | 45   | 166  | 75   | 83   | 197  | 22   | 27      | 116  | 35          | 1063  |
| HOUR TO   | OTALS |      |      |      |      |      |      |      |      | <u></u> |      | <del></del> |       |
|           | 1     | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10      | 11   | 12          |       |
| TIME      | SBRT  | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT    | EBTH | EBLT        | TOTAL |
| 400-500   | 88    | 1145 | 110  | 141  | 811  | 307  | 321  | 992  | 104  | 151     | 529  | 112         | 4811  |
| 415-515   | 98    | 1137 | 104  | 143  | 880  | 312  | 310  | 1046 | 97   | 142     | 533  | 108         | 4910  |
| 430-530   | 89    | 1172 | 101  | 147  | 961  | 302  | 314  | 1109 | 114  | 150     | 554  | 118         | 5131  |
| 445-545   | 96    | 1191 | 103  | 161  | 1050 | 304  | 295  | 1081 | 100  | 148     | 566  | 118         | 5213  |
| 500-600   | 91    | 1183 | 111  | 163  | 1054 | 323  | 280  | 1050 | 100  | 141     | 543  | 107         | 5146  |
| 515-615   | 79    | 1197 | 107  | 159  | 1000 | 309  | 275  | 1025 | 105  | 143     | 554  | 120         | 5073  |
| 530-630   | 81    | 1159 | 112  | 166  | 949  | 321  | 276  | 910  | 83   | 130     | 524  | 113         | 4824  |
| 545-645   | 87    | 1091 | 114  | 182  | 876  | 324  | 297  | 861  | 89   | 126     | 495  | 117         | 4659  |
| 600-700   | 94    | 1019 | 117  | 194  | 821  | 307  | 315  | 848  | 89   | 121     | 490  | 130         | 4545  |





Phone: (626) 564-1944

Fax: (626) 564-0969

## INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:

KAKU ASSOCIATES

PROJECT:

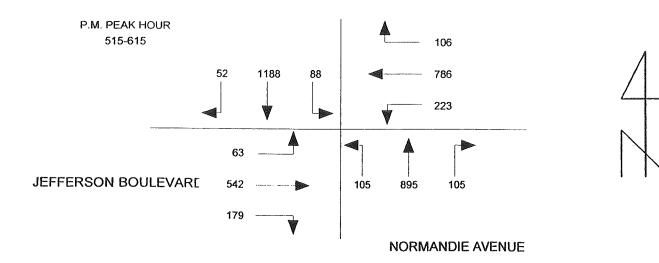
LA COLISEUM PM COUNTS

DATE:

TUESDAY, APRIL 22nd, 2003

PERIOD:

4:00 PM TO 7:00 PM


INTERSECTION: N/S

NORMANDIE AVENUE

Ε/W

JEFFERSON BOULEVARD

| 15 MIN C        | OLINITO | 2    |      |      |      |      |      | -    |      |      |      |      |       |
|-----------------|---------|------|------|------|------|------|------|------|------|------|------|------|-------|
| 13 101114 C     | JOONIA  |      |      |      |      |      |      |      |      | т    |      |      |       |
| DEDIOD          | CDDT    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 1     |
| PERIOD          | SBRT    | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 400-415         | 16      | 324  | 30   | 25   | 143  | 59   | 24   | 217  | 30   | 44   | 132  | 11   | 1055  |
| 415-430         | 10      | 300  | 16   | 20   | 179  | 38   | 28   | 211  | 25   | 32   | 120  | 22   | 1001  |
| 430-445         | 16      | 311  | 18   | 15   | 189  | 51   | 24   | 245  | 25   | 50   | 120  | 18   | 1082  |
| 445-500         | 9       | 292  | 14   | 17   | 167  | 52   | 38   | 226  | 24   | 41   | 133  | 18   | 1031  |
| 500-515         | 12      | 288  | 10   | 23   | 210  | 60   | 26   | 211  | 23   | 41   | 122  | 18   | 1044  |
| 515-530         | 13      | 290  | 18   | 44   | 202  | 60   | 29   | 240  | 27   | 44   | 124  | 17   | 1108  |
| 530-545         | 14      | 292  | 23   | 25   | 224  | 56   | 26   | 235  | 26   | 53   | 137  | 14   | 1125  |
| 545-600         | 12      | 302  | 24   | 13   | 177  | 62   | 20   | 208  | 28   | 34   | 124  | 16   | 1020  |
| 600-615         | 13      | 304  | 23   | 24   | 183  | 45   | 30   | 212  | 24   | 48   | 157  | 16   | 1079  |
| 615-630         | 10      | 282  | 22   | 35   | 167  | 53   | 21   | 202  | 28   | 38   | 121  | 14   | 993   |
| <b>630-64</b> 5 | 13      | 249  | 16   | 21   | 151  | 56   | 29   | 212  | 21   | 39   | 120  | 12   | 939   |
| 645-700         | 14      | 221  | 13   | 21   | 135  | 33   | 28   | 175  | 20   | 44   | 127  | 10   | 841   |
| HOUR TO         | OTALS   |      |      |      |      |      | ·    | '    |      | 1.   |      |      |       |
|                 | 1       | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |       |
| TIME            | SBRT    | SBTH | SBLT | WBRT | WBTH | WBLT | NBRT | NBTH | NBLT | EBRT | EBTH | EBLT | TOTAL |
| 400-500         | 51      | 1227 | 78   | 77   | 678  | 200  | 114  | 899  | 104  | 167  | 505  | 69   | 4169  |
| 415-515         | 47      | 1191 | 58   | 75   | 745  | 201  | 116  | 893  | 97   | 164  | 495  | 76   | 4158  |
| 430-530         | 50      | 1181 | 60   | 99   | 768  | 223  | 117  | 922  | 99   | 176  | 499  | 71   | 4265  |
| 445-545         | 48      | 1162 | 65   | 109  | 803  | 228  | 119  | 912  | 100  | 179  | 516  | 67   | 4308  |
| 500-600         | 51      | 1172 | 75   | 105  | 813  | 238  | 101  | 894  | 104  | 172  | 507  | 65   | 4297  |
| 515-615         | 52      | 1188 | 88   | 106  | 786  | 223  | 105  | 895  | 105  | 179  | 542  | 63   | 4332  |
| 530-630         | 49      | 1180 | 92   | 97   | 751  | 216  | 97   | 857  | 106  | 173  | 539  | 60   | 4217  |
| 545-645         | 48      | 1137 | 85   | 93   | 678  | 216  | 100  | 834  | 101  | 159  | 522  | 58   | 4031  |
| 600-700         | 50      | 1056 | 74   | 101  | 636  | 187  | 108  | 801  | 93   | 169  | 525  | 52   | 3852  |



## **Intersection Turning Movement**

Prepared by: Southland Car Counters

N-S STREET: Vermont Ave.

DATE: 4/22/2003

LOCATION: City of Los Angeles

E-W STREET: Adams Blvd.

CONTROL:

DAY: TUESDAY

PROJECT#

03-0646-002

|                     | NC       | RTHBOU | JND | SO      | UTHBOL       | IND     | E       | ASTBOU  | VD      | W                                       | ESTBOU  | ND      |       |
|---------------------|----------|--------|-----|---------|--------------|---------|---------|---------|---------|-----------------------------------------|---------|---------|-------|
| LANES:              | NL       | NT     | NR  | SL<br>1 | ST<br>2      | SR<br>0 | EL<br>1 | ET<br>2 | ER<br>0 | WL<br>1                                 | WT<br>2 | WR<br>0 | TOTAL |
| 1:00 PM             |          |        |     |         | <del>"</del> |         |         |         |         | *************************************** |         |         |       |
| 1:15 PM             |          |        |     |         |              |         |         |         |         |                                         |         |         |       |
| 1:30 PM             |          |        |     |         |              |         |         |         |         |                                         |         |         |       |
| 1:45 PM             |          |        |     |         |              |         |         |         |         |                                         |         |         |       |
| 2:00 PM             |          |        |     |         |              |         |         |         |         |                                         |         |         |       |
| 2:15 PM             |          |        |     |         |              |         |         |         |         |                                         |         |         |       |
| 2:30 PM             |          |        |     |         |              |         |         |         |         |                                         |         |         |       |
| 2:45 PM             |          |        |     |         |              |         |         |         |         |                                         |         |         |       |
| 3:00 PM             |          |        |     |         |              |         |         |         |         |                                         |         |         |       |
| 3:15 PM             |          |        |     |         |              |         |         |         |         |                                         |         |         |       |
| 3:30 PM             |          |        |     |         |              |         |         |         |         |                                         |         |         |       |
| 3:45 PM             |          |        |     |         |              |         |         |         |         |                                         |         |         |       |
| 4:00 PM             | 19       | 209    | 22  | 34      | 300          | 19      | 29      | 176     | 14      | 23                                      | 175     | 38      | 1058  |
| 4:15 PM             | 19       | 218    | 12  | 37      | 303          | 28      | 23      | 163     | 16      | 33                                      | 164     | 30      | 1046  |
| 4:30 PM             | 21       | 255    | 14  | 32      | 308          | 22      | 26      | 167     | 15      | 32                                      | 186     | 32      | 1110  |
| 4:45 PM             | 22       | 251    | 19  | 28      | 296          | 25      | 29      | 172     | 16      | 31                                      | 208     | 32      | 1129  |
| 5:00 PM             | 24       | 242    | 14  | 29      | 295          | 19      | 31      | 183     | 19      | 30                                      | 205     | 31      | 1122  |
| 5:15 PM             | 18       | 227    | 14  | 29      | 315          | 15      | 25      | 206     | 24      | 30                                      | 227     | 26      | 1156  |
| 5:30 PM             | 22       | 232    | 16  | 30      | 306          | 16      | 30      | 210     | 20      | 31                                      | 240     | 32      | 1185  |
| 5:45 PM             | 19       | 235    | 19  | 33      | 303          | 21      | 29      | 199     | 22      | 29                                      | 246     | 34      | 1189  |
| 6:00 PM             | 18       | 230    | 17  | 37      | 284          | 20      | 28      | 197     | 20      | 28                                      | 255     | 36      | 1170  |
| 6:15 PM             | 18       | 223    | 11  | 29      | 279          | 17      | 24      | 183     | 21      | 28                                      | 263     | 33      | 1129  |
| 6:30 PM             | 14       | 205    | 12  | 36      | 265          | 19      | 24      | 164     | 24      | 27                                      | 246     | 24      | 1060  |
| 6:45 PM             | 17       | 189    | 11  | 22      | 256          | 14      | 19      | 154     | 19      | 26                                      | 214     | 28      | 969   |
| TOTAL               | NL       | NT     | NR  | SL      | ST           | SR      | EL      | ET      | ER      | WL                                      | WT      | WR      | TOTAL |
| VOLUMES =           | 231      | 2716   | 181 | 376     | 3510         | 235     | 317     | 2174    | 230     | 348                                     | 2629    | 376     | 13323 |
|                     |          |        |     |         |              |         |         |         |         |                                         |         |         |       |
| PM Peak Hr Be       | gins at: | 515    | PM  |         |              |         |         |         |         |                                         |         |         |       |
| PEAK<br>VOLUMES =   | 77       | 924    | 66  | 129     | 1208         | 72      | 112     | 812     | 86      | 118                                     | 968     | 128     | 4700  |
| PEAK HR.<br>FACTOR: |          | 0.977  |     |         | 0.981        |         |         | 0.971   |         |                                         | 0.951   |         | 0.988 |

Signalized; Officer directing traffic at 8:00 PM

N-S STREET: Normandie Ave.

DATE: 4/22/2003

LOCATION: City of Los Angeles

E-W STREET: Adams Blvd.

DAY: TUESDAY

PROJECT#

|                                                                                      | NC                         | ORTHBO                          | UND                        | SC                         | ОТНВО                           | JND                        | E                          | ASTBOU                          | ND                         | W                          | /ESTBOL                         | IND                        |                                              |
|--------------------------------------------------------------------------------------|----------------------------|---------------------------------|----------------------------|----------------------------|---------------------------------|----------------------------|----------------------------|---------------------------------|----------------------------|----------------------------|---------------------------------|----------------------------|----------------------------------------------|
| LANES:                                                                               | NL                         | NT                              | NR                         | SL<br>1                    | ST<br>2                         | SR<br>0                    | EL<br>1                    | ET<br>2                         | ER<br>0                    | WL<br>1                    | WT<br>2                         | WR<br>0                    | TOTAL                                        |
| 1:00 PM<br>1:15 PM<br>1:30 PM<br>1:45 PM<br>2:00 PM<br>2:15 PM<br>2:30 PM<br>2:45 PM |                            |                                 |                            |                            |                                 |                            |                            |                                 |                            | a per                      |                                 |                            |                                              |
| 3:00 PM<br>3:15 PM<br>3:30 PM<br>3:45 PM<br>4:00 PM<br>4:15 PM                       | 14<br>16                   | 238<br>243                      | 24<br>26                   | 33<br>38                   | 256<br>244                      | 25<br>29                   | 19<br>22                   | 140<br>155                      | 17<br>17                   | 25<br>29                   | 152<br>186                      | 15<br>12                   | 958<br>1017                                  |
| 4:30 PM<br>4:45 PM<br>5:00 PM<br>5:15 PM<br>5:30 PM                                  | 19<br>19<br>16<br>21       | 254<br>253<br>264<br>282<br>285 | 27<br>28<br>28<br>32<br>33 | 42<br>43<br>48<br>45<br>44 | 272<br>303<br>301<br>298<br>292 | 23<br>25<br>27<br>26<br>21 | 23<br>20<br>21<br>38<br>35 | 166<br>166<br>179<br>188<br>192 | 22<br>18<br>19<br>22<br>17 | 33<br>36<br>33<br>30<br>34 | 195<br>233<br>244<br>256<br>241 | 18<br>18<br>21<br>24<br>29 | 1017<br>1094<br>1162<br>1201<br>1262<br>1242 |
| 5:45 PM<br>6:00 PM<br>6:15 PM<br>6:30 PM<br>6:45 PM                                  | 24<br>22<br>18<br>18<br>25 | 217<br>222<br>216<br>215<br>207 | 20<br>26<br>28<br>24<br>20 | 46<br>40<br>44<br>47<br>38 | 293<br>282<br>267<br>252<br>244 | 18<br>16<br>17<br>21<br>20 | 26<br>28<br>32<br>30<br>23 | 161<br>167<br>146<br>140<br>130 | 27<br>21<br>18<br>13<br>11 | 33<br>31<br>29<br>30<br>25 | 224<br>206<br>182<br>177<br>162 | 19<br>21<br>23<br>30<br>24 | 1108<br>1082<br>1020<br>997<br>929           |
| TOTAL<br>VOLUMES =                                                                   | NL<br>231                  | NT<br>2896                      | NR<br>316                  | SL<br>508                  | ST<br>3304                      | SR<br>268                  | EL<br>317                  | ET<br>1930                      | ER<br>222                  | WL<br>368                  | WT<br>2458                      | WR<br>254                  | TOTAL<br>13072                               |
| PM Peak Hr Be                                                                        | gins at:                   | 445                             | PM                         |                            |                                 |                            |                            |                                 |                            |                            |                                 |                            |                                              |
| PEAK<br>VOLUMES =                                                                    | 75                         | 1084                            | 121                        | 180                        | 1194                            | 99                         | 114                        | 725                             | 76                         | 133                        | 974                             | 92                         | 4867                                         |
| PEAK HR.<br>FACTOR:                                                                  |                            | 0.950                           |                            |                            | 0.979                           |                            |                            | 0.922                           |                            |                            | 0.967                           |                            | 0.964                                        |
| CONTROL:                                                                             | Signali                    | zed                             |                            |                            |                                 |                            |                            |                                 |                            |                            |                                 |                            |                                              |

## **Intersection Turning Movement**

Prepared by: Southland Car Counters

N-S STREET: Vermont Ave.

Signalized

CONTROL:

DATE: 4/22/2003

LOCATION: City of Los Angeles

E-W STREET: I-10 EB Ramps

DAY: TUESDAY

PROJECT#

|                     | NC                                          | ORTHBOU | JND | SO      | UTHBOL  | IND | EA       | STBOU                                   | IND     | W  | ESTBOL | JND |       |
|---------------------|---------------------------------------------|---------|-----|---------|---------|-----|----------|-----------------------------------------|---------|----|--------|-----|-------|
| LANES:              | NL                                          | NT      | NR  | SL<br>2 | ST<br>2 | SR  | EL<br>.5 | ET<br>.5                                | ER<br>1 | WL | WT     | WR  | TOTAL |
| 1:00 PM             | (100 to |         |     |         |         |     |          | *************************************** |         |    |        |     |       |
| 1:15 PM             |                                             |         |     |         |         |     |          |                                         |         |    |        |     |       |
| 1:30 PM             |                                             |         |     |         |         |     |          |                                         |         |    |        |     |       |
| 1:45 PM             |                                             |         |     |         |         |     |          |                                         |         |    |        |     |       |
| 2:00 PM             |                                             |         |     |         |         |     |          |                                         |         |    |        |     |       |
| 2:15 PM             |                                             |         |     |         |         |     |          |                                         |         |    |        |     |       |
| 2:30 PM<br>2:45 PM  |                                             |         |     |         |         |     |          |                                         |         |    |        |     |       |
| 3:00 PM             |                                             |         |     |         |         |     |          |                                         |         |    |        |     |       |
| 3:15 PM             |                                             |         |     |         |         |     |          |                                         |         |    |        |     |       |
| 3:30 PM             |                                             |         |     |         |         |     |          |                                         |         |    |        |     |       |
| 3:45 PM             |                                             |         |     |         |         |     |          |                                         |         |    |        |     |       |
| 4:00 PM             |                                             | 245     | 31  | 98      | 278     |     | 109      | 8                                       | 91      |    |        |     | 860   |
| 4:15 PM             |                                             | 274     | 29  | 89      | 245     |     | 115      | 7                                       | 100     |    |        |     | 859   |
| 4:30 PM             |                                             | 270     | 24  | 61      | 276     |     | 125      | 6                                       | 97      |    |        |     | 859   |
| 4:45 PM             |                                             | 274     | 22  | 99      | 281     |     | 131      | 11                                      | 121     |    |        |     | 939   |
| 5:00 PM             |                                             | 257     | 25  | 69      | 227     |     | 163      | 7                                       | 120     |    |        |     | 868   |
| 5:15 PM             |                                             | 321     | 27  | 88      | 293     |     | 117      | 1                                       | 88      |    |        |     | 935   |
| 5:30 PM             |                                             | 300     | 28  | 101     | 296     |     | 108      | 3                                       | 71      |    |        |     | 907   |
| 5:45 PM             |                                             | 264     | 20  | 90      | 247     |     | 90       | 1                                       | 62      |    |        |     | 774   |
| 6:00 PM             |                                             | 260     | 22  | 85      | 290     |     | 100      | 1                                       | 58      |    |        |     | 816   |
| 6:15 PM             |                                             | 240     | 31  | 94      | 246     |     | 100      | 0                                       | 79      |    |        |     | 790   |
| 6:30 PM             |                                             | 224     | 32  | 84      | 262     |     | 87       | 2                                       | 47      |    |        |     | 738   |
| 6:45 PM             |                                             | 214     | 34  | 73      | 228     |     | 64       | 0                                       | 53      |    |        |     | 666   |
| TOTAL               | NL                                          | NT      | NR  | SL      | ST      | SR  | EL       | ET                                      | ER      | WL | WT     | WR  | TOTAL |
| VOLUMES =           | 0                                           | 3143    | 325 | 1031    | 3169    | 0   | 1309     | 47                                      | 987     | 0  | 0      | 0   | 10011 |
| PM Peak Hr Beg      | jins at:                                    | 445     | РМ  |         |         |     |          |                                         |         |    |        |     |       |
| PEAK                | =                                           |         |     |         |         |     |          |                                         |         |    |        |     |       |
| VOLUMES =           | 0                                           | 1152    | 102 | 357     | 1097    | 0   | 519      | 22                                      | 400     | 0  | 0      | 0   | 3649  |
| PEAK HR.<br>FACTOR: |                                             | 0.901   |     |         | 0.916   |     |          | 0.811                                   |         |    | 0.000  |     | 0.972 |

N-S STREET: Normandie Ave.

DATE: 4/22/2003

LOCATION: City of Los Angeles

E-W STREET: I-10 EB Ramps

DAY: TUESDAY

PROJECT#

|                    | NC       | ORTHBOU                | JND      | SO         | UTHBOL     | IND | E         | ASTBOU   | ND         | W  | ESTBOL | IND        |            |
|--------------------|----------|------------------------|----------|------------|------------|-----|-----------|----------|------------|----|--------|------------|------------|
| LANES:             | NL       | NT                     | NR       | SL<br>1    | ST<br>2    | SR  | EL<br>1.3 | ET<br>.3 | ER<br>.3   | WL | WT     | WR         | TOTAL      |
| 1:00 PM            |          | <del> </del>           |          |            |            |     |           |          |            |    |        |            |            |
| 1:15 PM            |          |                        |          |            |            |     |           |          |            |    |        |            |            |
| 1:30 PM            |          |                        |          |            |            |     |           |          |            |    |        |            |            |
| 1:45 PM            |          |                        |          |            |            |     |           |          |            |    |        |            |            |
| 2:00 PM            |          |                        |          |            |            |     |           |          |            |    |        |            |            |
| 2:15 PM            |          |                        |          |            |            |     |           |          |            |    |        |            |            |
| 2:30 PM            |          |                        |          |            |            |     |           |          |            |    |        |            |            |
| 2:45 PM            |          |                        |          |            |            |     |           |          |            |    |        |            |            |
| 3:00 PM            |          |                        |          |            |            |     |           |          |            |    |        |            |            |
| 3:15 PM            |          |                        |          |            |            |     |           |          |            |    |        |            |            |
| 3:30 PM            |          |                        |          |            |            |     |           |          |            |    |        |            |            |
| 3:45 PM            |          | 222                    | ~ ~      | 22         | 0.45       |     | 60        |          | 00         |    |        |            | 760        |
| 4:00 PM            |          | 239                    | 27       | 89         | 245        |     | 69        |          | 93         |    |        |            | 762        |
| 4:15 PM            |          | 286                    | 21       | 79         | 247        |     | 62        |          | 91         |    |        |            | 786        |
| 4:30 PM            |          | 282                    | 27       | 77<br>72   | 232        |     | 58        |          | 92         |    |        |            | 768<br>746 |
| 4:45 PM            |          | 263                    | 33       | 72         | 234        |     | 62        |          | 82         |    |        |            | 746        |
| 5:00 PM<br>5:15 PM |          | 266                    | 27       | 84         | 246        |     | 51        |          | 97<br>106  |    |        |            | 771<br>794 |
| 5:30 PM            |          | 261<br>294             | 24<br>46 | 70         | 260        |     | 73<br>59  |          | 106<br>99  |    |        |            | 794<br>851 |
| 5:45 PM            |          | 29 <del>4</del><br>277 | 41       | 106<br>105 | 247<br>247 |     | 61        |          | 99<br>94   |    |        |            | 825        |
| 6:00 PM            |          | 267                    | 19       | 92         | 247        |     | 63        |          | 88         |    |        |            | 774        |
| 6:15 PM            |          | 253                    | 28       | 92<br>84   | 253        |     | 58        |          | 100        |    |        |            | 776        |
| 6:30 PM            |          | 236                    | 22       | 83         | 233<br>247 |     | 64        |          | 87         |    |        |            | 739        |
| 6:45 PM            |          | 211                    | 16       | 72         | 245        |     | 57        |          | <b>7</b> 6 |    |        | <i>?</i> * | 677        |
| TOTAL              | NL       | NT                     | NR       | SL         | ST         | SR  | EL        | ET       | ER         | WL | WT     | WR         | TOTAL      |
| VOLUMES =          | 0        | 3135                   | 331      | 1013       | 2948       | 0   | 737       | 0        | 1105       | 0  | 0      | 0          | 9269       |
|                    |          |                        |          |            |            |     |           |          |            |    |        |            |            |
| PM Peak Hr Be      | gins at: | 515                    | PM       |            |            |     |           |          |            |    |        |            |            |
| PEAK<br>VOLUMES =  | 0        | 1099                   | 130      | 373        | 999        | 0   | 256       | 0        | 387        | 0  | 0      | 0          | 3244       |
| PEAK HR.           |          |                        |          |            |            |     |           |          |            |    |        |            |            |
| FACTOR:            |          | 0.904                  |          |            | 0.972      |     |           | 0.898    |            |    | 0.000  |            | 0.953      |
| CONTROL:           | Signali  | zed                    |          |            |            |     |           |          |            |    |        |            |            |

N-S STREET: Vermont Ave.

DATE: 4/22/2003

LOCATION: City of Los Angeles

E-W STREET: I-10 WB Ramps

DAY: TUESDAY

PROJECT#

|                                                                                                                       | NC                                                                    | RTHBO                                                                            | JND     | SC      | OUTHBO                                                                           | JND                                                                  | E       | ASTBOU  | VD      | W                                                              | ESTBOL                                              | IND                                                                   |                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------|---------|---------|----------------------------------------------------------------------------------|----------------------------------------------------------------------|---------|---------|---------|----------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------|
| LANES:                                                                                                                | NL                                                                    | NT                                                                               | NR      | SL      | ST<br>2                                                                          | SR<br>0                                                              | EL      | ET      | ER      | WL<br>.5                                                       | WT<br>.5                                            | WR<br>1                                                               | TOTAL                                                                              |
| 1:00 PM<br>1:15 PM<br>1:30 PM<br>1:45 PM<br>2:00 PM                                                                   |                                                                       |                                                                                  |         |         |                                                                                  |                                                                      |         |         |         |                                                                |                                                     |                                                                       |                                                                                    |
| 2:15 PM<br>2:30 PM<br>2:45 PM<br>3:00 PM<br>3:15 PM<br>3:30 PM                                                        |                                                                       |                                                                                  |         |         |                                                                                  |                                                                      |         |         |         |                                                                |                                                     |                                                                       |                                                                                    |
| 3:45 PM<br>4:00 PM<br>4:15 PM<br>4:30 PM<br>4:45 PM<br>5:00 PM<br>5:15 PM<br>5:45 PM<br>6:00 PM<br>6:15 PM<br>6:30 PM | 70<br>57<br>97<br>52<br>99<br>74<br>101<br>90<br>82<br>64<br>78<br>52 | 292<br>275<br>383<br>270<br>387<br>331<br>345<br>280<br>260<br>257<br>238<br>243 |         |         | 292<br>243<br>355<br>276<br>333<br>293<br>352<br>296<br>346<br>303<br>282<br>284 | 72<br>63<br>89<br>56<br>91<br>75<br>58<br>53<br>72<br>80<br>80<br>49 |         |         |         | 39<br>42<br>74<br>58<br>35<br>56<br>64<br>42<br>57<br>48<br>54 | 2<br>0<br>0<br>0<br>0<br>0<br>0<br>2<br>0<br>2<br>0 | 98<br>73<br>97<br>59<br>93<br>73<br>71<br>95<br>107<br>8<br>93<br>116 | 865<br>753<br>1095<br>771<br>1038<br>902<br>991<br>858<br>924<br>762<br>825<br>796 |
| TOTAL<br>VOLUMES =                                                                                                    | NL<br>916                                                             | NT<br>3561                                                                       | NR<br>0 | SL<br>0 | ST<br>3655                                                                       | SR<br>838                                                            | EL<br>0 | ET<br>0 | ER<br>0 | WL<br>620                                                      | WT<br>7                                             | WR<br>983                                                             | TOTAL<br>10580                                                                     |
| PM Peak Hr Be                                                                                                         | egins at:                                                             | 430                                                                              | PM      |         |                                                                                  |                                                                      |         |         |         |                                                                |                                                     |                                                                       |                                                                                    |
| PEAK<br>VOLUMES =                                                                                                     | 322                                                                   | 1371                                                                             | 0       | 0       | 1257                                                                             | 311                                                                  | 0       | 0       | 0       | 223                                                            | 0                                                   | 322                                                                   | 3806                                                                               |
| PEAK HR.<br>FACTOR:                                                                                                   |                                                                       | 0.871                                                                            |         |         | 0.883                                                                            |                                                                      |         | 0.000   |         |                                                                | 0.797                                               |                                                                       | 0.869                                                                              |
| CONTROL:                                                                                                              | Signali                                                               | zed;                                                                             |         |         |                                                                                  |                                                                      |         |         |         |                                                                |                                                     |                                                                       |                                                                                    |

N-S STREET: Normandie Ave.

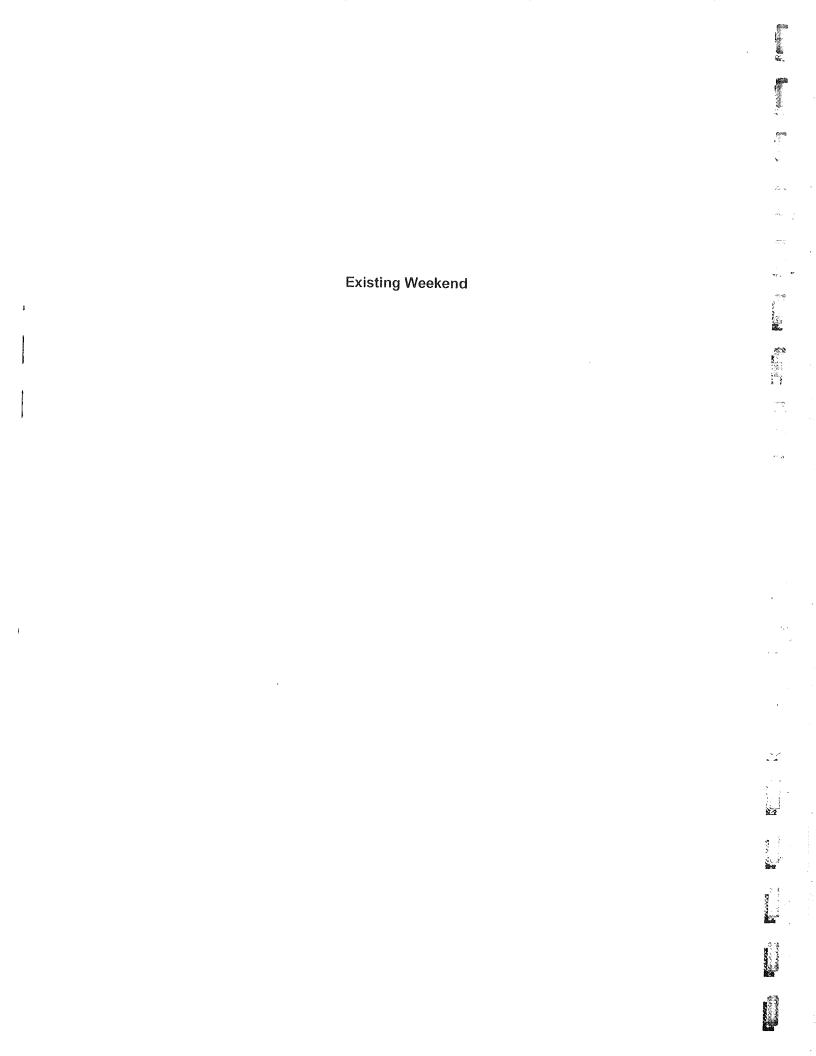
DATE: 4/22/2003

LOCATION: City of Los Angeles

E-W STREET: I-10 WB Ramps

DAY: TUESDAY

PROJECT#


03-0646-004

|                    | NC       | DRTHBOU | JND | SC  | ОИТНВОІ | JND     | E  | ASTBOU                                           | ND | W         | ESTBOL        | JND      |       |
|--------------------|----------|---------|-----|-----|---------|---------|----|--------------------------------------------------|----|-----------|---------------|----------|-------|
| LANES:             | NL       | NT      | NR  | SL. | ST<br>2 | SR<br>1 | EL | ET                                               | ER | WL<br>1.3 | WT<br>.3      | WR<br>.3 | TOTAL |
| 1:00 PM            |          |         |     | -   |         |         |    | <del>*************************************</del> |    |           | ************* |          |       |
| 1:15 PM            |          |         |     |     |         |         |    |                                                  |    |           |               |          |       |
| 1:30 PM            |          |         |     |     |         |         |    |                                                  |    |           |               |          |       |
| 1:45 PM            |          |         |     |     |         |         |    |                                                  |    |           |               |          |       |
| 2:00 PM            |          |         |     |     |         |         |    |                                                  |    |           |               |          |       |
| 2:15 PM            |          |         |     |     |         |         |    |                                                  |    |           |               |          |       |
| 2:30 PM            |          |         |     |     |         |         |    |                                                  |    |           |               |          |       |
| 2:45 PM            |          |         |     |     |         |         |    |                                                  |    |           |               |          |       |
| 3:00 PM<br>3:15 PM |          |         |     |     |         |         |    |                                                  |    |           |               |          |       |
| 3:30 PM            |          |         |     |     |         |         |    |                                                  |    |           |               |          |       |
| 3:45 PM            |          |         |     |     |         |         |    |                                                  |    |           |               |          |       |
| 4:00 PM            | 59       | 250     |     |     | 251     | 61      |    |                                                  |    | 88        |               | 86       | 795   |
| 4:15 PM            | 60       | 288     |     |     | 255     | 67      |    |                                                  |    | 81        |               | 93       | 844   |
| 4:30 PM            | 57       | 280     |     |     | 260     | 72      |    |                                                  |    | 74        |               | 97       | 840   |
| 4:45 PM            | 69       | 252     |     |     | 255     | 85      |    |                                                  |    | 79        |               | 89       | 829   |
| 5:00 PM            | 67       | 307     |     |     | 271     | 92      |    |                                                  |    | 63        |               | 103      | 903   |
| 5:15 PM            | 70       | 267     |     |     | 292     | 94      |    |                                                  |    | 70        |               | 107      | 900   |
| 5:30 PM            | 77       | 277     |     |     | 285     | 83      |    |                                                  |    | 53        |               | 92       | 867   |
| 5:45 PM            | 70       | 265     |     |     | 279     | 66      |    |                                                  |    | 54        |               | 83       | 817   |
| 6:00 PM            | 56       | 275     |     |     | 276     | 39      |    |                                                  |    | 48        |               | 75       | 769   |
| 6:15 PM            | 47       | 266     |     |     | 286     | 36      |    |                                                  |    | 43        |               | 69       | 747   |
| 6:30 PM            | 43       | 256     |     |     | 279     | 37      |    |                                                  |    | 38        |               | 63       | 716   |
| 6:45 PM            | 38       | 232     |     |     | 271     | 31      |    |                                                  |    | 33        |               | 54       | 659   |
| TOTAL              | NL       | NT      | NR  | SL  | ST      | SR      | EL | ET                                               | ER | WL        | WT            | WR       | TOTAL |
| /OLUMES =          | 713      | 3215    | 0   | 0   | 3260    | 763     | 0  | 0                                                | 0  | 724       | 0             | 1011     | 9686  |
|                    |          |         |     |     |         |         |    |                                                  |    |           |               |          |       |
| PM Peak Hr Be      | gins at: | 445     | PM  |     |         |         |    |                                                  |    |           |               |          |       |
| PEAK<br>/OLUMES =  | 283      | 1103    | 0   | 0   | 1103    | 354     | 0  | 0                                                | 0  | 265       | 0             | 391      | 3499  |
| PEAK HR.           |          |         |     |     |         |         |    |                                                  |    |           |               |          |       |
| ACTOR:             |          | 0.926   |     |     | 0.944   |         |    | 0.000                                            |    |           | 0.927         |          | 0.96  |

CONTROL:

Signalized

# APPENDIX C INTERSECTION LEVEL OF SERVICE WORKSHEETS



MORTHBOUND SOUTHBOUND WESTBOUND EASTBOUND

Jefferson Bi

3 | 184 70

Prot-Var

RTOR

Áuto

GROWTH FACTOR:

2

224 | 74

RTOR

Auto

105

¢

D

LOS = A

Phasing

Prot-Var

V/C RATIO

0.71 - 0.80

0.81 - 0.90

0.91 - 1.00

#### INTERSECTION DATA SUMMARY SHEET

| N/S:        | Figueroa St | W/E:       | Adams Bi                                | US No: 1    |  |
|-------------|-------------|------------|-----------------------------------------|-------------|--|
| амин: 22    | Comments:   |            | - · · · · · · · · · · · · · · · · · · · |             |  |
| COUNT DATE: | · s         | TUDY DATE: | GRO                                     | WTH FACTOR: |  |

| Volume   | _                                       | Configurations  |                               |                                |         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|----------|-----------------------------------------|-----------------|-------------------------------|--------------------------------|---------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|          | *************************************** | HBONND P        | Extraction and an arrangement | BOUND I                        | WEST!   | H RT                                                  | Constitution of the Consti | TH AT          |
| EXISTING | 56 1 2                                  | TH RT<br>229 14 |                               | <u>тн</u> . <u>вт</u><br>53 16 |         | 06   58                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46 55          |
|          | - 30 - 1-4                              | 225 14          |                               |                                |         |                                                       | = -17 . dr.=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| AMBIENT  |                                         | ii = i          |                               | -                              | =       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>. L</del> |
| RELATED  | ].                                      |                 |                               | _ = =                          |         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1            |
| PROJECT  | I                                       |                 |                               |                                |         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. 1           |
| TOTAL    | 56 2                                    | 229 14          | 15 1                          | 53 16                          | 39 20   | 06 58                                                 | 23 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46 55          |
| LANE     | 4 P P<br>110 3                          | \$ \$ p 4p      |                               | \$ \$ P P                      |         | 13 13 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15 | 4 分介<br>1:0,1∫                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11010)         |
|          | Phasing                                 | RTOR            | Phasing                       | RTOR                           | Phasing | RTOR                                                  | Phasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RTOR           |
| SIGNAL   | Perm                                    | Auto            | Perm                          | Auto                           | Perm    | Auto                                                  | Perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Auto           |

| Critical Movements Diagram                                    | SouthBound A: 77 B: 15 |                 |             |     |
|---------------------------------------------------------------|------------------------|-----------------|-------------|-----|
| EastBound                                                     |                        | WestBound       | V/C RATIO   | LOS |
| A: 101<br>B: 23                                               | 1 1                    | A: 103<br>B: 39 | 0.60 - 0.60 | A   |
| b; <u>23</u>                                                  | L '                    | ·               | 6.61 - 0.70 | 8   |
|                                                               | NorthBound<br>A: 61    |                 | 0.71 - 6.80 | С   |
| A = Adjusted Through/Right Volume<br>B = Adjusted Left Volume | B: 56                  |                 | 0.81 - 0.90 | D   |
| * = ATSAC Benefit  Results                                    | L                      |                 | 0.91 - 1.00 | E   |
| North/South Critical Movement West/East Critical Movement     |                        | 5/8)<br>E/8)    |             |     |
| V/C =                                                         | + 77 + 39              |                 | LOS *       | A   |

1618\_B25

1618\_B25

Developed by Chun Wong, 12/9-

1618\_825

АМ/РМ:

COUNT DATE:

AMBIENT RELATED PROJECT TOTAL

LANE

Figueroa St

Volume/Lane/Signal Configurations

0 | 1618 | 124

Prot-Var

Critical Movements Diagram

A ≈ Adjusted Through/Right Volume B = Adjusted Left Volume \* = ATSAC Benefit

Comments:

EXISTING 0 1618 124 74 831 196

RYOR

EastBound

B: 66

West/East Critical Movements = A(W/B) + B(E/B)

V/C = 436 +

STUDY DATE:

74 831 196

RTOR

342 B: 74

74 + \*1375

CalcaDB

August 26, 2003 ,Tuesday 03:40:06 PM

#### August 26, 2003 ,Tuesday 03:40:06 PM CalcaDB

#### INTERSECTION DATA SUMMARY SHEET

| N/S:        | Flower St | W/E:        | Exposition BI | US No:    | 3 |
|-------------|-----------|-------------|---------------|-----------|---|
| Ам/РМ: 📆    | Commen    | ts:         |               |           |   |
| COUNT DATE: |           | STUDY DATE: | GROWT         | H FACTOR: |   |

|          | NOR1         | HBOUN                                                                                                                                                        |       | SOL          | THBOUN                                                                                                | 2    | L          | YESTBO | UND I  | L.   | ASTRO      | UND      | 800000 |
|----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|-------------------------------------------------------------------------------------------------------|------|------------|--------|--------|------|------------|----------|--------|
|          | LT           | TH                                                                                                                                                           | RT    | LT           | TH;                                                                                                   | RT   | LT         | TH     | RT     | LT   | , n        | i        | RT     |
| EXISTING | 0            |                                                                                                                                                              | 194   | 133          | 573                                                                                                   | 0    | 38         | 301    | 0      | 0    | . 0        |          | 0      |
| AMBIENT  | į            |                                                                                                                                                              |       |              |                                                                                                       |      |            |        |        |      |            | Ĩ        |        |
| RELATED  | ļ.           |                                                                                                                                                              |       |              |                                                                                                       |      | -          |        | 11 151 |      |            | Ï        |        |
| PROJECT  |              |                                                                                                                                                              |       |              |                                                                                                       |      |            |        | _L _   |      |            | Ī        |        |
| TOTAL    | 0 }          | 229                                                                                                                                                          | 194   | 133          | 573                                                                                                   | .0 . | 38         | 301    | Ţġ,    | 0    | Ō          | 1        | 0      |
|          | <b>ላ</b> ል የ | A &                                                                                                                                                          | p 643 | <b>4</b> & 4 | 2 24                                                                                                  | p 6p | <b>٩</b> 🔗 | ተ 🚓    | € p 4p | ٩ જ  | <b>↑</b> & | <b>4</b> | p 4    |
| LANE     | 14           | ГП                                                                                                                                                           | 2     | 1 1 1        |                                                                                                       | i    | _ju        |        |        |      | . 12       | •        |        |
|          | Phasing      | RY                                                                                                                                                           | OR    | Phasin       | y R1                                                                                                  | OR   | Phasi      | ing    | RTOR   | Phas | ing        | RY       | OR     |
| SIGNAL   | Split        | <nc< td=""><td>me&gt;</td><td>Split</td><td><nc< td=""><td>me&gt;</td><td>Pen</td><td>m :</td><td></td><td></td><td></td><td></td><td></td></nc<></td></nc<> | me>   | Split        | <nc< td=""><td>me&gt;</td><td>Pen</td><td>m :</td><td></td><td></td><td></td><td></td><td></td></nc<> | me>  | Pen        | m :    |        |      |            |          |        |

| EastBound                                                 |
|-----------------------------------------------------------|
| B: 0 B: 38 0.00 - 0.60 A                                  |
|                                                           |
| NorthBound 0.61 - 0.70 B                                  |
| A: 107 0.71 - 0.80 C                                      |
| ed Through/Right Volume ad Left Volume 8: 0 0.81 - 0.80 D |
| 80netit 6,91 - 1,60 E                                     |
| ed Left Volume B: 0 0.81 - 0.90 D                         |

|             |             |             |               | -          |   |
|-------------|-------------|-------------|---------------|------------|---|
| N/S:        | Figueroa St | W/E:        | Exposition BI | I/S No.    | 4 |
| ам/рм: 🖽    | Comment     | 3:          |               |            |   |
| COUNT DATE: |             | STUDY DATE: | GROW          | TH FACTOR: |   |

|          | NORIE        | BOUND 6 | LSOUT   | HBOUND } | <u> </u> | SIBOU | ND.       | LEA    | STROUN       | 0    |
|----------|--------------|---------|---------|----------|----------|-------|-----------|--------|--------------|------|
|          |              | TH RT   | LT      | TH RY    | LT       | 114   | RT        | LT     | TH           | RT   |
| EXISTING | 3 6          | 63 72   | 156     | 773 5    | 10       | 16    | 642       | 114    | 354          | 40   |
| AMBIENT  | T            | 24: 02  | 1       |          | •        | 1     |           | •      |              |      |
| RELATED  | Jan de       |         | i       |          |          | i     |           |        |              |      |
|          | · !          |         | Į.      |          |          | !     |           |        | ļ            |      |
| PROJECT  | l l          |         | l       |          |          | l     |           |        | :            |      |
| TOTAL    | 3 ∫ 6        | 63 72   | 156     | 773 5    | 10       | 16    | 642       | 114    | 354          | 40   |
|          | <b>9 A</b> A | ተቀ ነ ይ  | 4 4 4   | 最多卢州     | 4 &      | ት ጩ ተ | £ # 4#    | 48     | <u>ያ ል</u> የ | p 4  |
| LANE     | 1 0 3        | 0 1 0 0 | 1 0 1   | 01100    | 0 0      | 3   0 | 0   1   0 | 2 0    |              | 0    |
|          | Phasing      | RYOR    | Phasing | RYOR     | Phasin   | g     | RTOR      | Phasin | g f          | RTOR |
| SIGNAL   | Perm         | Auto    | Perm    | Auto     | Prot-V   |       | Auto      | Prot-V | ar i         | Auto |

| ts = A(W#8) + 8- | (E/B)     |                                                                                                         |                                                                                                      |
|------------------|-----------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|                  |           |                                                                                                         |                                                                                                      |
| <u> </u>         | J         | 0.91 - 1.00                                                                                             | E                                                                                                    |
| B; 3             |           | 0.81 - 0.90                                                                                             | D                                                                                                    |
| A: 184           |           | 0.71 - 0.80                                                                                             | c                                                                                                    |
| l larme Barnet   | B: 0      | 0.61 - 0.70                                                                                             | 8                                                                                                    |
| 1 1              | 1         | 0.00 - 0.60                                                                                             | A                                                                                                    |
| 1                | WestBound | V/C RATIO                                                                                               | Los                                                                                                  |
| B: 156           |           |                                                                                                         |                                                                                                      |
| A: 389           |           |                                                                                                         |                                                                                                      |
|                  | B: 156    | A: 389 B: 156    WestBound   A: 642   B: 0     NorthBound   A: 164   B: 3     NothBound   A: 164   B: 3 | A: 389 B: 156  WestBound  A: 642 B: 0  0.00 - 0.60 0.51 - 0.70  A: 164 B: 3  0.81 - 0.50 0.91 - 1.60 |

#### Calcabe

#### INTERSECTION DATA SUMMARY SHEET

| H/S:        | Flower St | W/E:        | 37th St | VS No:         | 5 |
|-------------|-----------|-------------|---------|----------------|---|
| амин:       | Comme     | ints:       |         | - • •          |   |
| COUNT DATE: |           | STUDY DATE: |         | GROWTH FACTOR: |   |

|          | LNORTH  | BOUND b     | LSOUTH        | IBOUND I       | WES          | IBOUND | LEASI            | SOUND   |
|----------|---------|-------------|---------------|----------------|--------------|--------|------------------|---------|
|          | LT 1    | H RY        | LT            | TH RT          | LT           | TH RT  | LT               | TH RT   |
| EXISTING | 0       | 0 202       | 520 4         | 179 0          | 0 1          | 0 0 .  | 0 1 4            | 16 47   |
| AMBIENT  |         |             |               |                |              |        |                  |         |
| RELATED  | 1       |             |               |                |              |        |                  |         |
| PROJECT  |         | #127.500 =  | 4 10 14 4     |                |              |        | 250000           | I       |
| TOTAL    | 0       | 0 202       | 520 4         | 179 0          | <u> </u>     | 0   0  | 0 4              | 16 47   |
|          | 4 6 6 6 | <u>ፈ</u> ቀቀ | <b>4</b> & 4. | <u>ፈ</u> ፍ ፆ ቀ | <b>4</b> # # | 金仓户的   | <b>6</b> A A A : | 8 6 6 6 |
| ANE      | 0.00    | y y         |               | 0 0 0 0        | 0 0 0        | 37 7   | 0 0 4            | 0 1 0 1 |
|          | Phasing | RTOR        | Phasing       | RTOR           | Phasing      | RTOR   | Phasing          | RTOR    |
| SIGNAL   | Perm    | ŌĹÄ         | Prot-Fix      | <none></none>  |              |        | Perm             | Auto    |

| Crítical Movements Diagram                                    | SouthBound A: 240 B: 284 | `            |             |     |
|---------------------------------------------------------------|--------------------------|--------------|-------------|-----|
| EastBound                                                     | _                        | WestBound    | Y/C RATIO   | Los |
| A: 93                                                         | 1 1                      | A: 0         | 0.00 - 0.60 | A   |
| B:                                                            |                          | 8:0          | 8.61 - 0.70 | В   |
|                                                               | A: 111                   |              | 0.71 - 0.80 | С   |
| A = Adjusted Through/Right Volume<br>B = Adjusted Left Volume | в: 0                     |              | 0.81 - 0.90 | Đ   |
| * ATSAC Benefit                                               | L                        |              | 0.91 - 1.00 | E   |
| Results North/South Critical Moveme                           | nts = A(N/B) + B         | 8/8)         |             |     |
| West/East Critical Movement                                   | s = A(W/B) + A           | (E/B)        |             |     |
| V/C =                                                         | + 286 + 0                | + 93 = 0.274 | tos =       | A   |

Denouped by Chun Wong 12/9

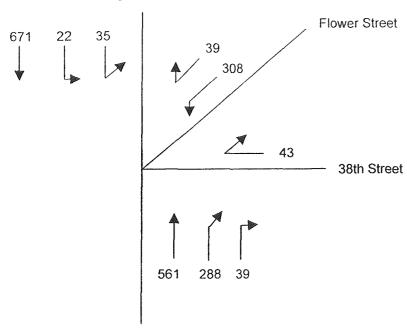
INTERSECTION DATA SUMMARY SHEET

N/S: Figueroa St W/E: State Dr // I/S No: 6

AMPM: M Comments:

COUNT DATE: STUDY DATE GROWTH FACTOR:

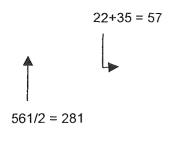
|          | NORTH       | BOUND    | SOUTHE                | OHD      | WESTE       | QUUQ    | EAS     | S I BOUND |
|----------|-------------|----------|-----------------------|----------|-------------|---------|---------|-----------|
|          |             | H RY     | LT TI                 | H RT     | LT T        | H RT    | LT      | TH RI     |
| EXISTING | 0 72        | 25 0     | 0 86                  | 8 1      | 0 (         |         | 1       | 0 2       |
| AMBIENT  |             |          | 7                     |          | T           | ** 2 */ |         | 1         |
| RELATED  |             | .27 7    | 1                     |          | ·           |         |         |           |
| PROJECT  | ±           | 122 -    | - t                   |          | ļ.          | 4.      |         | !         |
| PROJECT  | i_          |          | J                     |          | ı           |         |         | l         |
| TOTAL    | 0   72      | 25   0   | 0 86                  | 8 1      | 0 1 0       | 0 0     | 1       | 0 , 2     |
|          |             | X -      | 7 1 77                |          |             |         |         | , ,       |
|          | 4 4 4 5     | 2 4 4 40 | 4 <i>p</i> + <i>p</i> | A 10 640 | 4 4 4 4     | 444     | 4 4 4   | 444       |
|          |             |          | 6 6                   | , 4,     |             | 9 19 "  | י ישי   | 44 4 '    |
| LANE     | 0 0   5   0 | 1 0 0 0  | 0 0 3 10              | 10.010   | 0 0 0 10 10 | 0101010 | 0 0 0   | , 0 0 0   |
|          | Phasing     | RTOR     | Phasing               | RTOR     | Phasing     | RTOR    | Phasing | RTOR      |
| SIGNAL   | Perm        |          | Perm                  |          | •           |         | Perm    | Auto      |


| <u>LOS</u>                 |
|----------------------------|
| A                          |
| В                          |
| С                          |
| Ď                          |
| Ε                          |
| 0.81 - 0.90<br>0.91 - 1.00 |
| LOS =                      |
|                            |

Developed by Chun Wang 12

1616\_B25

# Intersection # 7 Figueroa & Flower & 38th Weekend Scenario - Existing Conditions


Figueroa Street



#### **Critical Movement Analysis**

Phase 1 Critical Moves

Phase 3 Critical Moves



$$v/c = \frac{(281 + 57) + (174 - 43) + 43}{1425}$$

$$= 0.359 \quad (LOS A)$$

Phase 2 Critical Moves

INTERSECTION DATA SUMMARY SHEET August 28, 2003 ,Tuesday 03:40:34 PM

CalcaDB

1618\_825

August 26, 2003 ,Tue

CalcaDB

INTERSECTION DATA SUMMARY SHEET

SAN Figueroa St W/E

US No:

EXISTING AMBIENT RELATED PROJECT AM/PM: Volume/Lane/Signal Configurations NOBIHBON ~|C 575 183 CHINOBILITIOS 8 3 STUDY DATE ----646 T 4 3 WESTBOUND GROWTH FACTOR 253

- 2

LANE TOTAL 1 6 2 0 1 0:0 Phasing Prot-Var 2 575 183 RYOR Auto 1 0 2 0 1 1 10 10 1 0 2 10 1 1 10 10 Prot-Var Phasing 90 RTOR 1 分分級分中分 Phasing 378 [ 33 RTOR 253 EASIBOUND
CT TH N 0,40 0 1 0:‡∂ 38 **-** ₩ Auto

0 ÷

SIGNAL

Phasing

Auto

Phasing

RTOR

Phasing

RTOR

RTOR Auto

Critical Movements Diagram

m > 8

0

TOTAL

0

0

58

302 0

0

240 54

LANE

9 分分分分十分

EXISTING AMBIENT RELATED PROJECT

Crkical Movements Diagram EastBound
A: 43
B: 1 SouthBo A: 8 2 8 اج ج 20 2 2 0.61 - 0.70 0.00 - 0.60 VIC RATIO n ∞ > 108

reverg

A " Adjusted Through/Right Volume
B " Adjusted Left Volume
" " ATSAC Benefit nBound 253 0.71 - 0.80

+ +

A = Adjusted Through/Right Volume B = Adjusted Left Volume • = ATSAC Benefit

117

358

0.81 - 0.90 0.91 - 1.00

A: 120 B: 0

 $\overline{\phantom{a}}$ 

# ¥ ₩

setBound 151

V/C RATIO 0.80 - 0.60 0.61 - 0.70 0.71 - 0.80

E D C B > 10

0

Results

ν<sub>C</sub> κ

1500

yse yse

8(M/8)

٠.

A(S/B) A(E/B) 58

120

0.286

E SOJ

Results West/East Critical Movements A(N/B) B(W/B) 8(S/B) A(E/B) 208

7375 0.362

₹ SO1

CalcaDB

August 26, 2003, Tuesday 03:40:34 PM

1618\_B25

1618\_B25

AMPH

STUDY DATE:

GROWTH FACTOR:

COUNT DATE: AM/PM: SA

STUDY DATE:

GROWTH FACTOR

1-110 NB Ramps

M.L.King Jr. BI

VS No.

8

1-110 SB Ramps

W/E:

M.L.King Jr. BI

I/S No

#

INTERSECTION DATA SUMMARY SHEET

CalcaDB

August 26,

sday 03:40:34 PM

INTERSECTION DATA SUMMARY

SHEET

West/East Critical Mo North/Bows Critical Rovements =

A(N/B) +

A(8/8) A(E/8)

ž

9.362

103

**8**05/00/0

100 00 00 100 00 00

Ş 8 A(N/B) + A(E/B) (878)E 3

9.672

5

63

Bound 6 9.51 - 9.80 9.81 - 9.80 9.51 - 1.69 0.60 - 0.60 0.61 - 0.79 VIC RATIO

m 0 0 0 >

A = Adjusted Through/Right Volume B = Adjusted Left Volume • = ATSAC Benefit

North

•

6.71 - 0.80 9.81 - 0.90 8.91 - 1.60

A: 351

**-**◇

# A

이 : 리

0.00 - 0.60 9.81 - 0.76 VIC RATIO

₹ **801** 

SouthBound A: 207
A: 207

North-Routh Critical Mov

A " Adjusted Through/Hight Voluma B " Adjusted Left Voluma " " ATBAC Benefit A: 278

8: 108 -⊳ Ø ≥.

8: 142

SIGNAL Splet Spar Auto Auto Phasing RTOR TOTAL PROJECT

398 139

142 21 0

0 20 0

108 510 279

TOTAL

0 0

0

146 0

0 | 31

EXISTING AMBIENT RELATED PROJECT

4 

7H RT 398 139

SOMITH BOMB 142 21 0

FASTBOUND 1 108 | 510 | 279

NORTHBOUND O

SOUTHBOUND

LT TH RT

146 0 377

WESTBOUND
LT TH RT
0 31 0

EASTBOUND LY TH R1 0 795 25

0,310,010.0

0 4

o €0 N →

0 \$0 - 40 0 \$ 795 ; 25

Phasing

Auto

SIGNAL

Phasing

RTOR

Phasing

RYOR

Pem

Perm

Auto

COUNT AMPH: S/N

STUDY DATE:

GROWTH FACTOR.

I-110 HOV Ramps

W/E:

39th St

. No.

Volume/Lane/Signel Configurations

| НОВТИНВОЦИВ | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 1

SOUTHBOUND IT RT 0 0 0

1618\_825

AMPM: COUNT DATE

STUDY DATE:

Figueroa St

W/E:

M.L.King Jr. 81

7

COUNT DATE:

STUDY DATE

GROWTH FACTOR

ದ

INTERSECTION DATA SUMMARY SHEET

Hoover St M.L.King Jr. BI I/S No

TOTAL RELATED PROJECT EXISTING AMBIENT

3 390 180

218 497 364

37 246 118

184 621 83

NORTHBOUND 1

218 497 364

WESTBOTHO 17 TH RT 37 246 1118

FASTBOUND LT TH RT 184 621 83

LANE.

Penn

Phasing

RTOR

Phasing Prot-Var

Phasing Prot-Var

RTOR

2. %

A = Adjusted Through/Right Volume
B = Adjusted Left Volume
• = ATSAC Benefit North/South Critical Movements \*
West/East Critical Movements \* EastBound
A: 372
B: 5 128 B(W/B) + 128 -⊳ A(S/B) A(E/B) 158 # A g 372 158 276 0.386 0.81 - 0.90 0.71 - 0.80 0.61 - 0.70 0.00 - 0.60 Los \* m o o a >

North/South Critical Movements = West/East Critical Movements =

A(N/B) +

B(S/B) B(E/B)

2

- 0.449

- SO1

235 235

-0

A: 121
B: 37

0

SouthBound
A: 344
B: 218

99 > ₹

180

0.81 - 0.90 0.71 - 0.80 0.61 - 8.70 0.69 - 0.60 VIC RATIO

m p n m ≥

٧,

190

1618\_825

August 26, 2003 ,Tuesday 03:40:34 PM

1618\_B25

COUNT DATE:

Vermont Av

W/E:

M.L.King Jr. BI

VS No:

2

Comments:

STUDY DATE:

GROWTH FACTOR:

INTERSECTION DATA SUMMARY SHEET

CalcaDB

INTERSECTION DATA SUMMARY SHEET CalcaDB August 26, 2003 , Tuesday 03:40:34 PM

COUNT DATE: STUDY DATE W/E: 39th St I/S No. 5

ane/Signal Configurations

TOTAL EXISTING
AMBIENT
RELATED
PROJECT LY TH 112 | 943 | 36 ND SOUTHBOU RY LY TH 36 4 927 4 927 195 195 WESTBOUND 1 0 ] 1 , N EASTBOUND
LT TH
64 9 1 <u>.</u> 8 3

A = Adjusted Through/Right Volume 8 = Adjusted Left Volume • = ATSAC Senefit WestVEast Critical Movements • A: 173 ₹ • (sw) • A(E/B) 3 a) u. \{ - 9,434 0.81 - 0.90 8.91 - 1.90 0.71 - 0.80 6.61 - 0.70 0.00 - 0.60 V/C RATIO - SO 100

ξĊ. 325 88 318 rthBound 318 A(NVB) · 8(E/S) 8(E/S) ₽ ≥ 361 361 8 9,689 VK RAHO
0.00 - 0.60
0.61 - 0.70
0.71 - 0.80 0.81 - 0.80 . 80 m o c e > E

EXISTING AMBIENT RELATED PROJECT

-----

TOTAL

143 592 44

319 515 95

20

255 361

98 836 139 

Perm Auto Prot-Fix Auto Perm

ø » 8 319

A = Adjusted Through/Right Volume B = Adjusted Left Volume • = ATBAC Benefit

North/South Critical Movements a

CalcaDB

Comments:

NORTHBOUND SOUTHBOUND

10|1|0|1.000 1|0|1|0|10|0

Phasing

Perm

North/South Critical Movements = B(N/B) + A(S/B) West/East Critical Movements = B(W/B) + A(E/B)

RTOR

Auto

A: 319

B: 131

амин: COUNT DATE:

AMBIENT RELATED PROJECT TOTAL.

SIGNAL

Volume/Lane/Signal Configurations

159 | 885 | 66

Phasing

Perm

Critical Movements Diagram

A « Adjusted Through/Rig B = Adjusted Left Volume \* = ATSAC Benefit

EXISTING 159 885 66 117 954 110 42 411 117 131 843 114

RTOR

Äuto

W/E:

117 | 954 110

B: 117

fiBound \*

V/C × 159 + 532 + 42 + 319 = 0.631

STUDY DATE.

M.L.King Jr. BI

42 | 411 117

1 0 3 0 0 1 0

RTOR

Auto

Phasing

Perm

131 843 114

RTOR

Auto

LOS

Phasing

Perm

0.61 - 0.70

6.71 - 0.80

0.91 - 1.00

LOS = B

GROWTH FACTOR:

#### INTERSECTION DATA SUMMARY SHEET

| N/s.        | Vermont Av | W/E: Expor  | ition BI vs No: | 16 |
|-------------|------------|-------------|-----------------|----|
| AMPM: PM    | Comme      | nts:        |                 |    |
| COUNT DATE: |            | STUDY DATE: | GROWTH FACTOR:  |    |

|          | HORIHE         |          | C SOUTH   | BOUND 1         | L WE    | STBOUND b | EAST!        | TONN D   |
|----------|----------------|----------|-----------|-----------------|---------|-----------|--------------|----------|
|          | LT T           | H RT     | LT        | TH RT           | LT _    | TH RT     | LT           | TH RT    |
| EXISTING | 0 65           | 3 16     | 8 1:      | 346 255         | 4       | 25 20     | 57 3         | 113 125  |
| AMBIENT  | = [=           |          |           |                 |         | 1         |              |          |
| RELATED  |                |          |           | . 4             |         |           | بالمنف يخور  |          |
|          |                |          | ====::    |                 |         |           |              |          |
| PROJECT  | L_             |          |           |                 |         |           |              | ]        |
|          |                |          |           |                 |         |           |              |          |
| TOTAL    | 0 65           | 3 16     | 8 1       | 346 255         | 4       | 25 20     | 57 3         | 113   12 |
|          |                |          |           |                 |         |           |              |          |
|          | <b>ላ ድ</b> ዮ £ | 含色种      | ላ ድዋ į    | <b>ፎ६ሶ</b> ଡ    | ላ 🗗 ና   | ተላ ይጨና    | <b>ዓ</b> ∂ት, | ላ ያ ጨ    |
| ANE      | 1 0 1 0        | 1100     | 1.012     | 0 0 1 0         | 1 0 1   | 0 1 0 0   | 0 0 2 (      | 0 1 0    |
|          | 1, 13,14.1     | 1,1113.5 | Caral Ed. | F 1.5 L. 1.5 C. | 1,7 4 ( | 12 37212  |              | 2 / 11   |
|          | Phasing        | RTOR     | Phasing   | RTOR            | Phasing | RTOR      | Phasing      | RTOR     |
| SIGNAL   | Perm           | Auto     | Perm      | Auto            | Perm    | Auto      |              | Auto     |

|                   | V/C =                    | *1500               | + 146 = 0.475      | Los =       | Α        |
|-------------------|--------------------------|---------------------|--------------------|-------------|----------|
| We                | st/East Critical Moveme  | nts = B(W/B) + A(   | E/8)               |             |          |
| Ho                | rth/South Critical Moven | ments = B(N/B) + A( | S/B)               |             |          |
| — Results ~       |                          |                     |                    |             | <u> </u> |
| * # ATSAC Benef   | it                       | L                   |                    | 0.91 - 1.00 | E        |
| B a Adjusted Left | Volume                   | B: 0                |                    | 9.81 - 9.80 | Ð        |
| a s Adjusted The  | ough/Right Volume        | A: 335              |                    | 0,71 - 9.80 | С        |
|                   | <u> </u>                 | North Bound         |                    |             | _        |
|                   | 8: 0                     | 1                   | 8: 4               | 0.51 - 0.76 | B        |
|                   |                          | i T                 |                    | 0.00 - 0.60 | A        |
|                   | A: 146                   | Δ                   | WestBound<br>A: 23 | Y/C RATIO   | LOS      |
|                   | ( EastBound              |                     |                    |             |          |
|                   |                          | B:                  |                    |             |          |
|                   |                          | A: 673              |                    |             |          |
|                   |                          | f SouthBound        |                    |             |          |

verspee by Chun Hong 12/9-

August 26, 2003 Tuesday 03:40:34 PM CalcaDB INTERSECTION DATA SUMMARY SHEET

RTOR

Auto

Prot-Fix

### 1618\_825

RTOR

OLA

Phasing

Jefferson Bl АМ/РМ: Comments: COUNT DATE: GROWTH FACTOR: STUDY DATE:

|          | LNO     | RTHBOUN | D.   | 50  | NOBHTU |    | LW     | STROUN | D   | LEA | SIBOUN | Ω  |
|----------|---------|---------|------|-----|--------|----|--------|--------|-----|-----|--------|----|
|          | LT      | TH      | RT   | LT  | TH     | RT | LT     | TH     | RT  | LT  | TH     | RT |
| EXISTING | . 51    | 688     | 283  | 162 | 1048   | 56 | 313    | 653    | 112 | 133 | 439    | 91 |
| AMBIENT  |         | T       |      |     |        | 45 | 75.5.4 |        |     | -   | i      |    |
| RELATED  | 12 2 20 | i-      |      |     | i -    |    |        |        |     |     |        |    |
| PROJECT  |         | L.      | - 11 |     | 1      |    |        |        |     |     |        |    |
| PROJECT  |         | 1 .     |      |     | i      |    | I      |        |     |     | i      |    |
| TOTAL    | 51      | 688     | 283  | 162 | 1048   | 56 | 313    | 653    | 112 | 133 | 439    | 91 |
|          |         |         |      |     |        |    |        |        |     |     |        |    |

| 162<br>A<br>Bound 344 | A:<br>B: | 327<br>313                     |                                    | <u>V/C RATIO</u> 0.80 - 0.60 9.61 - 0.70 0.71 - 0.80 | LOS<br>A<br>B<br>C                 |
|-----------------------|----------|--------------------------------|------------------------------------|------------------------------------------------------|------------------------------------|
| 344                   | A:       | 327                            |                                    | 0.00 - 0.60<br>9.61 - 0.70                           | A<br>B                             |
| 344                   | 1        |                                |                                    | 9.61 - 0.70                                          | 8                                  |
| 344                   | B:       | 313                            | J                                  |                                                      | _                                  |
| 344                   |          |                                |                                    | 0.71 - 0.89                                          | С                                  |
| 81                    | - !      |                                |                                    |                                                      |                                    |
|                       | .        |                                |                                    | 0.81 - 0.90                                          | D                                  |
|                       |          |                                |                                    | 0.91 - 1.60                                          | E                                  |
| B(H/B) •              | A(8/8)   |                                |                                    |                                                      |                                    |
|                       | A(E/B)   |                                |                                    |                                                      |                                    |
|                       | B(W/B) + | 8(W/B) + A(E/B)<br>624 + 313 + | 8(W/B) + A(E/B)<br>824 + 313 + 266 | B(W/B) + A(E/B)<br>824 + 313 + 265                   | B(WWB) + A(E/B)<br>624 + 313 + 265 |

1618\_825

CalcaDB

August 26, 2003 ,Tuesday 03:40:34 PM

| N/S:    | Normandie Av | W/E: Exp      | osition BI VS No: 18 |
|---------|--------------|---------------|----------------------|
| АМРИ:   | PM Com       | ments: Sunday |                      |
| COUNT D | ATE:         | STUDY DATE:   | GROWTH FACTOR:       |

|          | LNOF    | THBOUN        | 2    | LSC    | UTHBO  | UND -  | LWE         | STROUN | 2     | L.     | STBOUN       | D    |
|----------|---------|---------------|------|--------|--------|--------|-------------|--------|-------|--------|--------------|------|
|          | LY      | TH            | RT   | LT     | TH     | RT     | LT          | TH     | RT ·  | LT     | TH           | . RT |
| EXISTING | 101     | 1054          | 55   | 72     | 118    | 1 91   | 61          | 109    | 74    | 76     | 368          | 85   |
| AMBIENT  |         |               |      |        |        |        |             |        |       |        | :            | T    |
| RELATED  |         | 25.54120      |      | ====   | MIN. 5 | 21-5.5 | *********** |        |       |        |              | r v  |
| PROJECT  | 100 124 |               |      |        | 27.1   | ** =   | -71-751-25  | - · ·  |       | ::::   |              | ļ.   |
| ROJECT   |         |               | ***  |        |        |        |             | [      |       | ~      |              | ι.   |
| TOTAL    | 101     | 1054          | 55   | 72     | 1181   | 91     | 61          | 109    | 74    | 76     | 368          | 85   |
|          |         |               |      |        |        |        |             |        |       |        |              |      |
|          | 984     | <b>3</b> 22 4 | p 4p | 4 🖈    | ት ጵ    | Q # 40 | 4 4         | 4 4    | 10 60 | 4 8    | <b>ተ</b> 🚓 ዊ | p 44 |
| LANE     | - 014   | 1011          | 010  |        |        |        | 0 1 1       |        |       | 011    |              |      |
| LANC     | 1 . 0 1 | ببيين         | 010  |        | .1.2.1 | 1 0 10 | 0           | U      | 1010  | 10111  | 1 [0, 1      | FOL  |
|          | Phasin  | . R1          | ron  | Phasic | ١a     | RTOR   | Phasin      | 3 R    | TOR   | Phasin | 10           | RTOR |
| SIGNAL   | Perm    |               | uto  | Pen    |        | Auto   | Perm        |        | urbo  | Perm   |              | Auto |

|                                                                            | A: 176<br>B: 76 | Hort<br>A: | thBound | A:<br>B: | 61 | V/C RATIO<br>0.60 - 0.60<br>8.81 - 9.78<br>9.71 - 9.80 | <u>LOS</u><br>A<br>B<br>C |
|----------------------------------------------------------------------------|-----------------|------------|---------|----------|----|--------------------------------------------------------|---------------------------|
| A = Adjusted Thre<br>B = Adjusted Left<br>• = ATSAC Benefit<br>— Results — |                 | B;         | 101     |          |    | 9.81 - 9.80<br>9.91 - 1.80                             | D<br>E                    |

August 26, 2003 ,Tuesday 63:40:34 PM

CalcaDB -INTERSECTION DATA SUMMARY SHEET

MORTHBOUND SOUTHBOUND WESTBOUND FASTBOUND EXISTING 131 588 193 157 1197 78 152 453 109 154 492 108

Phasing

Perm

RTOR

Auto

157

294 131

V/C = 131 + 638 + 152 + 300 = 0.818

152 453 109

281

152

RTOR

Auto

STUDY DATE

August 26, 2003 ,Tuesday 03;40;34 PM

I/S No:

1

RTOR

Auto

LOS

В

c

D

LOS = D

154 492 108

Phasing

Prot-Fix

V/C RATIO

0.00 - 0.60

0.61 - 0.70

6.71 - 0.80

9.81 - 0.90

9.91 - 1.00

GROWTH FACTOR:

#### INTERSECTION DATA SUMMARY SHEET

| N/S:   |       | Normandie / |           | W/E:         | rson Bi   | ₩S Ho:    | 20 |  |
|--------|-------|-------------|-----------|--------------|-----------|-----------|----|--|
| AM/PM: |       |             | Comments: |              | <br>      |           |    |  |
| COUNT  | DATE: |             | s         | TUDY DATE: _ | <br>GROWT | H FACTOR: |    |  |

| Volume   | #Lane/Sig | nal Config       | Jurations | \$11,111,001,101 | the state of the s | TO THE PARTY OF             | -,             |        | E-1200mm Dried                  |              |       |                     |
|----------|-----------|------------------|-----------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------|--------|---------------------------------|--------------|-------|---------------------|
|          | [_NO      | RTHBOUN          | Ω         | 50               | OUTHBOUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | encontraction of the second | ANACIO (NOCON) | ESTROU | STATE OF THE PERSONS ASSESSMENT | L EAS        | IBOUN | THE PERSON NAMED IN |
| i i      | LT        | TH               | RT        | LT               | TH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AT.                         | LT             | TH     | RT                              | LT.          | TH    | RY                  |
| EXISTING | 97        | 1071             | 138       | . 82             | 1083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41                          | 287            | 443    | 42                              | 72           | 440   | 118                 |
| AMBIENT  |           | L                |           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                |        |                                 |              |       |                     |
| RELATED  | 21.12     |                  |           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                |        | [                               |              | ſ     |                     |
| PROJECT  |           | ļ                |           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                |        | 1 * "                           | -            | Ï     |                     |
|          |           |                  |           |                  | 7566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             | 207            | 443    | 1 25                            | - <b>-</b> - | 1 0 1 |                     |
| TOTAL    | 97        | 1071             | 138       | 82               | 1083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41                          | 287            | 443    | 42                              | 72           | 440   | 118                 |
| LANE     | 1:0       | 4 fg fg<br>1 0 1 | 6 6 6 P   | ή β<br>110]      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p 4p<br>0 0                 | 10             | 101    | 100                             | 4 A A        | 44 4  | p 4p<br>1 0         |
| İ        | Phasin    | g R              | TOR       | Phasi            | ng R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TOR                         | Phasi          | ng     | RTOR                            | Phasing      | R     | TOR                 |
| SIGNAL   | Perm      | 1 . A            | luto      | Peri             | m A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | uto                         | Pen            | m      | Auto                            | Perm         |       | Auto                |
| 2        |           |                  |           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                |        |                                 |              |       |                     |

| Critical Novements Diagram Communication                        | 8: 82              |                    |             |     |
|-----------------------------------------------------------------|--------------------|--------------------|-------------|-----|
| EastBound                                                       | ^                  | WestBound          | V/C RATIO   | Los |
| A: 220                                                          | ĺ                  | A: 243<br>B: 287   | 9.00 - 8.60 | A   |
| B: 72                                                           | L.,                | B:                 | 0.61 - 0.78 | 8   |
|                                                                 | A: 605             |                    | 0.71 - 0.80 | С   |
| A = Adjusted Through/Right Volume<br>B = Adjusted Left Volume   | B: 97              |                    | 0.81 - 0.80 | D   |
| * = ATSAC Benefit                                               |                    |                    | 0.91 - 1.00 | E   |
| Results North/South Critical Moveme West/East Critical Movement |                    | S/B)<br>E/B)       |             |     |
| V/C =                                                           | + 82 + 28<br>*1500 | 7 + 220<br>= 0.726 | LOS ×       |     |

1618 B25

1618 B25

N/S:

AMBIENT PROJECT

TOTAL

LANE

SIGNAL

AMPM: TH

COUNT DATE:

Vermont Av

Volume/Lane/Signal Configurations

Comments:

131 | 588 | 193 | 157 | 1197 | 78

Phasing

Phasing RTOR Phasing
Perm Auto Prot-Fix

154

North/South Critical Movements = B(N/B) + A(S/B) West/East Critical Movements = B(W/B) + A(E/B)

Critical Movements Diagram

CalcaDB

August 26, 2003 ,Tuesday 03:40:34 PM

### INTERSECTION DATA SUMMARY SHEET

| N/S:        | Vermont Av | W/E:       | I-10 EB Ramps | VS No:    | 23 |
|-------------|------------|------------|---------------|-----------|----|
| AMPM: 23    | Comments;  |            |               |           |    |
| COUNT DATE: | s          | TUDY DATE: | GROWT         | H FACTOR: |    |

|          | LNOR    | THBOUL | 0      | L_sc  | UTHBOU     | 10   | [W     | STROU | NO.       | LFAS      | IBOU | ND            |
|----------|---------|--------|--------|-------|------------|------|--------|-------|-----------|-----------|------|---------------|
| EXISTING | LT      | 114    | RT     | L7    | TH         | RY   | LT     | TH    | RT        | LT<br>480 | TH   | RT            |
|          | , v i   | 738    | 131    | 483   | 1069       | 0    | 0      | . 0   | 0         | 180       | 6    | 544           |
| AMBIENT  | 1       |        |        |       |            |      |        |       |           |           |      | i             |
| RELATED  | 1       |        |        |       | 1          |      |        |       |           |           |      | i             |
| PROJECT  | Ī       | 4      |        |       | ĺ          |      |        |       |           |           |      | :             |
| TOTAL    | 0 [     | 738    | 131    | 483   | 1069       | .0   | 0      | Ò     | Ó         | 180       | 6    | 544           |
|          | 4 6 4   | *      | is els | 4 &   | <u>ተ ል</u> | *    | 4 &    | A & 1 | 44 6      | 4 6 4     | · A  | <b>€,</b> ₱ ₦ |
| LANE     | 002     | 0 0    | 10.    | 20    | 2 0 0      | 0 0  | 0 0    | 0 0 0 | Ó   Ó   Ó | 1 0 0     | 0    | 10            |
|          | Phesing | ı R    | TOR    | Phase | na f       | RTOR | Phasin | g     | RTOR      | Phasing   |      | RTOR          |
| SIGNAL   |         | R      | TOR    |       | ng f       |      |        | 9     |           | Phasing   |      | F             |

| NertivSouth Critical Movemen West/East Critical Movemen 366                        | b - A(W/B) + A       | (8/8)<br>(E/8)<br>) + 660 |             | • с |
|------------------------------------------------------------------------------------|----------------------|---------------------------|-------------|-----|
| - Results -                                                                        |                      | J                         | 8,91 - 1,00 |     |
| A = Adjusted Through/Right Volume<br>B = Adjusted Left Volume<br>* = ATSAC Benefit | B: 0                 |                           | 8.81 - 9,50 | Đ   |
| · · · · · · · · · · · · · · · · · · ·                                              | NorthBound<br>A: 369 |                           | 6.71 - 0.80 | c   |
| 8: 180                                                                             |                      | B: 0                      | 0.61 - 0.70 | 8   |
| A: \$80                                                                            | 1 4                  | A: 0                      | 9.00 - 9.60 | Α   |
| ( EastBound                                                                        | B: 266               |                           |             | LOS |
|                                                                                    | A: \$35<br>B: 266    |                           |             |     |

#### 1618 B25 August 26, 2003 ,Tuesday 03:40:34 PM CalcaDB INTERSECTION DATA SUMMARY SHEET

| N/S:        | Normandie Av | W/E:       | Adams Bl | 1/5 No: 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------|--------------|------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AM/PM: EM   | Comments:    |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| COUNT DAYE: | s            | TUDY DATE: | GROWTH   | FACTOR:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             |              |            |          | NEOCHANIS CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR C |

|          | 180    | RTHBOUN  | 0           | S. S.   | LOBHTUK      | ND   | L W    | ESTROL     | ND     | CE     | ASIBOU       | N.D          |
|----------|--------|----------|-------------|---------|--------------|------|--------|------------|--------|--------|--------------|--------------|
|          | LT     | TH       | RT          | LY      | TH           | RY   | LT     | TH         | RT     | LT     | TH           | RT           |
| EXISTING | 60     | 1063     | 92          | 95      | 1020         | 98   | 121    | 627        | 115    | 90     | 619          | , 84         |
| AMBIENT  |        |          |             |         |              |      |        |            | 1      |        |              | 1            |
| RELATED  |        |          | · · · · · · | 12.77   | "            | • •  |        | '          | ĭ      |        |              | Ĩ            |
| PROJECT  |        | 1. 1. 1. |             | 1 - 12, |              |      |        |            | È      |        |              | Ϋ́           |
|          |        |          |             |         | -            |      |        |            | 1      |        |              | 1.           |
| TOTAL    | 60     | 1063     | 92          | 95      | 1020         | 98   | 121    | 627        | 115    | 90     | 619          | 84           |
|          |        |          |             |         |              |      |        |            |        |        |              |              |
|          | 4 6    | 8 2 4    | p 40        | ٩ 🖈     | <b>ቀ ል</b> የ | p 49 | ۹ 🟠 ۱  | <b>ቀ ል</b> | & p 40 | 4 8    | <b>ት ል</b> ተ | <u>^</u> ₽ € |
| ANE      | 1 01   | 1017     | 010         |         |              | 0 0  |        |            |        | 1 0    | 110          | 1 0          |
|          |        |          | 1313.       |         | ×603         |      | التلت  | <u> </u>   | التلت  |        |              | _1_4.        |
|          | Phasin | 9 R      | TOR         | Phasic  | ng I         | RTOR | Phasin | 18         | RTOR   | Phasis | ng           | RTOR         |
| IGNAL    | Penn   |          | uto         | Prot-f  |              | Auto | Perm   |            | Auto   | Prot-F | 1. ·         | Auto         |

| Critical Movements Diagram annument                           | 8                    |                    |             |      |
|---------------------------------------------------------------|----------------------|--------------------|-------------|------|
| EnstBound                                                     | <del> </del>         | WestBound          | V/C RATIO   | LO\$ |
| A: 362                                                        | ] [                  | A: 371<br>B: 121   | 0.00 - 0.60 | A    |
| 8: 50                                                         |                      | 8: 121             | 8.61 - 0.70 | 8    |
|                                                               | NorthBound<br>A: 578 |                    | 6.71 - 6.80 | ¢    |
| i = Adjusted Through/Right Volume<br>I = Adjusted Left Volume | 8: 60                |                    | 0.81 - 0.90 | Đ    |
| = ATEAC Benefit                                               |                      |                    | 0.01 - 1.60 | Æ    |
| Results  Horts/Bowth Critical Moveme                          | nts = A(N/B) + B(    | 8/8)               |             |      |
| West/East Critical Movement                                   | s = 8(W/B) + A(      | E/8)               |             |      |
| V/C = 678                                                     | + 85 + 181<br>*1376  | 1 + 362<br>a 8.785 | LOS =       | c    |

#### INTERSECTION DATA SUMMARY SHEET

| N/S:        | Normandie Av | W/E:        | I-10 EB Ramps | VS No: 24 |
|-------------|--------------|-------------|---------------|-----------|
| AM/PM:      | Commen       | s:          |               |           |
| COUNT DATE: |              | STUDY DATE: | GROWT         | H FACTOR: |

|          |           | d Configura        |                       | C. P. L. DOLLA | ·               |                                                                                                    |                                                                    |                    | ·                     |          |                                                                                                                                                                                                                              |
|----------|-----------|--------------------|-----------------------|----------------|-----------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------|-----------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Section 1 | HBOUND             | Secretary - Precedure | ONTHBOUN       | THE PROPERTY OF | *****************                                                                                  | STBOUN                                                             | CATTO STATE OF THE | And the second second | STROUL   | CONTROL OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF T |
| EXISTING |           | 996 18             |                       | 1040           | - RY            | - 17                                                                                               | TH                                                                 | RT .               | 162                   | <u>n</u> | 246                                                                                                                                                                                                                          |
|          |           | 990 10             | 0 303                 | 1 1040         |                 |                                                                                                    |                                                                    | <u> </u>           | 102                   |          | 240                                                                                                                                                                                                                          |
| AMBIENT  | 1.        |                    |                       |                |                 |                                                                                                    |                                                                    | :                  |                       |          |                                                                                                                                                                                                                              |
| RELATED  | - I-      |                    |                       |                | -               |                                                                                                    | - 1                                                                |                    |                       | 1 . 2    | 1                                                                                                                                                                                                                            |
| PROJECT  | <u>ŕ</u>  |                    |                       |                |                 |                                                                                                    | i                                                                  |                    |                       |          | ĺ                                                                                                                                                                                                                            |
| TOTAL    | Ö ;       | 996   18           | 0 369                 | 1040           | ō               | ó                                                                                                  | 0                                                                  | o                  | 162                   | 0        | 246                                                                                                                                                                                                                          |
| LANE     |           | \$ \$ #<br>[0]0]1] |                       |                |                 |                                                                                                    |                                                                    |                    | 4 p 4                 |          |                                                                                                                                                                                                                              |
|          | Phasing   | RTOR               | Phas                  | ling R         | TOR             | Phasing                                                                                            | R                                                                  | TOR                | Phasing               | ı        | RTOR                                                                                                                                                                                                                         |
| SIGNAL   | Perm      | Auto               | Prot                  | -Fix P         | uto             | <none?< td=""><td><n< td=""><td>one&gt;</td><td>Perm</td><td></td><td>Ăuto</td></n<></td></none?<> | <n< td=""><td>one&gt;</td><td>Perm</td><td></td><td>Ăuto</td></n<> | one>               | Perm                  |          | Ăuto                                                                                                                                                                                                                         |

| Critical Movements Diagram                                        | SouthBound  A: 520  B: 389 |               |             |     |
|-------------------------------------------------------------------|----------------------------|---------------|-------------|-----|
| EastBound A: 246                                                  | ٨                          | WestBound     | V/C RATIO   | LOS |
| A: 246<br>B: 162                                                  | Ĭ                          | В: 6          | 8.00 - 0.60 | A   |
| 5                                                                 | NorthBound                 | <u> </u>      | 0.61 - 0.70 | 8   |
|                                                                   | A: 498                     |               | 8.71 - 6.80 | С   |
| A = Adjusted Through/Right Volume<br>B = Adjusted Left Volume     | B: 0                       |               | 0.81 - 0.90 | D   |
| " # ATSAC Benefit                                                 |                            |               | 0.91 - 1.60 | Ε   |
| Results North/South Critical Movement West/East Critical Movement |                            | S/B)<br>E/B)  |             |     |
| V/C = 498                                                         | + 369 + D                  | + 246 × 0.711 | LOS =       | с   |

Developed by Chun Wong 12/

1618\_B25

CalcaDB

August 26, 2003 ,Tuesday 03:40:34 Pt

#### INTERSECTION DATA SUMMARY SHEET

| N/S:        | Normandie Av v | WE: I-10 WB Ra | mps #8 No:     | 26  |
|-------------|----------------|----------------|----------------|-----|
| ам/рм:      | Comments:      |                |                | * * |
| COUNT DATE: | STUDY          | DAYE:          | GROWTH FACTOR: |     |

| Volume   | M.ene/Sign       | al Continu     | uradina e   | Professional Contract |       |                            | name and a large state of | -             | Control of the Control | THE PERSON NAMED IN | and the same of the same of |                    |
|----------|------------------|----------------|-------------|-----------------------|-------|----------------------------|---------------------------|---------------|------------------------|---------------------|-----------------------------|--------------------|
| 10.0     |                  |                |             | ,                     |       |                            |                           |               |                        |                     |                             |                    |
|          | - CHILLIAN STATE | THEOUNI        | 20040200000 | L SOI                 | THEOU | SCHOOL STATE OF THE SECOND | LT                        | STROU         | #50/m//300000          | THE PERSON NAMED IN | JBOUN                       | CONTRACTOR STOCKER |
| EXISTING | 253              | 881            | RT<br>O     | 0                     | 1239  | RT<br>155                  | · 208 i                   | TH<br>2       | 8T<br>348              | ET E                | 1H<br>0 :                   | RT<br>O            |
| AMBIENT  |                  |                | ***         |                       | =::-  |                            |                           | - <del></del> |                        | 7 = 1 = 1           |                             | - * 1              |
| RELATED  | 1000             | ====           |             | ='#                   | ==:-= | =====                      | -                         |               | h was                  | 200                 |                             |                    |
| PROJECT  | .===+            |                |             |                       |       | 20.00                      | .2712.772                 | - 4 -         | <u> </u>               | 121 5.              |                             | i (                |
| PROJECT  |                  |                |             |                       | :     |                            |                           |               | t                      |                     | 1                           |                    |
| TOTAL    | 253              | 881            | 0           | 0                     | 1239  | 155                        | 208                       | 2             | 348                    | 0                   | 0                           | 0                  |
|          |                  |                |             |                       |       |                            |                           |               |                        |                     |                             |                    |
|          | 4 AP P           | <b>* * * *</b> | * **        | <b>ፋ</b> ብ የ          |       |                            | 4 🗗 🕆                     |               |                        | <b>ዓ</b> ፉ ዮ        | A 6                         | 10 640 M           |
| LANE     | 1 0 2            | 0 0            | 0 0         | 0 0 2                 | 00    | 1 0                        | 0 0 0                     | 110           | 1 0                    | 0 0 0               | 0.0                         | 0 0                |
|          | Phasing          | RT             | 00          | Prasing               |       | RTOR                       | Phasing                   |               | RTOR                   | 64t                 |                             |                    |
|          |                  |                |             |                       |       |                            |                           |               |                        | Phasing             |                             | RYOR               |
| SIGNAL   | Prot-Fix         | AL             | ıţo         | Perm                  |       | Auto                       | Perm                      | '             | Auto                   | <none></none>       | ۷                           | 10116>             |

| A: 0 B: 0 B: 0 B: 0 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: 205 B: |                           | SouthBound A: 620 B: 6 |          |             |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|----------|-------------|-----|
| B: 6   0.00 - 0.60   A   B: 700   NorthBound   0.41 - 0.70   B   Adjusted Through/Right Volume   8: 753   0.61 - 0.80   D   ATBAC Benefit   0.91 - 1.60   E   Results   North/South Critical Movements =   B(NB) + A(878)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EastBound                 |                        |          | Y/C RATIO   | Los |
| NorthBound   0.41 - 0.70   8    - Adjusted Through/Right Volume   8: 2\$\frac{7}{2}\$   0.51 - 0.80   D    - Adjusted Left Volume   8: 2\$\frac{7}{2}\$   0.51 - 0.80   D    - ATRAC Benefit   0.51 - 1.00   E    - Results   North/South Critical Movements = B(NB) + A(878)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | 1 1                    |          | 0.00 - 0.60 | A   |
| Acjusted Through/Right Volume A: 441 0.71 - 0.89 C Adjusted Left Volume B: 253 0.81 - 0.80 D ATBAC Benefit 0.51 - 1.00 E Results North/South Critical Movements = B(NB) + A(878)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B:                        | 1                      | B: 208   | 0.61 - 0.70 | В   |
| # Adjusted Left Volume ### 0.51 - 0.50 D ####################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                        |          | 0.71 - 0.80 | c   |
| Results  North/South Critical Movements = B(NB) + A(3/8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           | 8: 253                 | <b> </b> | 0.81 - 0.90 | D   |
| North/Bowth Critical Movements - B(N/B) + A(B/B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | L                      | ]        | 8.91 - 1.69 | E   |
| WestEast Critical Movements   A(WB) + A(E/B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | North/Bouth Critical Move |                        |          |             |     |

INTERSECTION DATA SUMMARY SHEET

| Ws:         | Vermont Av | W/E:      | 1-10 WB Ramps | I/S No:    | 25 |
|-------------|------------|-----------|---------------|------------|----|
| м/рм: 🔣     | Comments:  |           |               |            |    |
| COUNT DATE: | ST         | UDY DATE: | GROW          | TH FACTOR: |    |

|          | LNORTHE  |        | LSOUTH         |               | YYE     | SIBOUN | (D    | E .                                                | ASIBO | UND           |
|----------|----------|--------|----------------|---------------|---------|--------|-------|----------------------------------------------------|-------|---------------|
|          | LT TI    |        |                | H RT          | LT      | TH     | RY    | LT                                                 | TH-   | e RT          |
| EXISTING | 146 77   | 4 0    | 0 11           | 153 164       | 369     | 1      | 369   | 0                                                  | Ö     | 0             |
| MBIENT   |          |        | 7              |               | 7       | = .    |       | - 1                                                |       | 1             |
| RELATED  |          | 21-    | - i            |               | i       |        |       |                                                    |       | 1             |
|          |          | 4      | <del>.  </del> |               | - !     |        |       |                                                    |       |               |
| ROJECT   |          |        | 1              |               | j       |        |       |                                                    |       | 1             |
| TOTAL    | 146 77   | 4 7 0  | 0   11         | 53 164        | 369     |        | 369   |                                                    |       | _             |
| 011112   | 120 1 12 | . 1    | ¥ .1.27        | 22 104        | 203     | '      | 369   | 0                                                  | 0     | , 0           |
|          | 4 4 4    | مه م ک | * ^ ^ /        |               | 4 ^ ^   |        |       | 4 ^                                                |       |               |
|          | 4 P 4    |        | 4 <i>P</i> 4   |               | 有命令     | ~ # ¥  | p 40  | ٩ <sub>\$</sub> ٦                                  | 4     | ቲ ሶካ          |
| ANE      | 2 0 2 0  | 0 0 0  | 0 0 2          | 0   0   1   0 | 0 1 0   | 1,00   | 1 1 0 | 0 0                                                | 0 0   | 0 0 (         |
|          |          |        |                |               |         |        |       |                                                    |       |               |
|          | Phasing  | RTOR   | Phasing        | RTOR          | Phasing | ; F    | RTOR  | Phasi                                              | ng    | RTOR          |
| IGNAL    | Prot-Fix | Auto   | Perm           | Auto          | Perm    |        | Auto  | <non< td=""><td></td><td><none></none></td></non<> |       | <none></none> |

| ₩.C -                                      |          | *1425    |         | -                  | - 0.651 | 203 -       |     |
|--------------------------------------------|----------|----------|---------|--------------------|---------|-------------|-----|
| V/C =                                      | 80 ÷     | 577 + .  | 170 +   | 0                  | × 0.651 | LOS «       |     |
| West/East Critical Moven                   | nents *  | A(W/B) + | A(E/B)  |                    |         |             |     |
| North/South Critical Mov                   |          | B(N/B) + | A(\$/B) |                    |         |             |     |
| Results                                    |          |          |         |                    |         |             |     |
|                                            | <u> </u> |          | J       |                    |         | 0.91 - 1.00 | ε   |
| 8 = Adjusted Left Volume * = ATSAC Benefit | 8:       | 80       | 1       |                    |         | 0.81 - 0.90 | D   |
| A = Adjusted Through/Right Volume          | A:       | 387      |         |                    |         | 0.71 - 0.80 | С   |
|                                            |          | tinBound |         |                    |         |             |     |
| 8: 0                                       | -        | 1        | 8:      | 369                |         | 0.61 - 0.70 | В   |
|                                            | .        | T        | 1       |                    |         | 02.0 - 00.0 | A   |
| EsstBound A: 8                             | -, I     | Δ        | Wes     | 1Bound ****<br>370 |         | VIC RATIO   | Los |
|                                            |          |          |         |                    |         |             |     |
|                                            | 8:       |          | 1       |                    |         |             |     |
|                                            | A:       | 577      | 1       |                    |         |             |     |
| Critical Movements Diagram                 | _ E &    | thBound  | _       |                    |         |             |     |

Developed by Churi Wang, 125

1618\_B25

**Pre-Event Weekend** 

A = Adjusted Through/Right Votum

8 = Adjusted Left Votuma

- ATSAC Bonefit

ø > 2

9.21 - 9.50 9.91 - 1.68 8.71 - 6.80 9.59 - 9.60 9.61 - 9.70 VIC PATIO

**m** ບ ດ ໝ >

A: 0

0

gs ≽ .

200 200

80ethBound A: 293

North/South Critical Mo

Š

12

144 144 144

6.433

A(N/B)

٠.

A(E/B)

. 80

Jerran ...

A • Adjusted ThroughPilight Volume
B • Adjusted Left Volume
• • ATSAC Benefit WestEast Critical Movements • A: 910 99 > 2 SouthBound -A: 607 B: 134 1.1 B(N/B) A(N/B) -⊳ . . A(\$/8) 8(£/8) gg 🎅 425 8 0.744 0.61 - 0.90 0.91 - 1.00 0.00 - 0.60 0.71 - 0.80 6.61 - 0.70 AKC BY AND . 80

AMBIENT RELATED PROJECT TOTAL LT TH 1159 1 0 3 0 1 0 0 0 Phasing 1 1159 85 Auto 85 R 1 0 1 0 0 1 0 0 SOUTHBOUND Perm 134 726 287 RTOR 287 8 4 o: 🍲 Prot-Var 6 分分合分 \*\*\* 6 6 9 10 10 11 10 8 516 RT 425 N -5 164 Prot-Var 100 ماحي EASTBOUND T TH 54 335 **u** → o 2Đ 1 st 103 RTOR Auto 103

.....

SIGNAL

Sphi

RTOR

Split

Phasing

RTOR

LANE

A A A A + 4+

4 P

111

₽ ↑

4 4 4

RTOF

TOTAL

0

211 404

168 586 0

49

350 0

, 0:

0

11

1}

EXISTING AMBIENT RELATED PROJECT

0 5

ORIHBOUNI TH 211

404 104

WESTBORNO
17 NA RT
49 350 0

EASTROUND 0 0

AM/PM: STUDY DATE W/E: Exposition BI GROWTH FACTOR No S.A

INTERSECTION DATA SUMMARY SHEET

CalcaDB

1618\_W25

1618\_W25

INTERSECTION DATA SUMMARY SHEET

CalcaDB

August 26,

COUNT DATE:

STUDY DATE:

GROWTH FACTOR:

Wite

Exposition BI

NS Ho:

A « Adjusted Through/Right Volume
B » Adjusted Left Volume
\* « ATSAC Benefit West/East Critical Mo ents Diagram astBound 63 8 ž SouthBound
A: 359
B: 127 ም >> 출 B(N/B) 344 344 ----1375 A(S/B) B(E/B) 263 g > 187 8 8 0,668 0.81 - 0.90 0.71 - 0.80 0.61 - 0.70 0.00 - 0.60 € SOT c B ¥

Termin in

1.4

\$17

A = Adjusted Through/Right Volume
B = Adjusted Left Volume
- = ATSAC Benefit

g >

181 165

0.91 - 0.90 6.71 - 0.80 2

00 Þ

362

9.80 - 9.60

8.61 - 6.70

m ∪ ∩ a >

Results

٧,

1500

3 A(S/B)

ž

0.83

F SOJ

5.5

165

8(N/8)

EXISTING
AMBIENT
RELATED
PROJECT SIGNAL TOTAL LANE NOBIHBOU 1103 1 10 3 0 1 0 0 Prot-Var 344 | 1103 | 462 Auto RT 462 1 0 2 0 1 10 0 127 Prot-Var 127 | 872 872 205 187 Phasing 1 0 2 0 1 0 0 187 | 616 616 172 49 Prot-Var 010 **u** → o.\$0 189 Auto RTOR - -- -\$ 127

TOTAL PROJECT EXISTING AMBIENT RELATED

100

1075 182

e/Lane/Signal Configuration

2 2

WESTBOUND
LY TH RY
299 1 723 | 252

FASTBOUND

205

LANE

1020010

10

Perm

Auto

Perm

Auto

Perm

Auto

Phasing

Auto

ents Diagram

pp > 9

818 819

AM/PM: N/S N. STUDY DATE W/E GROWTH FACTOR I/S No:

INTERSECTION DATA SUMMARY SHEET

CalcaDB

A principal of

Rando Tong

INTERSECTION DATA SUMMARY SHEET CalcaDB

1618\_W25

1616 WZ

COUNT DATE AM/PM

STUDY DATE

GROWTH FACTOR

¥.

VS No

CalcaDB

August 26, 2003 ,Tuesday 04:26:16 PM

#### CalcaDB

August 26, 2003 ,Tuesday 04:26:16 PM

#### INTERSECTION DATA SUMMARY SHEET

|             |           |             |         |             | CONTRACTOR OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF TH |
|-------------|-----------|-------------|---------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N/S:        | Flower St | W/E:        | 37th St | VS No:      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ам/рм: 🕬    | Comments: |             |         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| COUNT DATE: | s         | STUDY DATE: | GRON    | VTH FACTOR: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|          | NORTHE  | OUND I | SOUTH    | BOUND         | WES1    | BOUND   | EASIE   | OND             |
|----------|---------|--------|----------|---------------|---------|---------|---------|-----------------|
|          | LT T    | H RT   |          | DK RT         | _ 1.1   | TH RT   |         | TH RT           |
| EXISTING | 0 0     | 300    | 491   5  | 07 0          | 0 1     | 0 0     | 0 4     | 68   107        |
| AMBIENT  | T       |        |          |               |         |         |         |                 |
| RELATED  |         |        |          |               |         |         |         |                 |
| PROJECT  |         |        |          |               |         |         |         |                 |
| TOTAL    | 0 ] 0   | 300    | 491 5    | 07 [ 0        | 0_1     | 0 0     | 0 4     | 68 107          |
|          | 4 £ 4 £ | 44     | 4 6 4    | 金仓中的          | 4 8 4   | ተላ ታል   | 4 6 4 8 | 13. 13. 10. 11. |
| LANE     | 0 0 0 0 | 0 2 0  | 210 2    | 0 0 0 0       | 0 0 0   | 0 0 0 0 | 0 0 4   | 0 1.010         |
|          | Phasing | RTOR   | Phasing  | RTOR          | Phasing | RTOR    | Phasing | RTOR            |
| SIGNAL   | Perm    | OLA    | Prot-Fix | <none></none> |         |         | Perm    | Äuto            |

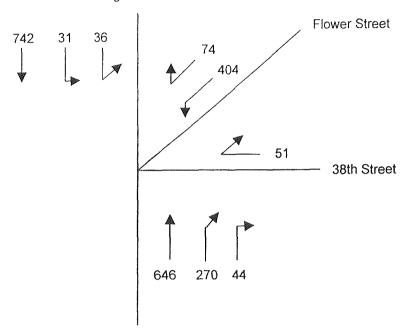
| Critical Movements Diagram                                  | 800<br>A:<br>B: | 254<br>279 |        |       |         |             |     |
|-------------------------------------------------------------|-----------------|------------|--------|-------|---------|-------------|-----|
| EastBound                                                   | †               | Λ          | -West  | Bound | _       | V/C RATIO   | LOS |
| A: 115                                                      |                 | Ĩ          | B: -   |       | -       | 03.8 - 68.0 | A   |
| <u> </u>                                                    | L               |            |        |       |         | 6.61 - 0.78 | В   |
|                                                             | A:              | 165        |        |       |         | 0.71 - 0.80 | С   |
| A = Adjusted Through/Right Volume  B = Adjusted Left Volume | В:              |            | 1      |       |         | 0.81 - 0.90 | D   |
| * × ATSAC Benefit                                           | <u> </u>        |            |        |       |         | 0.91 - 1.00 | E   |
| Horth/South Critical Movem                                  | ents =          | A(N/B) +   | B(S/B) |       |         |             |     |
| West/East Critical Movemen                                  | sts «           | A(W/B) +   | A(E/B) |       |         |             |     |
| V/C = 16                                                    | 5 +             | 270 +      | 0 +    | 115   | = 0.316 | LOS         | - A |
| VK =                                                        |                 | *1425      |        |       | - 0.510 |             |     |

Developed by Chun Wong 1278-

INTERSECTION DATA SUMMARY SHEET

| N/S:        | Figueroa St | W/E:        | State Dr | I/S No:     | 6 |
|-------------|-------------|-------------|----------|-------------|---|
| ам/рм: 📆    | Commen      | its:        |          |             |   |
| COUNT DATE: |             | STUDY DATE: | GRO      | WTH FACTOR: |   |

|          | NORIHB  | ONND   | SOUTHB  | ONNO     | WE      | STROUN  |       |              | ASTRO    | UN D       |        |
|----------|---------|--------|---------|----------|---------|---------|-------|--------------|----------|------------|--------|
|          | LY TH   |        | LT T    |          | LT      | TH      | RY    | 1.1          | TH       |            | RI     |
| EXISTING | . 1 120 | 0      | . 0 88  | 8 1      | .0      | 0       | . 0   | 0            | 0        |            | 0      |
| AMBIENT  |         |        | 7       |          | T       |         |       |              |          | - 1        |        |
| RELATED  |         | =====  | -       | 320      |         |         |       |              |          | i          |        |
|          |         |        |         |          | - 1     |         |       |              |          | - 1        |        |
| PROJECT  | ·       |        | L       | -        | . 1     |         |       |              |          | ;          |        |
| TOTAL    | 1 120   | 0 0    | 0 88    | 8 1      | ō       | 0       | Ö     | 0            | 0        | :          | 0      |
|          | 4 6 4 6 | 会神师    | ۹ ۵ + ۵ | Q 10 €10 | 4 6 4   | ት 众 ት   | p 610 | <b>4</b> \$} | <b>₽</b> | <b>A</b> . | if fil |
| LANE     |         |        | 0 0 3 0 |          |         |         |       | 0 0          |          | 4          | 0 1    |
| LANCE    | 0101510 | 10.0.0 | 0101210 | loioio   | , ,,    | , 0 : 0 | 10.0  | 0 0          | 0 0      | U          | 0 1    |
|          | Phasing | RTOR   | Phasing | RTOR     | Phasing | g R     | TOR   | Phas         | ing      | RT         | OR     |
| SIGNAL   | Perm    |        | Perm    |          |         |         |       | Per          | m        | Αι         | do.    |


|                                | B: 0                 | North-Bound -    | B: 0 | 0.61 - 6.70                | 8      |
|--------------------------------|----------------------|------------------|------|----------------------------|--------|
| A = Adjusted  <br>B ≈ Adjusted | Through/Right Volume | A: 601 ,<br>B: 0 |      | 0.71 - 0.80<br>0.81 - 0.90 | c<br>D |

Developed by Chun Wong, 12/9

1618\_W25

# Intersection #7 Figueroa & Flower & 38th Weekend Scenario - Pre Event

Figueroa Street



#### **Critical Movement Analysis**

Phase 1 Critical Moves

31+36 = 67 646/2 = 323

Phase 3 Critical Moves

$$v/c = \frac{(323 + 67) + (239 - 51) + 51}{1425}$$
  
= 0.477 (LOS A)

Phase 2 Critical Moves

August 26, 2003 ,Tuesday 04:26:26 PM

GROWTH FACTOR:

#### INTERSECTION DATA SUMMARY SHEET

| N/S        | I-110 HOV Ramps | W/E:        | <br>39th St |           | VS No: | 8 |  |
|------------|-----------------|-------------|-------------|-----------|--------|---|--|
| ам/Ри:     | Comments        |             | <br>        |           |        |   |  |
| COUNT DATE |                 | STUDY DATE: |             | GROWTH FA |        |   |  |

|          | NORTH          | GOUND | 501    | THBOUND |                                 | WESTBO | UND P         | EASI    | BOUND )       |
|----------|----------------|-------|--------|---------|---------------------------------|--------|---------------|---------|---------------|
|          |                | H RT  | LT     | TH      | RT L                            | TH.    | RT            |         | TH RT         |
| EXISTING | 404            | 177   | . 0    | ō       | 0 5                             | 2 282  | ? 0           | 0 .     | 282 , 56      |
| AMBIENT  |                |       |        |         |                                 |        | 1             |         | T             |
| RELATED  | - T            |       | ****   |         |                                 |        | -             | . 4     | - 7           |
|          |                |       | 0      |         |                                 |        |               |         | 그 물 그         |
| PROJECT  |                |       |        |         |                                 |        |               |         |               |
| TOTAL    | 404 0          | 177   | 0      | 0       | 0 5                             | 2 282  | . 0           | 0       | 282   56      |
|          | <b>ላ ድ 수 £</b> | 44 6  | 4 6 4  | 224     | , e <sub>1</sub> e <sub>1</sub> | ያ ቀ ል  | 8 19 49       | 4 6 4   | <u>ፈ</u> ቂ ቀቀ |
| LANE     |                | 0 1 0 |        |         |                                 |        |               |         | 0 0 1 0       |
|          | Phasing        | RYOR  | Phasin | g RTC   | OR Ph                           | gniza  | RTOR          | Phasing | RTOR          |
| SIGNAL   | Perm           | Auto  |        |         | P                               | erm    | <none></none> | Perm    | Auto          |

| Critical Movements Diagram                                          | SouthBound A: 0 B: 0 |               |             |     |
|---------------------------------------------------------------------|----------------------|---------------|-------------|-----|
| EastBound                                                           | ٨                    | WestBound     | V/C RATIO   | LOS |
| A: 161                                                              | lj                   | A: 141        | 0.60 - 0.60 | A   |
| 8:                                                                  | - North-Bound        | B:            | 9.61 - 0.70 | 8   |
|                                                                     | A: 177               |               | 8.71 - 0.80 | С   |
| A = Adjusted Through/Right Volume<br>B = Adjusted Left Volume       | B: 404               |               | 04.0 - 18.0 | D   |
| · = ATSAC Benefit                                                   |                      |               | 0.91 - 1.00 | ε   |
| Results  North/South Critical Movement  West/East Critical Movement |                      | S/B)<br>E/B)  |             |     |
| V/C " 404                                                           | + 0 + 52<br>*1500    | + 141 = 0.328 | LOS =       | A   |

CalcaDB

INTERSECTION DATA SUMMARY SHEET

NORTHBOUND SOUTHBOUND WESTBOUND FASTBOUND EXISTING 72 528 192 91 184 85 29 560 162 147 647 / 170

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

72 | 528 | 192 | 91 | 184 | 85 | 29 | 560 | 162 | 147 | 647 | 170

Phasing

Perm

RYOR

Auto

Phasing

Perm

VIC RATIO

6.00 - 0.60

RTOR Auto

LOS

STUDY DATE:

Phasing RTOR
Split Auto

B: 91

Ornelsped by Chun Wong 12/9-

AMIPM: EM

AMBIENT

RELATED

PROJECT

TOTAL

SIGNAL

COUNT DATE:

Phasing

Split

RTOR

Auto

272

1-110 NB Ramps

1618\_W25

August 26, 2003 . Yuesday 04:26:26 PM CalcaDB

#### INTERSECTION DATA SUMMARY SHEET

| N/S: 1-110 SI | B Ramps   | W/E:       | M.L.King Jr. Bl | I/S No:    | 11 |
|---------------|-----------|------------|-----------------|------------|----|
| амири: РЖ     | Comments: |            |                 |            |    |
| COUNT DATE:   | s         | TUDY DATE: | GROW            | TH FACTOR: |    |

|          | LNC   | XRTH | BOUN | Q    | L_SQ!   | THEC     | UND     |      | ESTBO | UND.          | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | ASIB | UNI | 2   |
|----------|-------|------|------|------|---------|----------|---------|------|-------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|-----|
|          | ŁŦ    | . 1  | H    | RT   | LT      | TH       | RT      | LT   | TH    | RT            | LT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ŧ    | 4   | RT  |
| EXISTING | 0     | 1    | 0    | .0   | 156     | 14       | 358     | 81   | 680   | 0             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 84   | 4   | 216 |
| AMBIENT  |       | 1    |      | 7    | 7       | •        |         |      | 7 -   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | ;   |     |
| RELATED  |       | T    |      | :\   | 7       |          | .:      |      | Ï     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | - 1 |     |
| PROJECT  |       | Ĺ    |      |      | 1       |          | 4       |      | Ĵ.    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | i   |     |
| TOTAL    | 0     | I.   | ÓΙ   | 0    | 156     | 14       | . 358   | 81   | 680   | 0             | ō                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 84   | 4   | 216 |
|          | ۹ 🔝   | 4    | 3 8  | p 4p | 4 6 4   | <u>A</u> | Q # 40  | 4 8  | ት ል   | Q # 40        | ۹ 🔗                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ት ፏ  | û   | p   |
| ANE      | 00    | 0    | 90   | 0 0  |         |          | र्ग गुन |      |       |               | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |     | 0   |
|          | Phasi | ng   | R1   | ror  | Phasing | 2        | RTOR    | Phas | ng    | RTOR          | Phas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ing  | R   | TOR |
| SIGNAL   |       |      | ••   |      | Perm    |          | Auto    | Per  | ***   | <none></none> | Per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |     | uto |

| W. 5                              |          | 11800        |              | - 0.351        |             |     |
|-----------------------------------|----------|--------------|--------------|----------------|-------------|-----|
| WC =                              |          | 197 + 8      | 1 + 353      | <b>a 0.381</b> | LOS =       | A   |
| WestEast Critical Movemen         | ts »     | 8(W8) + A    | (E/B)        |                |             |     |
| North/South Critical Movem        |          | A + (BM)A    | (8/8)        |                |             |     |
| Results                           |          |              |              |                |             |     |
| * = ATSAC Senetif                 | L        |              | J            |                | 0.91 - 1.00 | E   |
| 8 = Adjusted Left Volume          | 8:       | 0            |              |                | 6.81 - 0.90 | Ð   |
| A = Adjusted Through/Right Volume | A:       |              | 1            |                | 9.71 - 0.80 | С   |
|                                   | Nort     | hBound       | <del> </del> |                | 0.61 - 0.70 | В   |
| B: 0                              |          |              | B: 81        |                | 5.00 - 0.60 | Α . |
| A: 353                            |          | Ą            | A: 227       |                |             |     |
| EastBound                         | <b>_</b> |              | WestBound -  |                | V/C RATIO   | 102 |
|                                   | B:       | 186          |              |                |             |     |
|                                   | A:       | 197          | Į            |                |             |     |
|                                   | 8out     | #Bound ***** | 1            |                |             |     |

A: 241
B: 29 orthBound 720 8.71 - 0.60 c A: 720 B: 72 0.81 - 0.90 D 0.91 - 1.00

mts = A(N/B) + A(8/B) West/East Critical Movements = A(W/B) + B(E/B)

V/C = 720 + 184 + 241 + 147 = 0.007 LOS . E

INTERSECTION DATA SUMMARY SHEET

|             | OWNERS AND DESCRIPTION OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P |             | MACA CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRAC |             | and the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of t |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N/S:        | Figueroa St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W/E;        | 39th St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I/S No:     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ам/РМ: ТОТ  | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s:          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| COUNT DATE: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STUDY DATE: | GRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WTH FACTOR: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|                               | NORTHB             | OUND 3                | L south    | BOUND L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IBOUND .        |         |          |                 |
|-------------------------------|--------------------|-----------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|----------|-----------------|
|                               | South and a second | en errefermentitieren | CONTRACTOR | COLUMN TO SERVICE STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF THE PERSON STATE OF | PARTITION NAME OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PARTITION OF TAXABLE PART |                 |         | TBOU     |                 |
| EXISTING                      | 3   66             |                       | 99 74      | н <u>вт</u><br>42 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TH RT<br>63 219 | 2       | тн<br>31 | RT              |
| AMBIENT<br>RELATED<br>PROJECT |                    |                       | 1          | <b>V2</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03 213          | 2       | 31       | 1               |
| TOTAL                         | 3 [ 66             | 4 173                 | 99   74    | 12 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63 219          | 2       | 31       | 1               |
| LANE                          |                    |                       | 1 0 2 0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 6 A<br>2 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A 4 P PP        | 4 p 4   |          | å p ep<br>1 0 0 |
|                               | Phasing            | RTOR                  | Phasing    | RTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Phasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RYOR            | Phasing |          | RTOR            |
| SIGNAL                        | Prot-Var           | Auto                  | Prot-Var   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Split                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Auto            | Split   |          | Auto            |

| A = Adjusted Entrough/Right Volume B = Adjusted Left Volume B = Adjusted Left Volume B = Adjusted Left Volume B = ATSAC Benefit  O.91 - 0.80 | Critical Movements Diagram  EastBound  A: 32    B: 1      | SouthBound A: 259 B: 99 | WestBound A: 141 B: 215 | <u>V/C RATIO</u> 0.80 - 0.60  0.61 - 0.70 | <u>LOS</u><br>A<br>B |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------|-------------------------|-------------------------------------------|----------------------|
| Results  North/South Critical Movements * A(N/B) + B(S/B)  West/East Critical Movements * B(W/B) + A(E/B)                                    | B = Adjusted Left Volume                                  | A: 279                  |                         | 0.81 - 0.90                               | D                    |
| V/C = 279 + 99 + 215 + 32 = 0.385 LOS = A                                                                                                    | North/South Critical Movement West/East Critical Movement | Is = B(W/B) + A(        | E/B)<br>5 + 32          |                                           |                      |

Developed by Chun Wong 12/5

1616\_WZ5

1618\_W25

W/E:

STUDY DATE:

M.L.King Jr. Bl

76 1030 168

76 | 1030 168

1 0 2 0 1 0 0

76

RTOR

Phasing

Perm

тн 904

Phasing

Perm

V/C RATIO

0.00 - 0.60

0.61 - 0.70 0.71 - 0.80

0.91 - 1.00

904 | 154

RTOR

Auto

LOS

С

LOS ... A

#### INTERSECTION DATA SUMMARY SHEET

|             | Figueroa St | W/E:        | M.L.King Jr. BI | 1/3 No: 12 |
|-------------|-------------|-------------|-----------------|------------|
| AMPM: PM    | Comments    |             |                 |            |
| COUNT DATE: |             | STUDY DATE: | GROWTH          | FACTOR:    |

| AMBIENT TRELATED PROJECT TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELATED TRELA | NAMES OF TAXABLE PARTY. | Napara manda da da |              | Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Security Sec | AND DESCRIPTION OF THE PERSON |      |        |   | -    | THE R. CO., LANSING |        | gurations | gnai Confi     | :/Lane/Si | Votum-   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|---|------|---------------------|--------|-----------|----------------|-----------|----------|
| EXISTING 14 409 188 157 373 403 81 723 205 187 638 AMBIENT RELATED PROJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | MND.               | STBO         | ΓΕ/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ΙΒΟΨ | WES    | Ç | IND  | UTHBO               | ∟ so   | VD.       | RTHBOU         | C_NC      |          |
| EXISTING 14 409 188 157 373 403 81 723 205 187 538 AMBIENT RELATED PROJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RT                      |                    |              | LY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | .τ     |   |      | TH                  | LT     | RT        | TH             | LT        | l .      |
| RELATED PROJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 118                     | 8   1              | 638          | 187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 723  | 11     |   | 403  | 373                 | 157    | 188       | 409            |           | EXISTING |
| PROJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | آيا.                    | Ţ                  | : : :        | **43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -    |        |   | -1.  |                     |        |           |                |           | 1        |
| PROJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | 1                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | _      |   |      |                     |        |           | i              |           | RELATED  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 3                     | T.                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ſ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |        |   |      |                     |        |           | Ì.             |           | PROJECT  |
| TOTAL 14 409 188 157 373 403 81 723 205 187 638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 118                     | 8 1 1              | 638          | 187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 723  | 1      |   | 403  | 373                 | 157    | 188       | 409            | 14        | TOTAL    |
| ዓ ው ቀ ል ፍ ያ ቀ ቀ ዓ ው ቀ ል ፍ ያ ቀ ቀ ዓ ው ቀ ዓ ው ቀ ዓ ው ቁ ፍ<br>LANE 1 0 2 0 1 1 0 0 1 1 0 2 0 1 1 0 0 1 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0   0  <br> p           | <u> </u>           | ↑ ∰<br>2   0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31   | Ψ      |   | ·    | 全<br>2<br>2<br>0    | 1:0    |           | 수 🚓 🕏<br>z 0 1 | 1 0       | LANE     |
| Phasing RTOR Phasing RTOR Phasing RTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DR                      | RTO                | 19           | Phasin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | naskig | f | RTOR | 9                   | Phasin | RTOR      | ng F           | Phasi     | ļ        |
| SIGNAL Perm Auto Perm Auto Prot-Var : Auto Prot-Var   Auto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ito                     | Aut                | B/           | Prot-V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Auto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | ot-Va  | P | Auto |                     | Perm   | Auto      | n _/           | Pen       | SIGNAL.  |

|                                   | 8: 403<br>B: 157  |                     |             |     |
|-----------------------------------|-------------------|---------------------|-------------|-----|
| EastBound                         |                   | WestBound<br>A: 309 | VIC RATIO   | LOS |
| A:                                | 1 1               | 8: 81               | 9.60 - 9.60 | A   |
| u :=::                            | '                 | ,, .                | 8.61 - 8.70 | В   |
| A = Adjusted Through/Right Volume | A: 199            |                     | 0.71 - 0.80 | c   |
| B × Adjusted Left Volume          | B: 14             |                     | 6.81 - 0.90 | Ð   |
| - = ATSAC Benefit                 | L                 |                     | 0.91 - 1.00 | Ε   |
| North/South Critical Moveme       | nts = B(N/B) + A( | S/B)                |             |     |
| West/East Critical Movement       | s = A(W/B) + B(   | E/8)                |             |     |
| V/C = 14                          | + 403 + 30        | 9 + 187<br>« 0.59   |             | × A |

Developed by Chan Hong 12/6-

1618\_W25

1618\_WZ5

AM/PM: TEXT

COUNT DATE:

RELATED PROJECT TOTAL

LANE

SIGNAL

Hoover St

EXISTING 157 107 52 3 3 19

RTOR

Perm Auto Perm

Phasing

Critical Movements Diagram

A = Adjusted Through/Rigi B = Adjusted Left Volume \* = ATSAC Benefit

157 | 107 | 52 3 | 3 19

353 ]

Phasing

RTOR

Auto

19

80

B(N/B) + A(S/B)

19 + 76 + 353 = 0.333

Volume/Lane/Signal Configurations

Comments:

CalcaDB August 26, 2003 , Yuesday 04:26:26 PM

#### INTERSECTION DATA SUMMARY SHEET

| N/S:        | Vermont Av | W/E:     | 39th St | I/S No;     | 15 |
|-------------|------------|----------|---------|-------------|----|
| AM/PM:      | Comments:  |          | •       |             |    |
| COUNT DATE: | STU        | DY DATE: | GROV    | VTH FACTOR: |    |

|          | L_    | ORTHBO      | UND -   | 50    | UTHBOU | ND.  | - Y  | ESTROU | ND    | EA     | SIBOU | ND   |
|----------|-------|-------------|---------|-------|--------|------|------|--------|-------|--------|-------|------|
|          | LT    | TH          | RT      | LT    | TH     | RT   | LY   | TH     | RT    | LT     | TH    | RT   |
| EXISTING | 76    | 800         | 143     | .1    | 1137   | 226  | 1    | . 2    | 5     | 74     | 4     | 94   |
| AMBIENT  |       | T -         |         |       | Τ'     |      |      | Ť      |       |        |       |      |
| RELATED  |       | ĩ.          |         |       | i      | :    |      | i      |       |        |       | ,    |
| PROJECT  | 5.1   | · F         |         |       | !      |      |      | 1      |       |        |       |      |
| PROJECT  | 4 .   | 1           |         |       | 1      |      |      | İ      |       |        |       |      |
| TOTAL    | 76    | 800         | 143     | 1     | 1137   | 226  | 1    | 2      | 5     | 74     | 4     | 94   |
|          |       |             | 1 1.252 |       | ,      |      | •    | , -    | •     |        | -     |      |
|          | 6 4   | 44          | 4 4 44  | 6 4   | 444    |      | ٠ ۵  | ΔΔ,    | دىد   | 6 A    | ΔΔ    | ند ۵ |
|          |       |             | 8 14 40 |       |        |      |      |        |       |        |       |      |
| LANE     | 1:0   | 1 0         | 1 0 0   | 1 0   | 1 0 1  | 0 0  | 0 0  | 0 1    | 0 0 0 | 0 0    | 0 1   | 0 0  |
|          |       |             |         |       |        |      |      |        |       |        |       |      |
|          | Phasi | ia <b>g</b> | RTOR    | Phasi | 18     | RTOR | Phas | ng.    | RYOR  | Phasin | 8     | RTOR |
| SIGNAL   | Pen   | m.          | Auto    | Pem   | n .    | Auto | Per  | rn     | Auto  | Pem    |       | Auto |

| V/C= -7                           | 6 + 682 + 1<br>*1500 | + 172       | = 0.651 | LO8 =       | A          |
|-----------------------------------|----------------------|-------------|---------|-------------|------------|
| West/East Critical Moveme         | nts = B(VWB) + A(    | E/8)        |         |             |            |
| North/Bouth Critical Moven        | tents = B(N/B) + A   | <b>8</b> 相) |         |             |            |
| Results                           |                      |             |         |             |            |
| • = Atbac Secont                  |                      |             |         | 8,91 - 1,60 | E          |
| B = Adjusted Left Volume          | B: 76                |             |         | 0.81 - 6.90 | D          |
| A = Adjusted Through/Right Volume | A: 472               | )           |         | 0.71 - 0.80 | С          |
| L                                 | NorthBound -         | L           |         | 0.61 - 8.70 | В          |
| B: 74                             | 1 1                  | e: ĩ        |         | 0,00 - 0.60 | A          |
| A: 172                            | Ι Δ                  | A: 8        |         | VIC RATIO   | <u>Los</u> |
| ( EastBound                       | <u> </u>             |             |         | VIC BATIO   |            |
|                                   | B: 1                 |             |         |             |            |
|                                   | A: 682               |             |         |             |            |
|                                   | EouthBound           | 1           |         |             |            |

1613\_W25 CalcaDB August 26, 2003 ,Tuesday 04:26:26 PM

| N/S:        | Vermont Av | W/E:       | M.L.King Jr. BI | ; VS No:  14 |  |
|-------------|------------|------------|-----------------|--------------|--|
| ам/РМ:      | Comments:  |            |                 |              |  |
| COUNT DATE: |            | TUDY DATE: | GROWI           | H FACTOR:    |  |

|          | NORT    | IBOUND B     | SOUTHBOUND |             |      | WESTBOUND |            |        | FASTROUND 1 |       |       |
|----------|---------|--------------|------------|-------------|------|-----------|------------|--------|-------------|-------|-------|
|          |         | TH RT        | LT         |             | RY   | LT        | TH         |        | LT          | 114   | RT    |
| EXISTING | 179     | 02 62        | 246        | 733         | 83   | 36        | 1 47       | 2 381  | 89          | 804   | 135   |
| AMBIENT  | 7       |              |            |             |      |           |            |        |             |       |       |
| RELATED  |         | Links of the | 77         |             |      | 37.1      | 2277       |        | 7.          | 27 55 |       |
| PROJECT  | 11.75   |              | =.:-: ::   | = .         | .=   | . 5       |            |        | .E. 12.5    | - =   |       |
| · NOSEO! |         |              |            |             |      |           |            |        |             |       |       |
| TOTAL    | 179 6   | 02 62        | 246        | 733         | 83   | 36        | 47         | 2 381  | 89          | 804   | 135   |
|          |         |              |            |             |      |           |            |        |             |       |       |
|          | ቁ ል ቀ   | 金金鱼鱼         | 989        | £ &         | p ep | 4 8       | <b>P</b> & | 食声钟    | 4 £ 4       | ያ & ና | 10 64 |
| LANE     | 0717    | 01100        | 1.011      |             | 0.10 | 110       | 210        |        | 1 0         |       | 1010  |
|          |         | 91.191.      |            | 1 1 1 1 1 1 | LL.  |           | -1-        | 111010 |             |       | 126   |
|          | Phasing | RTOR         | Phasing    | RYC         | OR . | Phas      | ing        | RTOR   | Phasin      | , 1   | RTOR  |
| SIGNAL   | Perm    | Auto         | Prot-Fix   | Au          | ŧ    | Per       |            | Auto   | Perm        | _     | Auto  |

| Critical Movements Diagram                                    | A: 408<br>B: 246     |                     |             |      |
|---------------------------------------------------------------|----------------------|---------------------|-------------|------|
| EastBound                                                     |                      | WestBound<br>A: 381 | Y/C RATIO   | 1.03 |
| A: 313                                                        | 1 1                  |                     | 9.60 - 9.60 | A    |
| B: 49                                                         | j                    | B: 36               | 9.61 - 0.70 | В    |
|                                                               | NorthBound<br>A: 332 |                     | 0.71 - 0.80 | С    |
| A = Adjusted Through/Right Volume<br>B = Adjusted Left Volume | B: 179               |                     | 0.81 - 0.90 | D    |
| * a ATEAC Bonefit                                             | <u> </u>             |                     | 0.91 - 1.68 | E    |
| Horth/Bowin Critical Moveme                                   | nes = 8(16/8) + A(   | 8/8)                |             |      |
| West/East Critical Movement                                   | s - A(VANS) + B(     | E/8)                |             |      |
| VIC 0 178                                                     | + 468 + 38<br>*1425  | 89 . 6.61           | 2 LOS       | - 8  |

W/E:

STUDY DATE:

MORTHBOUND SOUTHBOUND WESTBOUND

M.L.King Jr. BI

38 572 168

i i

RYOR

Auto

Phasing

Perm

RTOR

Auto

477 146

V/C = 146 + 522 + 38 + 317 = 0.612

\*1500

GROWTH FACTOR:

TH RT LT TH RT 572 168 146 850 101

146 850 | 101

Auto

Los

¢

Ð

LOS = B

Perm

VIC RATIO

861.070

0.71 - 0.80

0.81 - 0.90

17

#### INTERSECTION DATA SUMMARY SHEET

| N/S:     | Vermont A                                                                                                      | w/e:        | Expositi | on BI    | VS No: 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - |
|----------|----------------------------------------------------------------------------------------------------------------|-------------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| ANVPM:   | 201                                                                                                            | Comments:   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| COUNT DA | TE:                                                                                                            | STUDY DATE: |          | GROWTH F | ACTOR:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| L        | en annual annual annual annual annual annual annual annual annual annual annual annual annual annual annual an |             |          |          | ONE CONTROL OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER O |   |

|          | NOR    | THROUND   | SOUTH   | BOUND      | WE      | STROUND   | FASTBOUND -    |                                              |  |
|----------|--------|-----------|---------|------------|---------|-----------|----------------|----------------------------------------------|--|
|          | f. I   | TH RT     | LT 1    | H RT       | L.T     | TH RT     | LY             | H RT                                         |  |
| EXISTING | 0      | 738 131   | 3 10    | 58 - 180   | 4 )     | 812   111 | 1 6            | 58 188                                       |  |
| AMBIENT  | I      |           |         |            |         |           |                |                                              |  |
| RELATED  |        |           |         |            |         |           |                | Ī                                            |  |
| PROJECT  | : T    |           |         |            |         | .4        |                | L ::                                         |  |
| TOTAL    | 0 7    | 738   131 | 3 10    | 58 180     | 4       | 812 111   | 1 6            | 58 188                                       |  |
| LANE     | 1 0 1  | 0100      |         | \$ \$ P #P | 4 A A   | YY Y      | 9 分介。<br>07012 | 13 13 10 10 10 10 10 10 10 10 10 10 10 10 10 |  |
|          | Phazin | RTOR      | Phasing | RTOR       | Phasing | RTOR      | Phasing        | RTOR                                         |  |
| SIGNAL   | Perm   | Auto      | Perm    | Auto       | Perm    | Auto      | Perm           | Auto                                         |  |

| Critical Movements Diagram  EastBound  A: 222  B: 0  A = Adjusted Through/Right Volume  - ATSAC Benefit | SouthBound   A:   529   B:   3 | WestBound A: 462 B: 4       | V/C RATIO<br>• 0.00 - 0.60<br>• 6.1 - 0.70<br>• 7.1 - 0.80<br>• 8.1 - 0.90<br>• 0.81 - 0.90 | LOS<br>A<br>B<br>C<br>D |
|---------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------|---------------------------------------------------------------------------------------------|-------------------------|
| Results  North/South Critical Movement  West/East Critical Movement  V/C = 0                            | * = A(W/B) + B(<br>* 529 + 46: | S/B)<br>E/B)<br>2 + 0 = 0.5 |                                                                                             |                         |

Developed by Ohan Wang 129

1618\_W25

1618\_W25

AMBIENT RELATED PROJECT TOTAL

LANE

SIGNAL

Normandie Av

Volume/Lane/Signal Configurations

Phasing RYOR

Critical Movements Diagram \*

A = Adjusted Through/flight Volume B = Adjusted Left Volume \* = ATSAC Benefit

Perm Auto Perm

- EastBound

A: 317 ·

EXISTING 146 897 57 126 935 109 38

146 | 897 | 57 | 126 | 935 | 109

Phasing

A: 522

8:

North/South Critical Movements = 8(N/B) + A(S/B)
West/East Critical Movements = B(W/B) + A(E/B)

COUNT DATE:

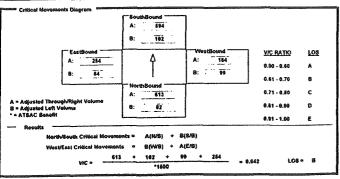
CalcaDB August 26, 2003 . Tuesday 04:26:26 PN

#### INTERSECTION DATA SUMMARY SHEET

| N/S: Ven    | mont Av   | W/E:        | Jefferson Bl | WS No:     | 19 |
|-------------|-----------|-------------|--------------|------------|----|
| амири:      | Comments: |             |              |            |    |
| COUNT DATE: |           | STUDY DATE: | GROW         | TH FACTOR: |    |
|             |           |             |              |            |    |

|                               | LNOF   | THEOU                      | ND SOUTH        |        | THBOUND   | BOUND        |           | WESTBOUND I       |           |       | EASTBOUND.       |            |
|-------------------------------|--------|----------------------------|-----------------|--------|-----------|--------------|-----------|-------------------|-----------|-------|------------------|------------|
| EXISTING                      | 72 I   | TH<br>864                  | RT<br>298       | 165    |           | RT<br>106    | LT<br>356 | TH<br>729         | R7<br>109 | 140   | TH<br>420        | 14         |
| AMBIENT<br>RELATED<br>PROJECT |        | aena<br>Ballana<br>No in l |                 |        |           | -            | 1         | <br> <br>         |           |       |                  | -          |
| TOTAL.                        | 72     | 864                        | 298             | 165    | 1327      | 106          | 356       | 729               | 109       | 140   | 420              | 14         |
| LANE                          | 10     | 2 (8) (2)<br>2   0   0     | # 4#<br>  1   0 | 4 & 4  | 2 (A) (B) | ∳ <b>4</b> } | 1 0       | ት <sub>ቆት</sub> ት |           | 4 F   | <b>个点</b><br>1 0 | € p<br>1 0 |
|                               | Phasin | g F                        | TOR             | Phaein | g RTC     | OR           | Phasi     | ng I              | RTOR      | Phasi | ng               | RTO        |
| SIGNAL.                       | Perm   |                            | DLA :           | Perm   | Au        | rto          | Prot-f    | ix                | Auto      | Pen   | m                | Auto       |

| West/East Critical Movemen                                    |                 | A(E/B)<br>356 + 262 B | 194 LOS     | - D |
|---------------------------------------------------------------|-----------------|-----------------------|-------------|-----|
| Horth/South Critical Movem                                    | ents = B(H/B) + | A(8/B)                |             |     |
| Results                                                       |                 |                       | 0.01-1.00   |     |
| * = ATSAC Benefit                                             |                 | _]                    | 0.81 - 1.00 | E   |
| A = Adjusted Through/Right Volume<br>B = Adjusted Left Volume | B: 72           | į                     | 0.81 - 0.80 | Đ   |
| # - 4 // - 4 / St                                             | A: 432          | 1                     | 0.71 - 0.80 | С   |
| L                                                             | NorthBound      | <del></del>           |             |     |
| B: 140                                                        | }               | B: 356                | 0.61 - 0.70 | 8   |
|                                                               | 1 7             | 1                     | 0.00 - 0.60 | A   |
| A: Z82                                                        | Ι Λ             | WestBound<br>A: 365   | V/C RATIO   | Fos |
|                                                               | J               |                       |             |     |
|                                                               | B: 165          |                       |             |     |
|                                                               | A: 664          | 1                     |             |     |
|                                                               | [ SouthBound    | _                     |             |     |


......

1618\_W25

CalcaDB August 26, 2003 ,Tuesday 04:26:26 PM

| N/S:    | Normandie A | w/E:             | Exposition BI | t/s No: 18    |
|---------|-------------|------------------|---------------|---------------|
| AMPM:   | PM (        | Comments: Sunday |               |               |
| COUNT D | ATE:        | STUDY DATE:      | G             | ROWTH FACTOR: |
|         |             |                  |               |               |

|                    | C NO   | RIKBOUN  | 0           | 50        | SOUTHBOUND L |      |       | WESTBOUND |        |          | STROUP                                  | <u> </u> |
|--------------------|--------|----------|-------------|-----------|--------------|------|-------|-----------|--------|----------|-----------------------------------------|----------|
|                    | LT     | 714      | RT          | LT        | TH           | RT   | LT    | TH        | RT     | LT       | TH                                      | RT       |
| EXISTING           | 82     | 1175     | 51          | 102       | 1104         | 84   | 99    | 209       | 159    | 84       | 488                                     | 105      |
| AMBIENT<br>RELATED |        | [        |             |           | <br>         |      |       | w.r       |        | 7-7-1-27 |                                         | Ţ        |
| PROJECT            |        | <b>†</b> |             | . 257.115 | ter .        |      |       |           | l      | . 5      | 150.00                                  | İ        |
| TOTAL              | 82     | 1175     | 51          | 102       | 1104         | 84   | 99    | 209       | 159    | 84       | 488                                     | 105      |
| LANE               | 4 6    | 4 6 6    | # 6#<br>0 0 | 4 8       |              | 100  |       |           | G # 4# | 4 4      | A 44 4                                  | 4 4      |
| LANE               | 101    | 11011    | 0 0         | 1101      |              | 1010 | T.T.  | 1,0       | 10101  | 311      | ٠.تــــــــــــــــــــــــــــــــــــ | 11010    |
|                    | Phasin | ıg R     | TOR         | Phasin    | 8            | RTOR | Phask | 18        | RTOR   | Phasin   | 9                                       | RTOR     |
| SIGNAL             | Pem    | 1 A      | uto :       | Pem       | ·            | Auto | Pem   | 1         | Auto ; | Perm     | · 7 -                                   | Auto     |



#### INTERSECTION DATA SUMMARY SHEET

| H/S:        | Normandie Av | w/E Jeff   | erson Bl ys No: 20 |   |
|-------------|--------------|------------|--------------------|---|
| AM/PM: 27   | Comments:    |            |                    | - |
| COUNT DATE: | s            | TUDY DATE: | GROWTH FACTOR:     |   |

|          | NORTHE         | 3OUND 1  | LSOUTH       | BOUND 1    | WES     | IBOUND I | LEASTBOUND |         |  |
|----------|----------------|----------|--------------|------------|---------|----------|------------|---------|--|
|          | LT T           | H RT     | LT 1         | TH RT      | LT      | TH RT    | LT         | TH RT   |  |
| EXISTING | 111 10         | 97 131   | 86 12        | 243 / 66   | 301     | 528 47   | 87 : 4     | 162 87  |  |
| AMBIENT  | T              |          |              | - Caramana |         | 1        | . 12       | _ T     |  |
| RELATED  | T              |          | 1 1. A's ass |            |         | 1        | . ==       |         |  |
| PROJECT  | ŦŦĴ.Ĭ          |          |              |            | 2 2     | i -      |            | Ť.      |  |
| TOTAL    | 111 109        | 97   131 | 86 12        | 243 66     | 301     | 528   47 | 87 4       | 62   87 |  |
|          | 4 <b>6</b> 7 6 | 安卢姆      | 4 6 4        | 扁窗户钟       | 4 \$ 9  | 泰安卢伊     | 4 6 4      | ቀላይል    |  |
| LANE     | 1 0 1 0        | 100      | 1 0 1        | 0 1 0 0    | 1 0 1   | 0 1 0 0  | 1 0 2      | 0 0 1 0 |  |
|          | Phasing        | RTOR     | Phasing      | RTOR       | Phasing | RTOR     | Phasing    | RTOR    |  |
| SIGNAL   | Perm           | Auto     | Perm         | Āuto       | Perm    | Auto     | Perm       | Auto    |  |

| Critical Movements Diagram  EastBound  A: 231  B: \$7  A = Adjusted Through/Right Volume  B = Adjusted Left Volume  " = ATSAC Benefit  Results | SouthBound   A: 655   B: 66 | WestBound A: 728 B: 301  | V/C RATIO<br>9.00 - 0.60<br>0.61 - 0.70<br>0.71 - 0.80<br>9.81 - 0.90<br>9.91 - 1.00 | LOS<br>A<br>B<br>C<br>D |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------|--------------------------------------------------------------------------------------|-------------------------|
| North/South Critical Movemen WesUEast Critical Movemen V/C =                                                                                   | ts = B(W/B) + A             | (E/8)<br>1 + 231 # 0.795 | LOS                                                                                  | - c                     |

Developed by Chun Houng 12/2

1618\_W25

CalcaDB

August 26, 2003 ,Tuesday 04:26:26 PM

#### INTERSECTION DATA SUMMARY SHEET

| N/S:        | Normandie Av                            | W/E:        | Adams BI | VS No: 22 |
|-------------|-----------------------------------------|-------------|----------|-----------|
| AMPH: PI    | Comme                                   | nts;        |          |           |
| COUNT DATE: | 100 11000000000000000000000000000000000 | STUDY DATE: | GROWTH   | FACTOR:   |

|                    | HOR     | HBOUND           | sour           | HBOUND 6 | L WESTBOL          | INDs            | EAS.     | TBOUND            |
|--------------------|---------|------------------|----------------|----------|--------------------|-----------------|----------|-------------------|
| EXISTING           | 69 j    | TH RT<br>1057 86 | 1 83 1         | TH RT    | LT TH<br>138 } 682 | 87              | 124 i    | TH RT<br>819   87 |
| AMBIENT<br>RELATED | F       | <u> </u>         | 1 _ * * *      | 7 27:2   | 1.74               |                 |          |                   |
| PROJECT            | 69      | 1057   86        | 83 1           | 145 97   | 138 682            | 87              | 124      | 819   87          |
| LANE               | 4 A A   | & & P 44         | ቁ <i>ያ</i> ት ቀ | 经分分额     | 4 6 4 8            | ે.<br>જે ફે ફેફ | 4 6 4    |                   |
|                    | Phasing | RYOR             | Phasin g       | RTOR     | Phasing            | RTOR            | Phasing  | RTOR              |
| SIGNAL             | Perm    | Auto             | Prot-Fix       | Auto     | Perm ;             | Auto            | Prot-Fix | Auto              |

| Critical Movements Blagram                                    | 8outhBound A: 621 B: 63 |                     |                            |        |
|---------------------------------------------------------------|-------------------------|---------------------|----------------------------|--------|
| A: 453                                                        | <b>Α</b>                | WestBound<br>A: 385 | V/C RATIO<br>0.00 - 0.60   | ros    |
| B: 124                                                        | NorthBound              | B: 138              | 9.81 - 9.70                | 8      |
| A = Adjusted Through/Right Volume<br>B = Adjusted Left Volume | A: \$72<br>B: 69        |                     | 9.71 - 9.80<br>9.81 - 9.80 | C<br>D |
| * ATBAC Benefit  Results                                      | <u> </u>                |                     | 0.81 - 1.00                | E      |
| North/South Critical Movemen<br>West/East Critical Movemen    |                         | 5/8)<br>E/8)        |                            |        |
| V/C n 69                                                      | + 621 + 13<br>*1376     | 8 + 433             | 0.662 LOS                  | - D    |

INTERSECTION DATA SUMMARY SHEET

| N/S:       | Vermont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ãv        | ₩/E:       | Adams BI                         | I/S No:    | 21 |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|----------------------------------|------------|----|
| АМ/РМ:     | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Comments: |            |                                  |            |    |
| COUNT DATE | : <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s         | TUDY DATE: | GROW                             | TH FACTOR: |    |
|            | and the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same state of the same | (A        |            | W. OATOA E. AMERICAN AND THE CO. |            | 2  |

|          | LNORTH   | OUND b   | LSQUIH   | BOUND 1                   | WEST    | BOUND I | EAS     | IBOUND    |
|----------|----------|----------|----------|---------------------------|---------|---------|---------|-----------|
|          |          | H RT     |          | TH RT                     | LT      | TH RT   | LT      | TH RI     |
| EXISTING | 160 7    | 33 231   | 242 13   | 140                       | 199     | 711 116 | 170     | 553 116   |
| AMBIENT  | - 1      |          | í        | *                         | 1       |         |         | 1         |
| RELATED  |          |          | j        |                           | į       |         |         | i         |
| PROJECT  | 1        |          | I        |                           | Ì       |         |         |           |
| TOTAL    | 160   73 | 33   231 | 242   13 | 142 140                   | 199   7 | 711 116 | 170     | 553   116 |
| LANE     | 4 6 4 6  | \$ 6 P P | 4 6 6    | A & P 44<br>0   1   0   0 | 4 6 4   | 44 8 4  | 4 p 4   |           |
| LANC     | 1:01210  | , 10 1 0 | 110111   | nininin                   | 1 0;1   | 0 1 0 0 | 1 0 1   | 0 1 0     |
|          | Phasing  | RTOR     | Phasing  | RTOR                      | Phasing | RTOR    | Phasing | RTOR      |
| SIGNAL   | Perm     | Auto     | Prot-Fix | Auto                      | Perm    | Áuto    | Prot-Fo | Auto      |

| Results  North/South Critical Movemen  West/East Critical Movemen |     |                | A(S/B)<br>B(E/B) |        | <br>            |        |
|-------------------------------------------------------------------|-----|----------------|------------------|--------|-----------------|--------|
| B = Adjusted Left Volume " = ATSAC Benefit                        | B:  | 160            | _                |        | 0.81 - 0.90     | D<br>E |
| A = Adjusted Through/Right Volume                                 | A:  | 367            |                  |        | 0.71 - 0.80     | С      |
|                                                                   | Nor | thBound        | -                |        | <br>0.61 - 0.70 | 8      |
| A: 335<br>B: 170                                                  | Ì   | Ĩ              | A:<br>B:         | 199    | 0.00 - 0.60     | A      |
| EastBound A: 336                                                  | }   | ^              |                  | tBound | <br>V/C RATIO   | LOS    |
|                                                                   | B:  | 242            |                  |        |                 |        |
|                                                                   | A:  | RhBound<br>741 |                  |        |                 |        |

Developed by Chun Wring 125

1618\_W25

1618\_W25

CalcaDB

August 26, 2003 (Tuesday 04:26:26 PM

| AMPM: Comments:  COUNT DATE: STUDY DATE: GROWTH FACTOR:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/s: ·      | Vermont Av | w/E;       | I-10 EB Ramps | VS No:    | 23 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|------------|---------------|-----------|----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AMIPM: PIN  | Comments:  |            |               |           |    |
| and an one operand the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second | COUNT DATE: | s1         | TUDY DATE: | GROWT         | H FACTOR: |    |

|          | LNORTH                                  | IBOUND                                 | <u>la L</u> | THEON     | D     | -                                                                                                                                         | YESTE | MND                                                                                            |     | L  | _EA:      | IBO | TIT | <u> </u> | 47 |
|----------|-----------------------------------------|----------------------------------------|-------------|-----------|-------|-------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------|-----|----|-----------|-----|-----|----------|----|
|          |                                         | TH RY                                  | LT          | TH        | RT    | LT                                                                                                                                        | TH    | 1                                                                                              | RT  |    | Y         | TH  |     | R        | t  |
| EXISTING | 0 8                                     | 302 158                                | 517         | 1106      | 0     | 0                                                                                                                                         | 0     |                                                                                                | 0   | 22 | 27        | 8   |     | 54       | 2  |
| AMBIENT  | 11.                                     | ************************************** |             |           |       |                                                                                                                                           | Ť.    |                                                                                                | ٠   |    |           |     | - 1 |          |    |
| RELATED  | - T                                     |                                        | - 1         |           |       |                                                                                                                                           | Í     |                                                                                                |     |    |           |     | ì   |          |    |
| PROJECT  |                                         | 2002                                   |             | -:        |       |                                                                                                                                           | 1     |                                                                                                |     |    |           |     | 1   |          |    |
| PROJECT  | - 1                                     |                                        |             |           |       |                                                                                                                                           | ł     |                                                                                                |     |    |           |     | - 1 |          |    |
| TOTAL    |                                         | 02   158                               | 517         | 1106      | 0     | ō                                                                                                                                         | 0     |                                                                                                | 0   | 2: | 7         | 8   | - 1 | 54       | 12 |
|          | . <u>v</u> .1 .5                        | 1 100                                  | _•          |           | •     | . •                                                                                                                                       | 1 0   |                                                                                                | ٠   | -  | ••        | ۰   | 1   | -        | _  |
|          | 6 A A                                   | 4644                                   | . 6 4       | ۵ ۵ ۵     |       | 4 Δ                                                                                                                                       | Δ Δ   | Δ                                                                                              |     | 6  | ۵ ۵       | Δ   | Δ   | ۵        | 6  |
|          | 4 41 1                                  | A & P 1                                | <del></del> | 44 4      | الديا | <u> </u>                                                                                                                                  | T.49  | Ţ.                                                                                             | t n | ٩. | ۱ او      | 44  | 4   | r        | ٦  |
| LANE     | 0 0 2                                   | 0 0 1 0                                | 2 0         | 2   0   0 | 00    | 0 0                                                                                                                                       | 1010  | ; 0 ;                                                                                          | 0 0 | 1  | 0 0       | 0   | 1   | O        |    |
|          | Phasing                                 | RTOR                                   | Phasin      |           | TOR   | Phas                                                                                                                                      | lu-   | RT                                                                                             | OB. | 64 | esina     |     |     | TOR      |    |
|          | *************************************** |                                        | ******      | 9 "       | IUK   | F 1143                                                                                                                                    | eng.  | KI                                                                                             | OK  | -  | ea sea sy |     | ^   | 101      | ١  |
| SIGNAL   | Perm                                    | Auto                                   | Prot-F      | ix À      | luto  | <no:< td=""><td>ne&gt;</td><td><no< td=""><td>ne&gt;</td><td>F</td><td>em</td><td></td><td>A</td><td>uto</td><td>,</td></no<></td></no:<> | ne>   | <no< td=""><td>ne&gt;</td><td>F</td><td>em</td><td></td><td>A</td><td>uto</td><td>,</td></no<> | ne> | F  | em        |     | A   | uto      | ,  |

| Results Herth/Bouth Critical Movemen West/East Critical Movemen                  |              | (E/B)       |                                           |             |
|----------------------------------------------------------------------------------|--------------|-------------|-------------------------------------------|-------------|
| A = Adjusted Through/Right Volume<br>B = Adjusted Left Volume<br>= ATSAC Benefit | A:           |             | 6.71 - 0.60<br>6.81 - 0.80<br>6.91 - 1.00 | C<br>D<br>E |
| B: 227                                                                           | NorthBound — | A:0<br>B: 0 | 8.60 - 0.60<br>6.61 - 0.70                | A<br>8      |
| EastBound                                                                        | 8            | WestBound   | yic ratio                                 | LOS         |

all's francisco de posterona

|                                         | physical control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | bnuo8rbuo8 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | กราชองไ <b>ด</b>                        | eme Critical Movements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | O O O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | O t O t O O O  ROTH SPREAMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 2 0 0 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0 0 0 0<br>P ROTR                     | ANE 1 0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -                                       | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 255   396<br>255   396<br>255   396<br>255   396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Z12 6911 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 S81                                   | T 8FS OWITZIXE  THERENT  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBICOR  TOBI |
| 97                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | гаптья ВW 01-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VA sibnama                              | COUNT DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ay Odizeize Ph                          | 5, 2002 ,Tuesd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GalfaD<br>US ATAG NOITO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INTERSE                                 | szm <sup>-</sup> 81:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3 × \$4                                 | י רס                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3)A + (B)W)A * #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | South Critical Movements  47)           | SVIDION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3<br>0                                  | 08.0 - 18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B: 0 :8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | wan                                     | B = Adjusted Left Vol<br>• n ATSAC Benefit<br>• Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8                                       | 03.0 - 00.0<br>07.0 - 13.6<br>08.0 - 17.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 :A<br>0 :8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | brace from SA SA SA SA SA SA SA SA SA SA SA SA SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | fe3 :A<br>0e4 :8                        | geordf batsuibA * A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                         | 07.0 - 18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Kortingound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DRAGBORNS :8                            | Critical Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Auto                                    | OTTAR 2NV  00.0 - 00.0  01.0 - 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Anon> <anon> =""><td>OluA XITIO1  State of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state</td><td>3 olu A</td><td>SIGNAL Perm</td></an<></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon> | OluA XITIO1  State of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state | 3 olu A                                 | SIGNAL Perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 | miad<br>miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad<br>Miad | Sanon> <anon></anon>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BOTA RAILER  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL | 7 0 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 | SIGNAL Perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| otuA<br>otuA<br>sou                     | 064<br>064<br>064<br>010 11<br>010 11<br>010 011<br>010 010<br>010 010<br>010 010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8018 gaiteard <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> <anon> &lt;</anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon></anon>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BOTA RAILER  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL X ATTACH  SUL | ## 74                                   | EXISTING  AMBIENT  RELATE  TOTAL  TOTAL  O  LANE  SIGNAL  PRESING  SIGNAL  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  PRESING  |

(813)A + (8W)A = stnow

8: \$18 8:

08.0 - 18.0

08.0 - 17.0

382

702 × C 121 + 802 + 418 + WestEast Chacal Movements # A(W/B) + A(E/B) North/South Critical Movements \* B(N/B) + A(S/B) 00.f - FE.G e Adjusted ThroughRight Volume B a Adjusted Left Volume Thense Dačí A = • 523 97.0 - 19.0 B: <u>268</u> 09'8 - 00'8 815 :A VIC RATIO 9: 19 \_\_\_\_bnuoSithuoS 803 :A Cuttes Movements Diagram xi-Ho19 SIGNAL Burseya яотя Buiseua яотя яотя 0 0 0 0 0 0 0 | 1 | 0 | 0 | 0 | 1 | 0 JATOT PROJECT аэталэя 11 HI 1109 349 вкомти гастов: : 31A0 YOUTS COUNT DATE:

MIE.

INTERSECTION DATA SUMMARY SHEET

CalcaDB

Mq 35.35:40 yabesuf, COOS ,35 feuguA

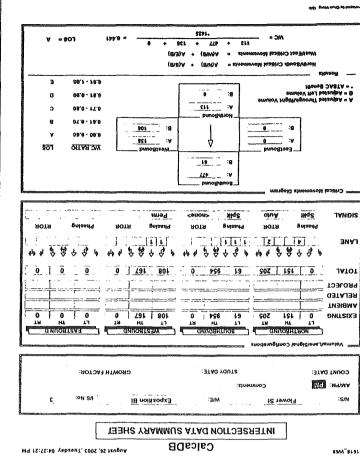
. ON S/I

sqmsR 8W 01-1

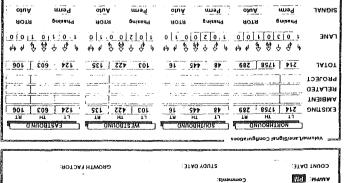
vA InormsV

52M\_8131

MYMA: INT


SIN

M9 35:35:50 yabzeuf, Coot ,35 tauguA


CalcaDB August INTERSECTION DATA SUMMARY SHEET

85W\_81 21

**Post-Event Weekend** 



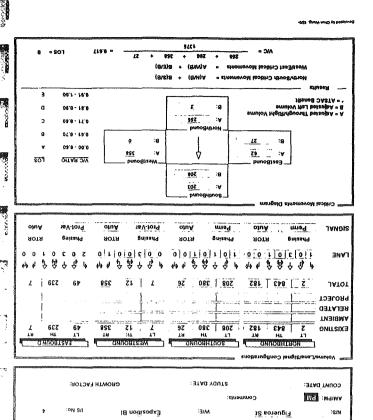
WestEsst Crides Movements = B(W/B) + A(E/B) Hords/South Crideal Movements = A(WB) + B(S/B) 00.1 - FE.0 B: 214 02.0 - 18.0 213 08.0 - 17.0 £01 :8 08.6 - 08.0 112 322 VIC BATIO 9: ----" Critical Movements Diagram "



INTERSECTION DATA SUMMARY SHEET

Figueroa St

820A 8191


CalcaDB

IB emsbA

Mrq #5:75:40 Yabsauf, COOS, 85 IsuguA

1618\_WS9

12 sonsugi 1



INTERSECTION DATA SUMMARY SHEET

CalcaDB M9 15:15:40 yebsauf, 5005 ,85 fauguA

+ 174 + 199 + 174 + WestEast Cridical Movements \* A(W/B) + B(E/B) North/South Critical Movements # A(N/B) + B(S/B) 857 07.0 - 19.0 ā :8 8: 755 09.0 - 00.0 EastBound A: 135 124 OUVE VA 991 :8 544 แลายูลเป สากจะกลาย เปลยูเลกา Prot-Var SIGNAL яотя яотя яотя Buisend яотя ઉલાક્ટલન 1 0 3 0 ' 0 \$ \$ 4 \$ 4 44 多 森 今 安 中 如 女 金 森 今 安 中 P # P P P اي واي L | DOV 89Z 1 1830 1 e/Lene/Signal Configurations GROWTH FACTOR. STUDY DATE: COUNT DATE: AM/PM: Comments:

INTERSECTION DATA SUMMARY SHEET

: AVE:

18 nozishet

Mq 15:15:40 yebsauf, 6005 ,35 leuguA

CalcaDB

獿

8

1618\_2469

August 26, 2003 ,Tuesday 04:27:21 PM

#### CalcaDB

August 26, 2003 ,Tuesday 04:27:21 PM

#### INTERSECTION DATA SUMMARY SHEET

| N/S:        | Flower St | W/E:          | 37th St |          | VS No: | 5 |  |
|-------------|-----------|---------------|---------|----------|--------|---|--|
| AMIPM: DI   | Comments: |               |         | *        |        |   |  |
| COUNT DATE: |           | <br>IDY DATE: |         | GROWTH F | -      | 1 |  |

| Volume   | /Lane/Signal | Configurations        | THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P |               | - maradowiczne w com                    | enuntricular de la companya de la companya de la companya de la companya de la companya de la companya de la c | ************************************** | THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF TH |
|----------|--------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | NORIE        | BOUND                 | SOUTHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OUND 1        | CO3000000000000000000000000000000000000 | donno P                                                                                                        | CEASI                                  | BOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1        | LT           | TH RT                 | LT TI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RY            | L7                                      | TH RT                                                                                                          | LT                                     | TH RT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EXISTING | 0            | 0 402                 | 1044 , 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 0           | 0                                       | 0 0                                                                                                            |                                        | 539 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| AMBIENT  | Ţ            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                         |                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RELATED  |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | _                                       | 1                                                                                                              | F 44 - 11 M 1                          | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PROJECT  | i i I        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                         | 1.1.1.                                                                                                         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TOTAL    | 0            | 0 402                 | 1044 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 0           | 0                                       | 0 0                                                                                                            | 0                                      | 539 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| LANE     | 0.00         | \$ \$ P 4P<br>0 0 2 0 | 4 6 4 A<br>2 0 2 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10:00         |                                         | <sub>ጩ</sub> ቈ ቀ ቀ<br>፲፱፻፱፱                                                                                    | 4 A A                                  | <sub>ጨ</sub> ቈ ፆ ቁ<br>፬ 1 ፬ ፬                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | Phasing      | RYOR                  | Phasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RTOR          | Phasing                                 | RTOR                                                                                                           | Phasing                                | RTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SIGNAL   | Perm         | OLA                   | Prot-Fix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <none></none> |                                         |                                                                                                                | Perm                                   | Auto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

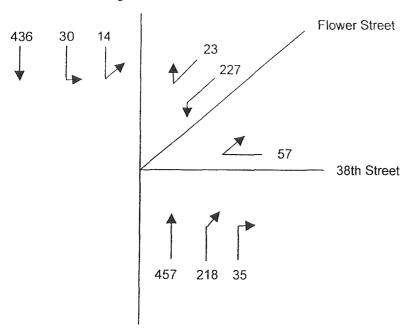
| EastBound A: 114 B: 6  A = Adjusted Through/Right Volume B = Adjusted Left Volume - ATSAC Benefit | SouthBound A: 106 B: 574   MorthBound A: 221 B: 0 | WestBound A: 0 B: 0     | V/C RATIO<br>0.50 - 0.60<br>0.51 - 0.70<br>0.71 - 0.80<br>0.81 - 0.90<br>0.91 - 1.00 | LOS<br>A<br>B<br>C<br>D |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------|-------------------------|
| Results North/South Critical Movement West/East Critical Movement V/C = 221                       |                                                   | S/B) E/B) + 114 = 0.568 | LOS =                                                                                | Α                       |

Developes by Chun Wong 12/9-

INTERSECTION DATA SUMMARY SHEET

| N/S:        | Figueros St | W/E:        | State Dr | I/S No:    | 6 |
|-------------|-------------|-------------|----------|------------|---|
| AM/PM: PA   | Commen      | ts:         |          |            |   |
| COUNT DATE: |             | STUDY DATE: | GROW     | TH FACTOR: |   |
|             |             |             |          |            |   |

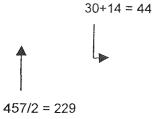
|          | NORTHE  | OUND P    | LSQUI             | HBOUND  | - W    | ESTROUP    | 2    | EA     | SIBO | NN D |
|----------|---------|-----------|-------------------|---------|--------|------------|------|--------|------|------|
|          | LT n    |           | ĽĪ.               | TH RY   | LT     | TH         | RT   | LT     | TH   | RT   |
| EXISTING | 0 86    | 3 0       | 0                 | 469 0   | 0      | 0          | 0    | 20     | 0    | 7    |
| AMBIENT  |         |           | 1                 |         |        | 1          |      |        |      | i    |
| RELATED  |         | ·         | i                 |         |        | i          |      |        |      | - 1  |
|          |         |           |                   |         |        | ļ.         |      |        |      | !    |
| PROJECT  | I       | ;         |                   |         |        | J          |      |        |      | i    |
| TOTAL    | 0 1 86  | 3 0       | · · · · ō · · · · | 469 . 0 | 0      | 0          | 0    | 20     | 0    | 1 7  |
|          |         |           |                   |         |        | 1          |      |        | •    | , ,  |
|          | 6 4 4 4 | 4 4 40    | 6 4 4             | 最多卢的    | 6 6    | 4 4 4      | p 44 | 4 8    | ት ት  | 4. 1 |
|          |         |           |                   |         |        |            |      |        | 979  | 4    |
| LANE     | 0 0 2 0 | 0 0 10 10 | :0[0[3]           | 0 0 0 0 | 0 0    | 0 0 0      | 0 0  | ÕÖ     | 0 0  | 0 0  |
|          | Phasing | RTOR      | Phasing           | RTOR    | Phasis | <b>1</b> 0 | RTOR | Phasin | a    | RTOR |
|          |         |           |                   |         |        |            |      |        | •    |      |


| EastBound 7                                                                        | 8: <u>0</u>          | WestBound<br>A: 0 | VIC RATIO                  | LOS    |
|------------------------------------------------------------------------------------|----------------------|-------------------|----------------------------|--------|
| 8: 20                                                                              |                      | B: 0              | 0.60 - 0.60<br>0.61 - 0.70 | A<br>B |
| A a A Musta d The control of Table Medium                                          | NorthBound<br>A: 432 |                   | 0.71 - 0.80                | c      |
| A = Adjusted Through/Right Volume<br>B = Adjusted Left Volume<br>* = ATSAC Benefit | B: 0                 | j                 | 0.81 - 0.80                | D      |
| Results North/South Critical Movement West/East Critical Movement                  |                      | (S/B)<br>(E/B)    | 0.91 - 1.00                | E      |

Developed by Chun Wong 12/5

1618\_W69

## Intersection # 7 Figueroa & Flower & 38th Weekend Scenario - Post Event


Figueroa Street



#### **Critical Movement Analysis**

Phase 1 Critical Moves

Phase 3 Critical Moves



$$v/c = \frac{(229 + 44) + (125 - 57) + 57}{1425}$$
  
= 0.279 (LOS A)

Phase 2 Critical Moves

W/E:

STUDY DATE:

I/S No:

11

Phasing

Split

V/C RATIO

0.00 - 0.60 0.61 - 0.70

9.81 - 0.90

0.91 - 1.00

1 6 6 6 6 P PP 2 0 0 0 1 0 0

RTOR

Auto

<u>Los</u>

D

LOS ≈ A

GROWTH FACTOR:

130

RTOR

Auto

51 5 130

Phasing

Split

#### INTERSECTION DATA SUMMARY SHEET

| CONTRACTOR CONTRACTOR AND ADDRESS OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR | *************************************** | NAME AND ADDRESS OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY O | THE PERSON |         | Management at a company | -                                       | 3000 | All persons |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|-------------------------|-----------------------------------------|------|-------------|--|
| N/S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1-110 HOV Ramps                         | W/E:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 39th St | -                       | VS No:                                  |      | 8           |  |
| AM/PM:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Comments:                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |         |                         | • • • • • • • • • • • • • • • • • • • • |      |             |  |
| COUNT DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51                                      | UDY DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | •       | GROWTH FA               | ICTOR:                                  |      |             |  |

| Volume   | /Lane/Signa | Configurations | ECT TOESGARA | THE RESERVE THE PERSON NAMED IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | - Carrier and American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American America | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de la colonia de l |
|----------|-------------|----------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|          | [NORII      | няочир )       | SOUTH        | unning (Charles and Charles an | WEST    | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | BOUND                                                                                                          |
|          |             | TH RT 87       | <u>LT</u> T  | H RT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | H RT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TH RT                                                                                                          |
| EXISTING | 45          | 0 87           | 0            | , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /1 - 4  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /3 , 33 ,                                                                                                      |
| AMBIENT  |             |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I                                                                                                              |
| RELATED  | ·           |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | _ [[                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I                                                                                                              |
| PROJECT  |             |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |
| TOTAL    | 45          | 0 87           | 0 0          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 71 4    | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 73   53                                                                                                        |
|          | 484         | 金金 卢特          | ላ ያ 수 ኗ      | Q 10 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 6 4   | 安全的                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>ላ ታ</b> 수                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>全会产性</b>                                                                                                    |
| LANE     | 100         | 0 0 1 0        | 0 0 0 0      | 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 102     | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0 1 1 0                                                                                                      |
|          | Phasing     | RTOR           | Phasing      | RTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Phasing | RTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Phasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RTOR                                                                                                           |
| SIGNAL   | Perm        | Auto           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Perm    | <none></none>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Auto                                                                                                           |
|          |             |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |

| Critical Movements Diagram  EastBound  A: 63  B: 0  A = Adjusted Through/Right Volume  B = Adjusted Left Volume  - ATSAC Benefit | SouthBound   A: 0   B: 0 | WestBound A: 20 B: 71 | <u>V/C RATIO</u> 0.60 - 0.60 0.61 - 0.70 9.71 - 0.80 0.81 - 0.90 | LOS<br>A<br>B<br>C |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|------------------------------------------------------------------|--------------------|
| Results  North/South Critical Moveme                                                                                             | nts = A(N/B) + A(        | 5/8)                  | 0.91 - 1.00                                                      | <u>E</u>           |
| West/East Critical Movement                                                                                                      | s = B(W/B) + A(          | E/B)                  |                                                                  |                    |
| V/C = 87                                                                                                                         | + 0 + 71<br>*1500        | = 0.071               | LOS *                                                            |                    |

Developed by Chun Weng 12/9

1618\_W69

Developed by Chun Wong 12/9-

1618\_W69

AM/PM: PA

EXISTING AMBIENT RELATED

PROJECT

SIGNAL

Figueroa St

Volume/Lane/Signal Configurations ===

----

Phasing

Prot-Var

Critical Movements Disgram

A = Adjusted Through B = Adjusted Left Vol • = ATSAC Benefit

LT TH RT LT TH RT 1 500 57 56 441 19

1 500 57 56 441 19

1 0 2 0 1 0 0 1 0 2 0 1 0 0

V/C = 186 +

Phesin g

Prot-Var

RTOR

A: 153 B: 56

186

A(W/B) + A(E/B)

56 + 68 + 60 = 0.199

RTOR

Auto

CalcaDB

August 26, 2003 ,Tuesday 04:28:05 PM

#### INTERSECTION DATA SUMMARY SHEET

| H/S:        | I-110 SB Ramps | W/E:     | M.L.King Jr. BI | I/S No: | 11 |
|-------------|----------------|----------|-----------------|---------|----|
| ам/Ри: [2]  | Comments:      |          |                 |         |    |
| COUNT DATE: | stu.           | DY DATE: | GROWTH FA       | CTOR:   |    |
|             |                |          |                 |         | Ī  |

|          | HQ.     | RTHBC       | MND P     | LSOU    | THEOUND         | W. T.  | ESTEQUA  | 2      | EA     | STROUN | D    |
|----------|---------|-------------|-----------|---------|-----------------|--------|----------|--------|--------|--------|------|
|          | LT      | TH          | RT        | LT      | TH RT           | LT     | TH       | RT     | LT     | TH .   | RT   |
| EXISTING | 0       | 0           | . 0       | 150     | 0 213           | 3 96   | 619      | 0      | 0      | 492    | 385  |
| AMBIENT  |         | T           |           | T       |                 |        | ſ        |        |        |        | i    |
| RELATED  | 100.000 | Ť           | ** =* **  |         |                 |        | ř ·      |        |        |        |      |
| PROJECT  |         | <del></del> |           | :       | E ++ 1 /4       | 2 2 2  | ÷        |        |        |        |      |
| PROVECT  |         | ι           |           | 1       |                 |        | <b>t</b> |        |        |        | l.   |
| TOTAL.   | 0       | 0           | J 0       | 150     | 0 21            | 96     | 619      | ō      | Ö      | 492    | 385  |
|          | 4 ^     | ^ ^         | A . A . A | 4 ^ ^   | . ^ ^ .         |        | ^ ^ ^    | 4.     | 4 ^    | ^ ^ ^  | A 4  |
|          | 4 P     | 4 🙀         | 安户师       | 9 8 9   | <b>* # \$ #</b> | ማ ካ ልጉ | 华新货      | ; p 40 | 4 Ø    | ዮጩና    | la A |
| ANE      | 00      | 0 0         | 0 0 0     | 100     | 0 0 1           | 1 1 0  | 3 0 0    | 0 0    | 0 0    | 2 0 1  | 0    |
|          |         |             | mean      |         |                 |        |          |        |        |        |      |
|          | Phasic  | 18          | RTOR      | Phasing | RTOR            | Phasis | eg 1     | RTOR   | Phasin | g '    | ROTE |
| SIGNAL   |         | - :         |           | Perm    | Auto            | Pem    | n <      | one>   | Perm   | ,      | Auto |

|                        | 4,0 -             |          | •1          | 500      |       |      |     | _ 3,000. |             |       |
|------------------------|-------------------|----------|-------------|----------|-------|------|-----|----------|-------------|-------|
|                        | V/C =             | 0 .      | 121         | ٠        | 84    | •    | 385 | = 6.331  | ŁO          | S a A |
| WestEs                 | t Critical Moves  | tonts 4  | B(W/t       | 3) +     | A(E/E | 3)   |     |          |             |       |
| Morth/Se               | with Critical Mov | ements = | A(K/E       | ) +      | A(8/2 | 3)   |     |          |             |       |
| Resulta                |                   |          |             |          |       |      |     |          |             |       |
| * = ATBAC Benefit      |                   | ᆫ        |             |          |       |      |     |          | 0.91 - 1.00 | ε     |
| B . Adjusted Left Vote |                   | 8        |             | Ē        | - 1   |      |     |          | 9.81 - 9.60 | Đ     |
| A = Adjusted Through/  | Dinks Makema      | A:       |             | <u> </u> | - 1   |      |     |          | 0.71 - 0.80 | С     |
| L                      |                   |          | orthBound   | , —      |       |      |     |          |             | _     |
| 1                      | 3: 0              | .        | 1           |          | -   1 | в: ~ | 96  |          | 0.61 - 0.70 | В     |
|                        | A: 385            | ] [      | 4           |          | - 1 ' | A:   | 206 |          | 0.00 - 0.60 | A     |
|                        | EsstBound         | _        | ^           |          |       | West |     |          | V/C RATIO   | LOS   |
|                        |                   | В        | 12          | ī .      |       |      |     |          |             |       |
|                        |                   | A:       | 12          | 11       | .     |      |     |          |             |       |
|                        |                   |          | with Bourse |          |       |      |     |          |             |       |

Department in Cases Village CSGs

# CalcaDB August 26, 2003 , Tuesday 04:28:06 PM INTERSECTION DATA SUMMARY SHEET

| N/S:        | I-110 NB Ramps | W/E:        | M.L.King Jr. Bl | VS No: 10 |
|-------------|----------------|-------------|-----------------|-----------|
| Ам/РМ: 📆    | Comments       | :           | -               |           |
| COUNT DATE: | . W            | STUDY DATE: | GROWTH FA       | CTOR:     |

|          | L NOF   | RTHBOW       | ND.      | C_so:                                           | JTHBOU           | ND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | w      | ESTROU   | ND.     | CE         | ASTROUN                                  | (D    |
|----------|---------|--------------|----------|-------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|---------|------------|------------------------------------------|-------|
|          | LT      | TH           | RY       | LT                                              | TH               | RT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LT     | TH       | RY      | LT         | īН                                       | RT    |
| EXISTING | 264     | 14           | 63       | 19                                              | 30               | 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 179    | 432      | 18      | 31         | 300                                      | 533   |
| AMBIENT  | 7       | 227722       |          |                                                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          | į -     | 727        | #1 · · · · · · · · · · · · · · · · · · · | 7     |
| RELATED  |         | al vient     | 2022     | <b>=</b> -7:::::::::::::::::::::::::::::::::::: |                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 771    | ** ** ** | i de la | TL. 1.72   | . = . = .                                | Ť     |
| PROJECT  | ĪĪ      | 2220<br>2000 | OTEMPA A |                                                 | ,                | Same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same o | 7      |          | it      |            | a araba                                  | İ     |
| TOTAL    | 264     | 14           | 63       | 19                                              | 30               | 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 179    | 432      | 18      | 31         | 300                                      | 533   |
|          | 4 & 4   | ያ ል የ        |          | 484                                             | ት <sub>ጨ</sub> የ | p 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 & 4  | ት 🚓 ና    | à p qp  | <b>ዓ</b> ል | <b>ተ</b> ፈር ት                            | * * * |
| LANE     | 110 0   | गुगु         | 00       |                                                 | 00               | 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 2 0 1    | 00      | 10         | 2 0 1                                    | 00    |
|          | Phasing | 9 F          | RTOR     | Phasing                                         | g f              | RTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Phasin | g 1      | RTOR    | Phasic     | ng                                       | RYOR  |
| SIGNAL   | Split   |              | Auto     | Split                                           | 1 7              | Auto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Perm   | - 11 ·   | Auto    | Pem        |                                          | Āuto  |

| Critical Movements Diagram                                    | SouthBound A: 162 B: 19 |                     | A Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comm |     |
|---------------------------------------------------------------|-------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| EastBound A: 533                                              | ^                       | WestBound<br>A: 150 | V/C RATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LOS |
| 8: 31                                                         | Ī                       | B: 179              | 0.00 - 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A   |
| D                                                             | NorthBound              |                     | 0.61 - 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | В   |
|                                                               | A: 171                  |                     | 0.71 - 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c   |
| A = Adjusted Through/Right Volume<br>B = Adjusted Left Volume | B: 171                  |                     | 8.61 - 6.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ð   |
| * = ATSAC Benefit  Results                                    |                         |                     | 9.91 - 1.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E   |
| North/South Critical Moveme                                   | nts = A(N/B) + A(       | 8/8)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| West/East Critical Movement                                   | )A + (6%%)# = E         | E/8)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| V/C = 171                                                     | • 162 • 17:<br>1425     | a 0.733             | LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c   |

August 26, 2003 ,Tuesday 04:28:05 PM

GROWTH FACTOR:

#### INTERSECTION DATA SUMMARY SHEET

| N/S:        | Figueroa St | W/E: M.L.   | King Jr. Bl US I | 4o: 12 |
|-------------|-------------|-------------|------------------|--------|
| АМРМ:       | Commen      | ts: [       |                  |        |
| COUNT DATE: |             | STUDY DATE: | GROWTH FACTOR    | ₹:     |

|          | HORTHE               | ouno J | SOVIH   | DANOE | WES      | BOUND .   | EASIE    | QUND    |
|----------|----------------------|--------|---------|-------|----------|-----------|----------|---------|
|          | LT 11                |        | LT T    | H RT  | LT       | TH RT     | LY       | H RT    |
| EXISTING | 2 41                 | 9 57   | 12 39   | 169   | 108      | 610 105   | 129 . 7  | 86 53   |
| AMBIENT  | - 5. <u>7</u> .5.    | *      |         |       |          | 11        |          |         |
| RELATED  | 7                    |        |         |       |          | 1         |          | Ī       |
| PROJECT  | 1                    |        |         | •     |          | 1         |          | . 1     |
| TOTAL    | 2 41                 | 9 57   | 12 39   | 169   | 108      | 610   105 | 129 7    | 86   53 |
|          | ٩ <u>\$</u> \$ \$ \$ | 台市的    | 4 8 9 5 | 44 3  | 4 6 4    | £4 **     | 4848     | 2 2 1 4 |
| LANE     | 1 0 2 0              | 100    | 1020    | 100   | 1 0 2    | 0 1 0 0   | 1.0 2    | 0 1 0 0 |
|          | Phasin g             | RTOR   | Phasing | RTOR  | Phasing  | RTOR      | Phasing  | RTOR    |
| SIGNAL   | Perm                 | Auto   | Perm    | Auto  | Prot-Var | Auto      | Prot-Var | Auto    |

| ( EastBound                                                   | SouthBound A: 188 B: 12 |                 | VIC PATIO   | <u>L08</u> |
|---------------------------------------------------------------|-------------------------|-----------------|-------------|------------|
| A: 280                                                        | 4                       | A: 238          | 9.50 - 9.60 | A A        |
| B: 129                                                        |                         | B; 104          | 6.61 - 6.76 | 8          |
|                                                               | A: 159                  |                 | 8.71 - 0.80 | С          |
| 4 = Adjusted Through/Right Volume<br>3 = Adjusted Left Volume | 8: 2                    |                 | 0.81 - 0.80 | Ð          |
| * * ATSAC Benefit  Results                                    |                         |                 | 0.91 - 1.60 | E          |
| North/South Critical Moveme                                   | mts = B(N/B) + A(       | S/B)            |             |            |
| West/East Critical Movemen                                    | rs = 8(W/B) + A(        | E/B)            |             |            |
| V/C = -2                                                      | + 188 + 10<br>*1375     | 8 + 280 × 0.350 | Los         | = A        |

1618\_W69

1618\_W69

CalcaDB

V/C = 20 + 426 + 100 + 274 = 0.477 \*1500

August 26, 2003 ,Tuesday 04:28:05 PM

#### CalcaDB INTERSECTION DATA SUMMARY SHEET

| N/S:        | Vermont Av | w/e:        | M.L.King Jr. BI | ₩S No: 14 |
|-------------|------------|-------------|-----------------|-----------|
| AM/PM: TH   | Comme      | nts:        |                 |           |
| COUNT DATE: |            | STUDY DATE: | GROWT           | H FACTOR: |
|             |            |             |                 |           |

| Į vocum  | HLene/Sig |       |                                         |                |         |              |                |        |                | _ |         |          |       |     |     |     |
|----------|-----------|-------|-----------------------------------------|----------------|---------|--------------|----------------|--------|----------------|---|---------|----------|-------|-----|-----|-----|
| Ĭ        | Sections  | THROU | W0-400000000000000000000000000000000000 | 20,000,000,000 | UTHBOUL | nye waxanana | - Constitution | WESTEC | and the second | À | 2000000 | 567K460A | ĮΒΟL  | ΝD  |     | J   |
| 1        | LT.       | TH    | RT                                      | LT             | TH      | RT           | LT             | TH     | RT             |   | LT      |          | TH    |     | RT  |     |
| EXISTING | 0         | 787   | 16                                      | . 0            | 1164    | 123          | 35             | 932    | 19             |   | 0       | ٠.       | 165   | - 1 | 285 | ij  |
| AMBIENT  |           |       |                                         |                |         |              |                |        | T              |   |         |          |       | Ι   |     | - 1 |
| RELATED  |           |       |                                         |                |         |              |                |        | 1.             |   |         |          |       | 7   | •   | - 7 |
| PROJECT  | 1         |       |                                         | 2.22.00        |         |              |                | =:<br> | .i .           |   |         | -        |       | Ť   | -   | ij  |
| TOTAL    | 0 ]       | 787   | 16                                      | 0              | 1164    | 123          | 35             | 932    | 19             |   | 0       |          | 165   | Ξ.  | 285 |     |
|          | 4 & 4     | 4     | p 40                                    | 4 8            | ዮጵ ዩ    | * *          | 4 🗗            | 4 4    | Q p 4          | P | 4 £     | 4        | æ     | ÷,  | p 6 | rÞ  |
| LANE     | 1 0 1     | 0 1   | 00                                      | 1 0            | 101     | 0 0          | 1 0            | 2 0    | 100            | 5 | 1 0     | 12       | 0     | 11  | 0   | 0   |
|          | Phasin    | , ,   | RTOR                                    | Phasin         | g R     | TOR          | Phas           | ing    | RTOR           |   | Pha     | skrig    |       | RT  | OR  |     |
| SIGNAL   | Perm      |       | Auto                                    | Prot-F         | ix /    | luto         | Pe             | m      | Auto           |   | Pe      | 1771     | J. S. | A   | uto |     |
| l        |           |       |                                         |                |         |              |                |        |                |   |         |          |       |     |     |     |

| Critical Movements Diagram                                        | 8: 644<br>8: 0 |                     |                            |                 |
|-------------------------------------------------------------------|----------------|---------------------|----------------------------|-----------------|
| A: 285                                                            | 4              | WestBound<br>A: 317 | V/C RATIO<br>0.00 - 0.60   | <u>LOS</u><br>A |
| B:                                                                | North-Bound    | B: "j5"             | 8,61 - 0.70                | В               |
| L = Adjusted Through/flight Volume                                | A: 402         | •                   | 0.71 - 0.80<br>0.81 - 0.98 | C<br>D          |
| 8 = Adjusted Left Volume<br>• a ATBAC Benefit                     | B: 0           |                     | 8.91 - 1.60                | ε               |
| Results  North-South Critical Movement West/East Critical Mevamon |                |                     |                            |                 |
| AC a 0                                                            | + 644 + 34     | •                   | LOS                        | - 8             |

1618\_W69

AM/PM:

AMBIENT RELATED PROJECT TOTAL

LANE

N/s: Hoover St

Volume/Lane/Signal Configurations NOBIHBOUND

20 0 141

Auto

A: 274

Perm

A = Adjusted Through/Ri B = Adjusted Left Volume \* = ATSAC Benefit

14 848 

Perm

8: 14

North/South Critical Movements \* B(N/B) + A(S/B) West/East Critical Movements = B(W/B) + A(E/B)

Auto

426

Perm

290 100

Äuto

Perm

V/C RATIO

0.00 - 0.60

0.61 - 0.70

0.81 - 0.90 0.91 - 1.00

COUNT DATE:

INTERSECTION DATA SUMMARY SHEET

| Conuments |             |      |                                       |  |
|-----------|-------------|------|---------------------------------------|--|
|           | STUDY DATE: | GROW | VTH FACTOR:                           |  |
|           | Comment     |      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |  |

|          | LNO                  | THBOU | ANNO 100 (100 (100 (100 (100 (100 (100 (100 | SC.        | UTHBOU       | 210000000000000000000000000000000000000 | CW         | STBOU | SOUTH CONTRACTOR | C£/        | STRO | מאו.       | ì  |
|----------|----------------------|-------|---------------------------------------------|------------|--------------|-----------------------------------------|------------|-------|------------------|------------|------|------------|----|
|          | LT                   | TH    | RT                                          | LT         | TH.          | RY                                      | LT         | 711   | RT               | LŤ         | 174  | AT         |    |
| EXISTING | 48                   | 773   | 20                                          | 0          | 915          | 74                                      | 38         | 37    | 71               | 178        | 14   | 12         | 0  |
| AMBIENT  |                      |       |                                             |            | 1            |                                         |            |       |                  |            |      | 1          |    |
| RELATED  | : == == <del>1</del> |       |                                             | 2          | į            |                                         |            |       |                  |            |      | i          |    |
| PROJECT  | 100                  |       |                                             |            | ļ.,          |                                         |            |       |                  |            |      | ļ          |    |
| PROJECT  | ا ا                  |       |                                             |            | ,J           |                                         |            |       |                  |            |      | i          |    |
| TOTAL    | 48                   | 773   | 20                                          | Ō          | 915          | 74                                      | 38         | 37    | 71               | 178        | 14   | 12         | 0: |
|          | 4 6 4                | 2 A 1 | p 40                                        | <b>9</b> A | <b>ዮ</b> ል ና | p 64                                    | <b>4</b> & | ዮጵያ ኅ | 6 64             | <b>4</b> A | ት 🚓  | <u>ብ</u> ል | 41 |
| LANE     | 101                  | 1011  | 1010                                        |            | 11011        |                                         | 0:0        |       | 01010            | 9-9        | 0 1  | ñ o        | a  |
|          |                      |       | 1 2 2 2 1                                   | 7.17.1     | -1-1.        | .1 919.                                 | -010.0     | -1-11 | Til              |            | ٠.   |            | ٠  |
|          | Phasin               | g (   | RTOR                                        | Phask      | 19 1         | RTOR                                    | Phasin     | g     | RTOR             | Phasin     | 2    | RTOR       | ι  |
| SIGNAL   | Penn                 |       | Auto                                        | Pen        | 13.          | Auto                                    | Perm       |       | Auto             | Perm       |      | Auto       |    |

| Critical Movements Diagram                                                                             | 8outh8ound<br>A: 495<br>B: 0 |                     |                            |          |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------|------------------------------|---------------------|----------------------------|----------|--|--|--|--|--|
| EastBound A: 312                                                                                       | Δ <sub></sub>                | WestBound<br>A: 146 | V/C RATIO<br>0.00 - 0.60   | ĻOS<br>A |  |  |  |  |  |
| B: 178                                                                                                 | NorthBound                   | B: 38               | 0.61 - 0.70                | В        |  |  |  |  |  |
| A = Adjusted Through/Right Volume  8 = Adjusted Left Volume  * = ATSAC Benest                          | A: 397<br>B: 48              |                     | 0.71 - 0.80<br>6.81 - 6.90 | 0        |  |  |  |  |  |
| Results -                                                                                              |                              |                     | 0.91 - 1.00                | E        |  |  |  |  |  |
| resums North/Bouth Critical Movements = B(N/B) + A(8/B) West/East Critical Movements = B(N/B) + A(8/B) |                              |                     |                            |          |  |  |  |  |  |
| V/C = 48                                                                                               | + 495 + 36<br>+1509          | 312 - 0.0           | 126 LOS                    | * A      |  |  |  |  |  |

2

RTOR

Auto

LOS

A

TWNDIS

BNAL

JATOT PROJECT

GETAJER

COURT DATE:

69M 8191

a Adjusted ThroughRight Volume B = Adjusted Led Welvine • • ABTA = •

→ 119 ° 2/A

915 :A

Mossifers Critical Meromonds ... A(Mail) . B(E/B) Horish Seast Critical Movements . A(MB) + B(8/8)

A: 611

519

388

otuA mned chuA mred chuA mred chuA mees

132 1521 0 0 120 28 132 484 363 104 0 518

STUDY DATE:

INTERSECTION DATA SUMMARY SHEET

CalcaDB

81 :0N SV IB mothsorpa :3WW VS wide Av

### CalcaDB

STAQ YQUT& MGI :MAIMA Comments: :8/N :ANE M.L.King Jr. Bi vA sibnamioN

otuA meq Penn ornA mag otuA SIGNAL gnizaris RIOR Buiseya яотя Phasing яотя яотя 마 4 중 & 4 수 상 상 상 수 수 수 하 4 수 条 수 수 수 하 하 수 条 수 수 수 0 0 r 0 s 0 r oirloiolgio r olo riolfi oioirloifi oioirloifi 100 445 25 48 922 115 **GELATED** 

GROWTH FACTOR: ON SA 21

INTERSECTION DATA SUMMARY SHEET

M4 20:85:50 Yabasuf, 2005 ,85 IsuguA 1618\_W69

CalcaDB

3NA.1

PROJECT

CHIALAN

AMBIENT

EXISTING диловитнов диловитвои COUNT DATE: STUDY DATE: : Mq/MA : Mq/MA 3/W vA InormsV INTERSECTION DATA SUMMARY SHEET

+ 805 + D/A W # SOT + \$15 + WestEsst Critical Movements " A(WB) + B(E/B) Horizouth Critical Movements \* A(WB) + B(S/B) 00.1 - 10.0 e Adjusted Through/Right Volume 8 \* Adjusted Left Volume 9 \* ATSAC Benefit 0 :8 a 08.0 - 18.0 8: 8 £ :8 69.6 - 66.6 374 9 :8 096 otuA gnizaring ROTR gnizaring rmsq often rmsq , meq otuA otuA ms4

яотя

151 612 0 0 5101 0

7,7 % & V . = 3

CalcaDB Mrq 20:82:50 YabasuT, COOS ,35 JauguA 1618\_W69

> 100 West/East Critical Movements " A(WIB) + B(E/B)

> Horth/South Critical Movements " B(N/B) + A(S/B)

8: <u>101</u> :8

351 :A

Thousantrow T

8: 48

INTERSECTION DATA SUMMARY SHEET

W.S: Vermont Av W/E: Jefferson Bl

otud xi3-hord otud mrsq AJO mrsq JANOIS

STUDY DATE: GROWTH FACTOR: Сопинения: COUNT DATE: MYPM: MYWA ON SA

213 + 250 + 101

:8

8 = 801

00,1 - 19.0

08.6 - F8.D

09.0 - 08.0

August 26, 2005, Tuesday 94:28:05 MM

BNAL FS 494 01 811 858 II 101AL 53 1834 10 ZZ 1 1.ZZ 1 LOGCONA GBTAJBR TMBIBMA EXISTING 53 1834 10 1 538 118 10 767 54

AVC = 311 + North South Critical Movements ... A(N/B) + 8(8/B) a Adjusted Uniough/Right Volume 8 a Adjusted Left Volume 9 a ARTA Campill 718 :A 53 :B 118 э 08.8 - 11.0 07.0 - 19.6 09.6 - 00.0 113 VAC RATTO :B: V: \$85

+ 384 +

69.1 - 16.9

68.0 - 18.0

99'0 - 14'0

61.0 - 18.0

VC KATIO

GROWTH FACTOR:

MY 60:85:40 Yabsaul, 6005, as sauguA

gnissriq

ROTR

Bujstud

091 | 869 E

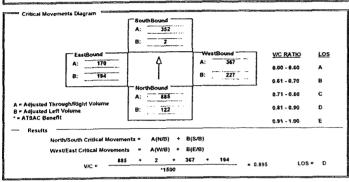
ногя

183

1618\_W69

#### CalcaDB INTERSECTION DATA SUMMARY SHEET

| N/S:        | Vermont Av | W/E:        | Adams BI | US No:      | 21 |
|-------------|------------|-------------|----------|-------------|----|
| амирм: 📆    | Comn       | nents:      |          |             |    |
| COUNT DATE: |            | STUDY DATE: | GRON     | NTH FACTOR: |    |


|          | NORTHE  | OUND      | SOUTH    | OUND  | (WESTE  |        | FASI     | BOUND            |
|----------|---------|-----------|----------|-------|---------|--------|----------|------------------|
|          | LY TI   | I RT      | LT T     |       | LT T    |        | LT.      | TH RT            |
| EXISTING | 59 15   | 04 245    | 164 49   | 96 87 | 148 5   | 19 221 | 205      | 430 64           |
| AMBIENT  | T -     |           | 1        |       | L       |        |          | 1                |
| RELATED  |         |           |          | -     |         |        |          | 1                |
| PROJECT  |         | - '5' - ' | , į      |       | i       |        |          | i                |
| TOTAL    |         | 04   245  | 164 49   |       | 148   5 |        |          | 430   64         |
| LANE     |         |           | 1 0 1    |       |         |        | 이 1 0 1  | 最佳 /* 1<br>0 1 0 |
|          | Phasing | RTOR      | Phasing  | RTOR  | Phasing | RTOR   | Phasing  | RYOR             |
| SIGNAL   | Perm    | Auto      | Prot-Fix | Auto  | Perm    | Auto   | Prot-Fix | Auto             |

|                                                               | 8: 164                |                     |             |            |
|---------------------------------------------------------------|-----------------------|---------------------|-------------|------------|
| EastBound                                                     | ) h                   | WestBound<br>A: 370 | V/C RATIO   | <u>Los</u> |
| B: 205                                                        | 1 T                   | B: 148              | 9.00 - 9.60 | A          |
|                                                               | NorthBound -          | <u> </u>            | 0.61 - 0.70 | В          |
|                                                               | A: 752                |                     | 0.71 - 0.80 | c          |
| A = Adjusted Through/Right Volume<br>B = Adjusted Left Volume | B: 59                 |                     | 0.81 - 0.90 | D          |
| * = ATSAC Benefit  Results                                    |                       |                     | 0.91 - 1.00 | E          |
| North/South Critical Movem                                    | ents = A(N/B) + B     | S/B)                |             |            |
| West/East Critical Movemen                                    | ts = A(W/B) + B       | E/B)                |             |            |
| V/C = 75.                                                     | 2 + 164 + 37<br>*1375 | 0 + 205 = 1.01      | 4 LOS       | - F        |

INTERSECTION DATA SUMMARY SHEET

| H/S:        | Normandie Av | W/E:        | Jefferson Bi | VS No:      | 20 |
|-------------|--------------|-------------|--------------|-------------|----|
| амин:       | Comme        | ints:       |              |             |    |
| COUNT DATE: |              | STUDY DATE: | GRO          | WTH FACTOR: |    |
|             |              |             |              |             |    |

|          | NORTH          | BOUND I         | SOUTH         | BOUND I     | LWES             | IBOUND           | *************************************** | ONNO        |
|----------|----------------|-----------------|---------------|-------------|------------------|------------------|-----------------------------------------|-------------|
|          | LT 1           | H RT            | LT T          | H RT        | LT               | TH RT            |                                         | TH RT       |
| EXISTING | 122 17         | 64 6            | 2 64          | 48 55       | 227              | 563 171          | 194                                     | 50 170      |
| AMBIENT  | T              |                 | 1             |             |                  |                  |                                         |             |
| RELATED  |                |                 |               |             |                  |                  |                                         |             |
|          |                |                 |               |             |                  |                  |                                         | Ť           |
| PROJECT  |                |                 |               |             |                  | . 1              |                                         |             |
| TOTAL    | 122   17       | 64 6            | 2 64          | 48 55       | 227              | 563   171        | 194                                     | 50 17       |
|          |                |                 |               |             |                  |                  |                                         |             |
|          | 6 A A          | 经合产价            | ጓ ፉ ት ፉ       | £ 66 40 440 | ላ ∱ ዯ            | <b>፞</b> ጩ \$ ሶየ | - ላይዮ                                   | 命 安 舟       |
|          | <b>ካ</b> ታ ተ 2 |                 |               |             |                  |                  |                                         |             |
| ANE      | 1.011          | 01100           | 110 1 6       | 1 0 0       | 1 0 1            | 0 1 1 0 0        | 1 0 2                                   | 0 ( 0 ) 1 ) |
| ANE      | 1.01           | 0 1 0 0         | 101           | 1 0 0       | 1 0 1            |                  |                                         |             |
| ANE      | 1 0 1 Phasing  | 0 1 0 0<br>ATOR | 1   0   1   0 | RTOR        | 1 0 1<br>Phasing |                  | 1 0 2 Phasing                           | RTOR        |



1618\_W69

CalcaDB

INTERSECTION DATA SUMMARY SHEET

| AMPH: PM    | Comments | : 1         |          |        |
|-------------|----------|-------------|----------|--------|
| COUNT DATE: |          | STUDY DATE: | GROWTH F | ACTOR: |

| THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE   THE    | TH RT              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| EXISTING 112 1627 151 102 566 100 97 418 118 66 1  AMBIENT  RELATED  PROJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |
| RELATED PROJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 386 93             |
| PROJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |
| The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | : - <del>-  </del> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| TOTAL 112 1627 151 102 566 100 97 418 118 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 386 93             |
| ବ୍ରତ୍ୟୁ ଜନ୍ଧ ବ୍ରତ୍ୟୁ ଜନ୍ଧ ବ୍ରତ୍ୟୁ ଜନ୍ଧ ବ୍ରତ୍ୟୁ ଜନ୍ଧ ବ୍ରତ୍ୟୁ ଜନ୍ୟ ବ୍ରତ୍ୟୁ ଜନ୍ୟ ବ୍ରତ୍ୟୁ ଜନ୍ୟ ବ୍ରତ୍ୟୁ ଜନ୍ୟ ବ୍ରତ୍ୟ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
| LANE 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1011010            |
| Phasing RYOR Phasing RYOR Phasing RYOR Phasin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | g RTOR             |
| SIGNAL Perm Auto Prot-Fix Auto Perm Auto Prot-Fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ix Auto            |

| B: 65  A = Adjusted Through/Right Volume B = Adjusted Left Volume = TSAC Benefit | HorthSound<br>A: 889<br>B: 112 | B: 97 | 8.61 - 6.76<br>8.71 - 6.83<br>6.81 - 6.83 | 6<br>C<br>D |
|----------------------------------------------------------------------------------|--------------------------------|-------|-------------------------------------------|-------------|
|----------------------------------------------------------------------------------|--------------------------------|-------|-------------------------------------------|-------------|

1618\_W69

CalcaDB

August 26, 2003 ,Tuesday 04:28:05 PM

INTERSECTION DATA SUMMARY SHEET

| N/s:        | Vermont Av | W/E:        | 1-10 EB Ramps | 1/5 No:   | 23 |
|-------------|------------|-------------|---------------|-----------|----|
| АМ/РМ:      | Comment    | s: -        |               |           |    |
| COUNT DATE: |            | STUDY DATE: | GROWT         | H FACTOR; |    |
|             |            |             |               |           |    |

| ,        | NORT    | BOUND   |     | r son                                   | THEOUND  |     | WE     | SIBOU | 1110  | -                                       | SIBO | 0.000,000,000,000,000 |
|----------|---------|---------|-----|-----------------------------------------|----------|-----|--------|-------|-------|-----------------------------------------|------|-----------------------|
|          | LT      | TH      | RT  | LT                                      | TH R     | 7   | LT     | 134   | RT    | LT                                      | TH   | RT                    |
| EXISTING | 0 1     | 332   4 | 46  | 439                                     | 605 0    | ŀ   | 0      | .0    | . 0.  | 182                                     | 1    | 19                    |
| AMBIENT  | - T     |         |     | 7                                       |          |     | 1      |       |       |                                         |      | 1                     |
| RELATED  | ··      | ÷ · · · |     | · • • • • • • • • • • • • • • • • • • • |          |     | i      | -     |       |                                         |      | 1                     |
|          |         |         | ~   | ٠ ا                                     |          |     |        |       | .1. ' |                                         |      | i                     |
| PROJECT  | 1.      |         |     |                                         |          |     |        |       |       |                                         |      | 1                     |
| TOTAL    | 0 1     | 332     | 46  | 439                                     | 605 0    |     | 0      | 0     | 0     | 182                                     | 1    | 1 19                  |
|          | ~       | 2027.2  | 70. | . 400                                   | 210      | -   |        | _     |       | 22.2                                    |      | '                     |
|          |         | 44      | 4.6 |                                         | 4 2 43   | 4.3 | 6 4    | 4.4   | 4 4 4 | 4 6                                     | £ 9  | <b>ት</b> ቀ            |
|          | 7 4     | 4 4     |     | 1.4.                                    | (4, 4, 1 |     | 1 4    | (4)   | 2012  |                                         |      | Ψ.                    |
| LANE     | 010 2   | 0 0 1   | 0   | 2 0 2                                   | 0 0 0    | 0   | 0.01   | بفاد  | 01010 | 1 0                                     | 0 0  | 1 0                   |
|          |         |         | _   |                                         | RYO      |     | Phasin | _     | RTOR  | Phasin                                  | _    | RTOR                  |
|          | Phasing | RTC     | **  | Phasing                                 | KIO      |     | rnesme | đ     | N/OK  | * ************************************* | v    |                       |

|                                                               | SouthBound -         | 1         |             |     |
|---------------------------------------------------------------|----------------------|-----------|-------------|-----|
|                                                               | A: 303               |           |             |     |
|                                                               | B: 241               |           |             |     |
| EastBound                                                     | <del> </del>         | WestBound | VIC. RATIO  | Los |
| A: 198                                                        | 1 1                  | A: , _0   | 0.00 - 6.60 | A   |
| B: 182                                                        | 1 1                  | B: 0      | 0.61 - 0.70 | 8   |
| <u> </u>                                                      | NorthBound<br>A: 666 |           | 8.71 - 0.88 | c   |
| A = Adjusted Through/Right Volume<br>B = Adjusted Left Volume | 8: 0                 |           | 0.81 - 0.90 | 0   |
| · = ATSAC Benefit                                             | L                    | ]         | 0.91 - 1.60 | E   |
| Results                                                       |                      |           |             |     |
| Horth/South Critical Movem                                    | 3 + (BM)A = else     | (S/B)     |             |     |
| West/East Critical Movemen                                    | ts - A(WB) + A       | (E/B)     |             |     |
| 66                                                            | 3 + 241 + (          | 198 9.57  | es LOS      | ≞ C |
| vic -                                                         | *1425                | 6 0,1     | ••          | -   |

#### INTERSECTION DATA SUMMARY SHEET

| PRODUCTION OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE |              |             | THE RESIDENCE AND ADDRESS OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF TH |           |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
| N/8;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Normandie Av | W/E:        | I-10 EB Ramps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ₩S No: 24 |  |
| ам/РМ:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Comment      | s: [        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - • •= .  |  |
| COUNT DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | STUDY DATE: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H FACTOR: |  |

|          | NORIE   | BOUND   | Lsouth   | BOUND   | L WE                                                                         | SIBOUND )       | L EASI  | BOUND :  |
|----------|---------|---------|----------|---------|------------------------------------------------------------------------------|-----------------|---------|----------|
|          |         | TH RT   |          | TH RT   | LT                                                                           | TH RY           | LT      | TH RT    |
| EXISTING | 0 1     | 134 449 | 337 4    | 98 0    | 0                                                                            | 0 0             | 166     | 0 137    |
| AMBIENT  |         |         |          |         |                                                                              |                 |         |          |
| RELATED  |         |         | harm and |         |                                                                              |                 |         |          |
| PROJECT  |         |         |          |         |                                                                              |                 |         | LIL      |
| TOTAL    | 0 1     | 134 449 | 337 4    | 98 0    | Ó .                                                                          | 0 0             | 166     | 0 137    |
|          | 4 B 4   | 金仓卢钟    | 4 6 4 2  | 最份中钟    | 4 8 4                                                                        | 44826           | 4 8 4   | 金仓户钟     |
| LANE     |         | 0 0 1 0 |          | 0 0 0 0 | 0 0 0                                                                        | 0.0.0           | 1 0 0   | 1.0+010. |
|          | Phasing | RTOR    | Phasing  | RTOR    | Phasing                                                                      | RTOR            | Phasing | RTOR     |
| SIGNAL   | Perm    | Auto    | Prot-Fix | Áuto    | <none:< td=""><td>&gt; <none></none></td><td>Perm</td><td>Auto</td></none:<> | > <none></none> | Perm    | Auto     |

| Critical Movements Diagram                                        |                    | DATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY | SECTION OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE P | *****       |     |
|-------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|
|                                                                   | 8: 249<br>8: 337   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |
| EastBound                                                         | ٨                  | WestBound<br>A: 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V/C RATIO   | Los |
| A: 152<br>B: 152                                                  | 1                  | B:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.60 - 0.60 | A   |
| 6: 1 132                                                          | NorthBound         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ل                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.61 - 0.70 | В   |
|                                                                   | A: 567             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.71 - 0.80 | С   |
| A = Adjusted Through/Right Volume<br>B = Adjusted Left Volume     | 8: 0               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.81 - 0.90 | D   |
| * * ATSAC Benefit                                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.91 - 1.00 | E   |
| Results North/South Critical Movement West/East Critical Movement |                    | S/B)<br>E/B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |
| V/C =                                                             | + 337 + 0<br>*1425 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Los =       | В   |

1618\_W69

CalcaDB

August 26, 2003 ,Tuesday 04:28:05 PM

#### INTERSECTION DATA SUMMARY SHEET

| N/S:        | Normandie Av | W/E:        | 1-10 WB Ra | mps    | I/S No: | 26      |  |
|-------------|--------------|-------------|------------|--------|---------|---------|--|
| AM/PM: [23] | Comme        | ents:       |            |        |         |         |  |
| COUNT DATE: |              | STUDY DATE: |            | GROWTH | FACTOR: | <b></b> |  |

|          | NORTH    | BOUND   | سيا≱  | <u>\$ΩU</u> | THBO | W.  | 2      | L        | WES  | IBQU           | ND          | L    | EAS        | IBOUL | Φ            |
|----------|----------|---------|-------|-------------|------|-----|--------|----------|------|----------------|-------------|------|------------|-------|--------------|
|          |          | TH RT   | - 1   | т.          | TH   |     | RT     | LY       |      | TH             | RT          |      | LT         | TH    | RY           |
| EXISTING | 308   8  | 68 0    | لے ا  | 0 ;         | 829  | į   | 183    | 152      | ! !  | 1              | 262         | 1    | 0          | 0     | 0            |
| AMBIENT  |          |         | ~     | ;           |      |     |        |          |      |                | 1           | -    |            |       | Τ            |
| RELATED  |          |         | = ==  |             |      | -:: | 223.27 |          |      |                |             | 12 - |            | -=    | <del> </del> |
|          |          |         | - 25- |             | 2.5  |     |        | 2 -      | .2:: | 25. 22         | la come and |      | s          |       | Ť.           |
| PROJECT  |          |         |       |             |      |     |        |          |      |                | ١.          | 1.   |            |       |              |
| TOTAL    | 308   8  | 68 0    | ٠., ١ | 0           | 829  |     | 183    | 152      |      | 1              | 262         |      | Õ          | Ó     | ] 0          |
|          | 4 6 4    | A & P4  | 4     | <i>ያ</i> ት  | A    | Ą,  | p 44   | <b>∮</b> | 4    | <b>&amp;</b> 4 | G p ep      | 4    | <b>A</b> A | a f   | , p ¢        |
| LANE     | 1 0 2    | 0 0 0 0 | 0     | 0 2         | 0    | ō.  | 1 0    | 0 0      | 0    | 9 (            | 1 0         | 0    | 0 0        | 1016  | 101          |
|          | Phasing  | RTOR    | PI    | hasing      |      | R.  | OR     | Pha      | ung  |                | RYOR        | F    | hasing     |       | RTOR         |
| SIGNAL   | Prot-Fix | Auto    | -7    | erm         |      | Ā   | uto    | Pe       | m    |                | Auto        |      | mone>      | 7     | 1000         |

| Critical Movements Diegram        |                   |                     | 10,000,000,000,000 |             | Service Commence |
|-----------------------------------|-------------------|---------------------|--------------------|-------------|------------------|
|                                   |                   |                     |                    |             |                  |
|                                   | A: 415            |                     |                    |             | - 1              |
|                                   | B:                |                     |                    |             |                  |
| EastBound                         | Λ                 | WestBound<br>A: 208 |                    | V/C RATIO   | ros              |
| A: 0                              | Ĭ                 | B: 152              |                    | 8.00 - 8.60 | ٨                |
|                                   | '                 | 1 - 111             | -                  | 0.61 - 0.70 | В                |
| L                                 | - NorthBound      |                     |                    |             |                  |
|                                   | A: "- 434         |                     |                    | 8.71 - 6.80 | c                |
| A - Adjusted Through/Right Volume |                   |                     |                    |             | - 1              |
| B - Adjusted Left Volume          | 8: 308            |                     |                    | 0.81 - 0.90 | D                |
| * = ATSAC Benefit                 | L                 |                     |                    | 0.91 - 1.60 | E                |
| - Results                         |                   |                     |                    |             |                  |
| Horth/Bowth Critical Moveme       | ats = 8(N/B) + A( | 8/8)                |                    |             |                  |
| West/Eest Critical Movement       | s = A(W#B) + A(   | E/B)                |                    |             |                  |
| V/C # 366                         | + 416 + 2G        | 3 + 6               | □ 0.683            | LOS =       |                  |
| WC =                              | *1425             |                     | - 0.003            |             |                  |

#### INTERSECTION DATA SUMMARY SHEET

| N/S:        | Vermont Av | W/E:        | I-10 WB Ramps | 1/S No: | 25 |
|-------------|------------|-------------|---------------|---------|----|
| амири: 20   | Comments   | 12          |               |         |    |
| COUNT DATE: |            | STUDY DATE: | GROWT         | FACTOR. |    |
|             |            |             |               | 7000-0  |    |

|          | L NORTHB       | ONND P  | SOUTHB                                | OUND I | WES     | IBQUND - | LFAS          | IBOUN | D     |
|----------|----------------|---------|---------------------------------------|--------|---------|----------|---------------|-------|-------|
|          | LT TH          |         | LT Th                                 |        | LT      | TH RT    | ĽŢ.           | TH    | RT    |
| EXISTING | 754 84         | 0 0     | 0 93                                  | 7 313  | 245     | 1 489    | 0             | 0     | 0     |
| AMBIENT  |                |         | · · · · · · · · · · · · · · · · · · · |        | i       |          |               |       |       |
| RELATED  |                |         | 1                                     |        | Ì       |          |               |       |       |
| PROJECT  | 1              |         | i                                     |        | i       |          |               |       |       |
| TOTAL    | 754   84       | 0 0     | 0   93                                | 7 313  | 245     | 1 489    | 0             | 0     | 0     |
|          | <b>ላ ቇ</b> ዯ 🚓 | 8 10 44 | 4 6 4 6                               | 货币钟    | 4 8 9   | £ 6 0 40 | <b>ፋ</b> ታ የ  | ፈ የ   | p e   |
| LANE     | 2   0   2   0  | 0 0 0   | 0   0   2   0                         | 0110   | 0 1 1 0 | 0 0 1 0  | 0 0 0         | 0 0   | 0     |
|          | Phasing        | RTOR    | Phasing                               | RTOR   | Phasing | RTOR     | Phasing       | 1     | RTOR  |
| SIGNAL   | Prot-Fix       | Auto    | Perm                                  | Âuto   | Perm    | Auto     | <none></none> |       | none> |

| iorth/South Critical Movemer |                                                | (\$/B)<br>(E/B)                                                                                       |                                                                                                | · · · · · · · · · · · · · · · · · · ·                                                                                     |
|------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|                              |                                                |                                                                                                       |                                                                                                |                                                                                                                           |
|                              |                                                |                                                                                                       |                                                                                                |                                                                                                                           |
| rm                           | L                                              | J                                                                                                     | 0.91 - 1.00                                                                                    | E                                                                                                                         |
| eft Volume                   | B: 415                                         |                                                                                                       | 0.81 - 0.90                                                                                    | D                                                                                                                         |
| han                          | A: 420                                         |                                                                                                       | 0.71 - 0.80                                                                                    | c                                                                                                                         |
| 5,                           | NorthBound                                     | 2                                                                                                     | 0.61 - 0.70                                                                                    | в                                                                                                                         |
|                              | 1 1                                            |                                                                                                       | 0.00 - 0.60                                                                                    | A                                                                                                                         |
| EastBound                    | 1 ^                                            | WestBound                                                                                             | V/C RATIO                                                                                      | LOS                                                                                                                       |
|                              | B:                                             | }                                                                                                     |                                                                                                |                                                                                                                           |
|                              | A: 469                                         |                                                                                                       |                                                                                                |                                                                                                                           |
|                              | EastBound  A: 0    B: 0    krougtvRight Volume | EsstBound A: 458 B: 0  EsstBound A: 0  B: 0  NorthBound A: 420  krough/Right Volume ett Volume B: 415 | A: 450 B: 0  WestBound A: 459 B: 245  NorthBound A: 420  krough/Right Voture ett Votume B: 415 | A: 450 B: 0 WestBound V/C RATIO A: 0 A: 489 B: 245 0.60 - 0.60 B: 245 0.71 - 0.80  Arough/Right Votume B: 415 0.81 - 0.90 |

1618\_W68



N/S

AMBIENT RELATED

PROJECT

TOTAL

LANE

SIGNAL

AM/PM:

COUNT DATE:

Figueroa St

Comments:

ላ ያ 수 ጴ ፍ ፆ ቀ ላ ያ 수 ጴ ፍ ፆ ቀ 1:0301000,11020100

Phasing

Prof.Var

North/South Critical Movements = B(N/B) + A(S/B) West/East Critical Movements # A(W/B) + B(E/B) V/C = 170 + 392

RTOR

Auto

A: 182 B:

Phasing

Critical Movements Diagram

A = Adjusted Through/Right Volume B = Adjusted Left Volume \* = ATSAC Benefit

Prot-Var

WIE-

STUDY DATE:

170 1045 112 101 1013 162 136 812 233

RTOR

Áuto

392

NORTHBOUND SOUTHBOUND

Jefferson Bi

1 0 2 0 1 0 0

348

B: 136

+ 348 + 168 × 0,714

RTOR

Auto

Phasing

Prot-Var

168 515 | 267

RTOR

LOS

Phasing

Prot-Var

V/C RATIO

0.00 - 0.60

0.61 - 0.70 0.71 - 0.80

0.91 - 1.00

LOS = C

GROWTH FACTOR:

#### INTERSECTION DATA SUMMARY SHEET

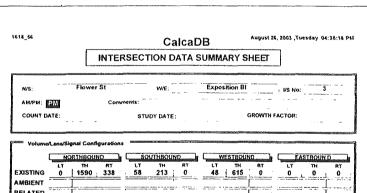
|             | THE CONTRACT OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY O |           |          | and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N/S:        | Figueroa St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W/E:      | Adams Bl | US No: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| амем: 📆     | Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| COUNT DATE: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UDY DATE: | GROWTH F |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|          | NO     | THBOU      | Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market | Managara Control | итнвои                                       | TTHE RESIDENCE CO. 15 | PHONE PARTY OF | YESTBO |         | 1000000 | ASIBOL     | nonononomica. |
|----------|--------|------------|-----------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------|-----------------------|----------------|--------|---------|---------|------------|---------------|
| EXISTING | 198    | TH<br>1629 | 125                                                                                                             | 102              | 1032                                         | 126                   | 115            | : 122  | 8 T 351 | 98      | 902        | 149           |
| AMBIENT  |        |            |                                                                                                                 |                  |                                              |                       | 2.424          |        |         | 22      |            | Ţ             |
| RELATED  | Ι.     |            |                                                                                                                 |                  |                                              |                       |                |        |         |         |            |               |
| PROJECT  | J      |            |                                                                                                                 |                  |                                              |                       |                |        |         |         |            | 1             |
| TOTAL    | 198    | 1629       | 125                                                                                                             | 102              | 1032                                         | 126                   | 115            | 1228   | 351     | 98      | 902        | 149           |
| LANE     | 4 6 4  | 4 4        | h 4h                                                                                                            | 4 6              |                                              | }                     | 4 8            |        | G # 44  | 4 8     | 수 <u>숙</u> | 4             |
| LANC     | 1.01.  | 1011       | 1010                                                                                                            | CILOI            | 2 0 0                                        |                       |                | LLI    | -3-110, | 110     | 1110       | 1,010         |
|          | Phasin | g F        | TOR                                                                                                             | Phasin           | g :                                          | RTOR                  | Phas           | kng    | RTOR    | Phas    | ing        | RTOR          |
| SIGNAL   | Perm   |            | luto                                                                                                            | Pem              | <u>,                                    </u> | Auto                  | Per            | mi ∃⊟  | Auto    | Per     | m          | Auto          |

| Critical Movements Diagram ************************************   | SouthBound A: 516 B: 102 | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |             |     |
|-------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|
| EastBound                                                         | ^                        | WestBound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V/C RATIO   | LOS |
| A:                                                                | 1                        | A: 614                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00 - 0.60 | A   |
| B: 54                                                             | <br>  NorthBound         | B: 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.61 - 0.78 | в   |
|                                                                   | A: 439                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.71 - 0.80 | С   |
| A = Adjusted Through/Right Volume<br>B = Adjusted Left Volume     | B: 198                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.81 - 0.90 | D   |
| * # ATSAC Benefit                                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.91 - 1.00 | Ε   |
| Results North/South Critical Movement West/East Critical Movement |                          | S/B)<br>E/B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |     |
| V/C = 198                                                         |                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Los =       | D   |

1618\_56

August 26, 2003 ,Tuesday 04:38:18 PM CalcaDB


### INTERSECTION DATA SUMMARY SHEET

| N/S:        | Figueroa St | W/E:        | Exposition BI | 1/S No:    | 4 |
|-------------|-------------|-------------|---------------|------------|---|
| АМ/РМ: ₽М   | Comments    | :           |               |            |   |
| COUNT DATE: |             | STUDY DATE: | GROW          | TH FACTOR: |   |

|          | NORTHE         |        | SOUTH       | BOUND  | L WES        | IBOUND y     | EAS          | TROUND    |
|----------|----------------|--------|-------------|--------|--------------|--------------|--------------|-----------|
|          | LT T           |        |             | H RT   | LT           | TH RT        | LT           | TH RT     |
| EXISTING | 130 78         | 1 28   | 165 10      | 72 346 | 0 _          | 878 315      | 366          | 746 237   |
| AMBIENT  | 1              |        |             |        | - 1          | 2            |              |           |
| RELATED  |                |        | i           |        | i            |              |              | i         |
| PROJECT  | T              |        | T.          | 11 7   | Ĵ            |              |              | j         |
| TOTAL    | 130 78         | 1 28   | 165 10      | 72 346 | ō            | 878 315      | 366          | 746   237 |
|          | 4 <i>P</i> + 2 | A + 40 | (A) A (A) S | 44 (4) | <b>6</b> A A | <u>ሐ</u> ቁ ቁ | <b>ፋ</b> ታ ታ | £ 6 # 6   |
| ANE      | 1030           |        | 10 10       | 1 8 0  | 0 0 3        | 10 0 1 10 T  | 2 0 3        | 0 1 0     |
|          | Phasing        | RTOR   | Phasing     | RTOR   | Phasing      | RTOR         | Phasing      | RYOR      |
| SIGNAL   | Perm           | Auto   | Perm        | Auto   | Prot-Var     | Auto         | Prot-Va      | r Auto    |

|              | V/C =13                    | 6 + 709 + 21.<br>1375 | 5 <u>281</u> # 0.665 | LOS *       | E   |
|--------------|----------------------------|-----------------------|----------------------|-------------|-----|
|              | West/East Critical Movemen |                       | £/8)                 |             |     |
|              | Horth/South Critical Movem | A + (B/M)B = 21ns     | 8/8)                 |             |     |
| - Results    |                            |                       |                      |             |     |
| · = ATSAC B  | ienefit                    | L                     |                      | 0.91 - 1.60 | E   |
| B = Adjustee | l Left Volume              | B: 130                |                      | 6.81 - 0,80 | D   |
| 5 o 6 diu-t  | i Through/Right Volume     | A: 202                |                      | 0.71 - 6.60 | C   |
|              | L                          | NorthBound -          |                      | 0.81 - 0.70 | 8   |
|              | B: 201                     |                       | B: 0                 | 0.60 - 0,60 | A   |
|              | A: 246                     | Δ                     | WestBound<br>A: 315  | V/C RATIO   | LOS |
|              |                            | B: 165                |                      |             |     |
|              |                            | A: 709                |                      |             |     |
|              |                            | SouthBound            | 1                    |             |     |

Does not appear to have ATSAC



| PROJECT   | T                                           | Property and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the s |                                                       | *********** | Tt — j                                        |
|-----------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------|-----------------------------------------------|
| TOTAL     | 0 1590 338                                  | 58 213 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 48 615 0                                              | 0 (         | ) [ 0 ]                                       |
| LANE      | Phasing RTOR                                | 4 5 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 今 今 会 会 声 等<br>「1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4 A A A     | RTOR                                          |
| SIGNAL    | Split <none></none>                         | Split <none></none>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Perm <none></none>                                    | · naswy     | NION.                                         |
|           |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |             |                                               |
| Celibra   | Movements Diagram                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |             | Way-Way-day-day-day-day-day-day-day-day-day-d |
| 0,,,,,,,  | motorium orași ani                          | SouthSound -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                     |             |                                               |
|           |                                             | A; 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |             |                                               |
|           |                                             | 8: 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |             |                                               |
|           | EastBound A: 0                              | - Ι Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WestBound<br>A: 332                                   | V/C RATIO   | LOS                                           |
|           | 8: 6                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8: -41                                                | 03.6 - 00.6 | A                                             |
|           | L                                           | NorthBound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       | 0.61 - 0.70 | 8                                             |
|           |                                             | A: 398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | 8.71 - 0.80 | c                                             |
| 8 · Adjus | led Through/Right Volume<br>led Left Volume | 8; Ö                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | 0.81 - 0.80 | D                                             |
| " " ATBAC | : Benedit                                   | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       | 0.04 4.68   |                                               |

L08 - A \*1475

#### INTERSECTION DATA SUMMARY SHEET

| Commence of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Pa | Total residence of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second | TO STREET STREET |         |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|----------|
| N/S:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Flower St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | W/E:             | 37th St | VS No: 5 |
| ам/РМ: 📆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |         |          |
| COUNT DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STUDY DATE:      | GROWTH  | FACTOR:  |

| Volume   | /Lane/Signa | i Configurations |          |               | MINING THE RESERVE THE                 | HARMON OF THE RESIDENCE | Distriction of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Co | (A-10-10-10-10-10-10-10-10-10-10-10-10-10- |  |
|----------|-------------|------------------|----------|---------------|----------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|
|          | MORI        | NORTHBOUND       |          | SOUTHBOUND    |                                        | BOUND 3                 | EASTBOUND :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |  |
| l        | LY          | TH RY            | LT       | TH RY         | LT                                     | TH RT                   | LT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TH AT                                      |  |
| EXISTING | 0           | 0 152            | 741      | 966 0         | 0                                      | 0 0                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 629 11                                     |  |
| AMBIENT  | T           |                  |          |               |                                        |                         | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |  |
| RELATED  |             |                  |          |               |                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |  |
| PROJECT  | - Î         |                  |          |               | ************************************** |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |  |
| TOTAL    | 0 ]         | 0 152            | 741      | 966 0         | 0                                      | 0   0                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 629 11                                     |  |
| LANE     | 4 A A       | € 6 P H          | 210 2    | A 4 1 44      | 4 A A                                  | 6 6 P PP                | 4 P 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A & P 44<br>0 1 1 0 0                      |  |
| l        | Phasing     | RTOR             | Phasing  | RTOR          | Phasing                                | RYOR                    | Phasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RTOR                                       |  |
| SIGNAL   | Perm        | OLA              | Prot-Fix | <none></none> |                                        |                         | Penn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Auto                                       |  |
| i e      |             |                  |          |               |                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |  |

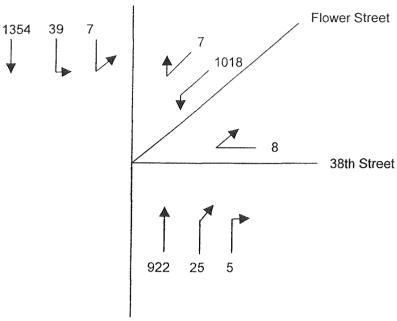
| Critical Movements Diagram  EastBound  A: 128  B: 9  A = Adjusted Through/Right Volume  B = Adjusted Left Volume  - ATSAC Benefit | SouthBound A: 483 B: 408  MorthBound A: 84 B: 0 | WestBound A: 0 B: 0 |         | V/C RATIO<br>0.00 - 0.60<br>0.61 - 0.70<br>0.71 - 0.80<br>0.61 - 0.90<br>0.91 - 1.00 | <u>1,08</u> A B C D |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------|---------|--------------------------------------------------------------------------------------|---------------------|
| Results  North/South Critical Movement  West/East Critical Movement                                                               |                                                 | S/B)<br>E/B)        |         |                                                                                      | · · · · · · ·       |
| V/C =84                                                                                                                           | + 408 + 0                                       | + 128               | = 0.365 | ŁOS≖                                                                                 | A                   |

Devisiones at Command (72)

INTERSECTION DATA SUMMARY SHEET

| N/S:        | Figueroa St | W/E:        | State Dr | WS No:      | 6 |
|-------------|-------------|-------------|----------|-------------|---|
| AM/PM:      | Comme       | nts:        |          |             |   |
| COUNT DATE: |             | STUDY DATE: | GROV     | VTH FACTOR: |   |
|             |             |             |          |             |   |

| NORTHBOUND |                                           | L SOUTHE                                                                         | SOUTHBOUND                     |              | IBOUND                           | EASTBOUND                                  |                                                                                                                                                                                                                                                                                  | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------|-------------------------------------------|----------------------------------------------------------------------------------|--------------------------------|--------------|----------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LT TI      | 4 RY                                      | LT T                                                                             | H RT                           | LT           | TH RT                            | LY                                         | TH                                                                                                                                                                                                                                                                               | RT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6 84       | 3 0                                       | 0 13                                                                             | 08 4                           | 0            | 0 0                              | 8                                          | Ô.                                                                                                                                                                                                                                                                               | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1          |                                           | 1                                                                                |                                | T            |                                  | - =                                        |                                                                                                                                                                                                                                                                                  | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | F-41 - F :                                | 5 B 15                                                                           | 1.5                            | · i · · ·    |                                  | • •                                        |                                                                                                                                                                                                                                                                                  | ì                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| san alpha  | C 27                                      | - +                                                                              |                                |              |                                  |                                            |                                                                                                                                                                                                                                                                                  | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| l          | م با سپرتر                                | بالمام ماليان                                                                    |                                |              |                                  |                                            |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6   84     | 3   ô                                     | 0   13                                                                           | 08 4                           | 0 1          | 0 0                              | R                                          | 0                                                                                                                                                                                                                                                                                | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1          | . <u>.</u>                                | 2, 3.02                                                                          | 75. /                          | ٠. ١         |                                  | •                                          | ·                                                                                                                                                                                                                                                                                | 1 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6 4 4 4    | 4 4 44                                    | 6 4 4 4                                                                          | 4 4 4                          | 6 4 4        | 4444                             | 6 0 0                                      | 4 4                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 41 1 44  | <u> </u>                                  | 49 1                                                                             | 3                              | 4            | <u> 43</u> 4 " "                 |                                            |                                                                                                                                                                                                                                                                                  | , 1"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0 10 2 0   | 10.00                                     | olotzic                                                                          | olololo                        | 0 010        | 0:01010                          | 0 0 0                                      | 0 0                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Phasing    | RTOR                                      | Phasing                                                                          | RTOR                           | Phasing      | RTOR                             | Phasing                                    |                                                                                                                                                                                                                                                                                  | RTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Perm       |                                           | Perm                                                                             |                                | -            |                                  | Perm                                       |                                                                                                                                                                                                                                                                                  | Auto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | 5 84<br>6 84<br>6 84<br>6 84<br>6 0 0 2 0 | 17 TH RY 6 843 0 6 843 0 6 843 0 6 843 0 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 17 7H NY CT T T 6 843 0 0 13 C | 17   TH   RT | TY   TH   RY   CY   TH   RY   CY | TT   TH   RT   CT   TH   RT   CT   TH   RT | 17   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   TH   RT   TH   RT   TH   RT   RT | 17   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   RT   CT   TH   TH   RT   CT   TH   TH   RT   CT   TH   TH   RT   CT   TH   TH   TH   TH   TH   TH   T |


|                                                                              | A: 436                 |                     |                                         |               |
|------------------------------------------------------------------------------|------------------------|---------------------|-----------------------------------------|---------------|
| EsstBound A: 27   B: 8                                                       | Δ                      | WestBound A: 0 B: 0 | V/C RAYIO<br>0.00 - 0.60<br>0.61 - 0.70 | LOS<br>A<br>B |
| A = Adjusted Through/Right Volume B = Adjusted Left Volume ° = ATBAC Benefit | NorthBound A: 422 B: 0 |                     | 0.71 - 0.80<br>0.81 - 0.90              | <b>c</b>      |
| Results North/South Critical Movement West/East Critical Movement            |                        |                     | 0.91 - 1.00                             | E             |

Developed by Chun Wong 12/5-

1618\_56

## Intersection # 7 Figueroa & Flower & 38th Weekday Scenario - Existing Conditions





#### **Critical Movement Analysis**

Phase 1 Critical Moves

$$v/c = \frac{(461 + 46) + (513 - 8) + 8}{1425}$$

0.716 (LOS C)

Phase 2 Critical Moves

BNAL

emutoV IngkRhgucust batzughA - A emutoV fed Lest worme • Adjusted DastA - •

<u>89</u> :8 309

chuA Mg8

ROTA gelss#4

Akc = 234 +

PEREST CHREST MONORPOOTS . VINE) . E(E/E) Horizuscuth Critical Movements a A(MB) \* A(8/B)

+ 928 + 196

8: 22

meq

6ET 787 88 TE 909 9E 18 201 ETF 98 139

otuA

яотя

8: 234 724

190

:4

Mq8

ona se

o • 603

**702** 

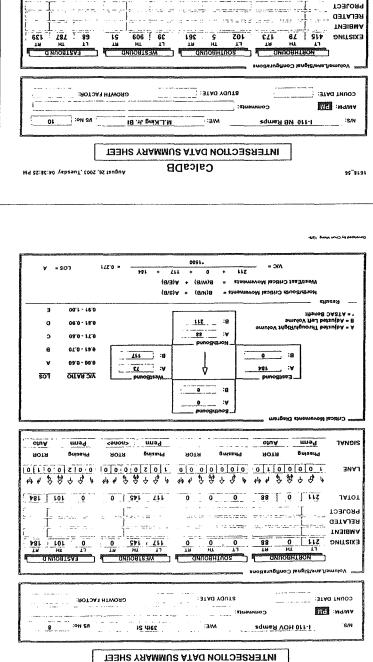
otuA

яотя

6.91 - 16.0

68.9 - 18.6

08.9 - 17.6 07.0 - 19.0


VIC RATIO

mnag

Butasita

| Morth/South Critical Movements = Rifulls + A(R/R)   Morth/South Critical Movements = Rifulls + 824 + 347   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.   Ref.    |                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South South   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound   South Bound      | A = A                                                  |
| Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col   Col    | EXIST<br>BIBMA<br>RELAT                                |
| INTERSECTION DATA SUMMARY SHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95_8191<br>32M                                         |
| Mostlises Chilcal Movements       8 + 670 + 35 + 44         Westless Chilcal Movements       8 + 670 + 35 + 44         *** Chilcal Movements       *** Chilcal Movements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |
| Critical Movements Diagram  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: 670  A: | A<br>A                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | raixa<br>Bama<br>Ajar<br>Lori<br>Atot<br>Atot<br>Bimaj |
| THE DATE: STUDY DATE: CROWTH FACTOR:  Figure 21 WS No. 9  Figure 22 WING DATE: CROWTH FACTOR:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | COL                                                    |

INTERSECTION DATA SUMMARY SHEET



Mrq 25:80:30 yabsauf, Coos, 85 JauguA

CalcaDB

95 8191

Comments:

232 | 4 | 128 | 14 | 20 | 19

RTOR

Perm Auto Perm

381

18

ne/Lane/Signal Configurations \*\*\*\*\*

m+ - 1 - 1

Phasing

A = Adjusted Through/F B = Adjusted Left Volum = ATSAC Benefit

INTERSECTION DATA SUMMARY SHEET

STUDY DATE:

NORTHBOUND SOUTHBOUND WESTBOUND

ላ ድ ት ጪ ዬ ፆ ቀቀ ላ ድ ት ጪ ዬ ፆ ቀቀ ላ ድ ት ጪ ዬ ፆ ቀ ፲፻፬፻፬ 17010 110110 11010 11010 11010

RTOR

Auto

128

232

\*1500

Phasing

8: 14

West/East Critical Movements = B(W/B) + A(E/B) V/C = 232

M.L.King Jr. BI

300 | 1630 14

548

Phasing

Perm

RTOR

Auto

186

958 | 186

RTOR

Auto

<u>Los</u>

-

3

Phasing

Perm

V/C RATIO

0.00 - 0.60

0.61 - 0.70

0.71 - 0.80

0.81 - 0.90 0,91 - 1.00

#### INTERSECTION DATA SUMMARY SHEET

|            | Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of th |            |  |                 |             |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|-----------------|-------------|
| N/\$:      | Figueroa St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W/E:       |  | M.L.King Jr. BI | VS No: 12   |
| AM/PM: PM  | Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |  |                 |             |
| COUNT DATE | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TUDY DATE: |  | GRON            | NTH FACTOR: |

|          | NORTH   | BOUND   | Lsoul   | HBOUND     | # (    | ESTROUN | D.,,,,,,,,,,, | L. FA   | TBOUND    |
|----------|---------|---------|---------|------------|--------|---------|---------------|---------|-----------|
|          |         | TH RT   | LT      | TH RT      | LT     | TH      | RT            | LT      | TH RT     |
| EXISTING | 91 5    | 56 82   | 181     | 1553 387   | 445    | 1594    | 81            | 112     | 943 ; 116 |
| AMBIENT  |         |         | 221     |            |        | Ţ.,     |               | :-7:    |           |
| RELATED  |         |         |         |            |        | _       |               | ,       | . 1.      |
| PROJECT  | <u></u> |         |         |            |        | _ ::1   | 1.2           |         | Ĭ         |
| TOTAL    | 91 5    | 56 82   | 181 : 1 | 1553   387 | 445    | 1594    | 81            | 112     | 943   116 |
|          | 4 6 4   | 海雷卢师    | 4 6 4   | 11 (       |        | 4 4 4   |               |         | 海岛户的      |
| LANE     | 1 0 2   | 0 1 0 0 | 11012   | 0 1 0 0    | 1 [0]  | 200     | 0 0           | 11012   | Inijiata  |
|          | Phasing | RTOR    | Phasing | RTOR       | Phasis | ng F    | ROF           | Phasing | RTOR      |
| SIGNAL   | Perm    | Auto    | Perm    | Auto       | Prot-V | ar i    | Auto          | Prot-Va | r Auto    |

| Results                                                                                          | A = Adjusted Throught/Right Volume B = Adjusted Lett Volume "= ATSAC Benefit | South Bound   A: 647     B: 181     A | WestBound A: 555 B: 645 | V/C RATIO<br>0.56 - 9.60<br>0.51 - 0.70<br>0.71 - 0.80<br>0.81 - 0.90<br>0.91 - 1.00 | 1.03<br>A<br>B<br>C<br>D |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------|-------------------------|--------------------------------------------------------------------------------------|--------------------------|
| North/South Critical Movements   B(N/B)   A(S/B)  West/East Critical Movements   B(W/B)   A(E/B) | North/South Critical Movem                                                   |                                       | -                       |                                                                                      |                          |

1618\_56

1618\_56

N/S:

AMBIENT

RELATED PROJECT

TOTAL

LANE

SIGNAL

AM/PM: COUNT DATE:

CalcaDB

August 26, 2003 ,Tuesday 04:38:25 PM

#### INTERSECTION DATA SUMMARY SHEET

| <b>N/</b> S: | Vermont Av | W/E:        | 39th St | I/S No: 15 |  |
|--------------|------------|-------------|---------|------------|--|
| амирм: 📆     | Comme      | ents:       |         |            |  |
| COUNT DATE:  |            | STUDY DATE: | GROW    | TH FACTOR: |  |
|              |            |             |         |            |  |

| Volume   | /Lane/Signa        | ł Configuration |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | DATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY |                |              | - Addition No. |
|----------|--------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|----------------|
|          | thusealessamphill. | нволир          | A SOUTH COMMENSAGE AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLU | HBOUND          | a kindistronomi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IBOUND .       | Childhaman   | IBOUND.        |
| EXISTING | 40 1               | TH RT<br>881 7  | 4 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TH RT<br>502 46 | LT<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | тн ят<br>18 52 | 18           | тн ят<br>3 51  |
|          | 40 [               | 001             | .,. • 🚉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 302 46          | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 32          | 40           | 3 31           |
| AMBIENT  |                    |                 | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |              | į              |
| RELATED  |                    |                 | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |              | İ              |
| PROJECT  | - T.               | error same      | . i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |              |                |
| TOTAL    | 40                 | 881   7         | 4 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 502 46          | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18 52          | 48           | 3   51         |
|          | <b>ፋ</b> ል ተ       | 金金 户师           | <b>ዓ</b> ታ 수                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>最货户钟</b>     | ቁ ታ 수                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 金仓户钟           | <b>ዓ</b> ታ ት | £ 6 0 4        |
| ANE      | 1 0 1              | 0 1 0 0         | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 1 0 0         | 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1000           | 0 0 0        | 1000           |
|          | Phasing            | RTOR            | Phasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RTOR            | Phasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RTOR           | Phasing      | RTOR           |
| SIGNAL   | Perm               | Auto            | Penn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Auto            | Perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Auto           | Penn         | Auto           |

| V/C =                                         | 0 + 774 + 84<br>*1860 | + 48      | a 0.668    | LOS =  | A   |
|-----------------------------------------------|-----------------------|-----------|------------|--------|-----|
| West/East Critical Moveme                     | nts = A(WW3) + 84     | E/8)      |            |        |     |
| North/South Critical Moves                    | nents = B(N/B) + A    | 8/B)      |            |        |     |
| Results                                       |                       |           | 0.91       | - 1.60 | E   |
| 8 = Adjusted Left Vokene<br>* = ATSAC Benefit | 8: 40                 |           |            | - 0.80 | -   |
| A = Adjusted Through/Right Volume             | A: 444                |           |            |        | D   |
| **************************************        | NorthBound            |           |            | 0.80   | c   |
| 8: 48                                         | 1                     | B: 25     | 0.61       | - 8.70 | В   |
| A: 102                                        | 1 1                   | A: 95     | 9.00       | 0.60   | A   |
| EastBound                                     |                       | WestBound | <u>y/c</u> | RATIO  | LOS |
|                                               | B: 4                  |           |            |        |     |
|                                               | A: 774                |           |            |        |     |
|                                               | SouthBound -          |           |            |        |     |

#### 1618\_56 August 26, 2003 ,Tuesday 64:38:25 PM CalcaDB INTERSECTION DATA SUMMARY SHEET

| N/S:        | Vermont Av | W/E:        | <br>M.L.King | JI. DI | n - 1.00 m | VS No:  | 14 |  |
|-------------|------------|-------------|--------------|--------|------------|---------|----|--|
| АМ/РМ:      | Comments   |             |              |        | -          |         |    |  |
| COUNT DATE: |            | STUDY DATE: |              | GF     | HTWO:      | FACTOR: |    |  |
|             |            |             | <br>         |        |            |         |    |  |

| Acquisite Acquisite | /Lane/Signal C | enodarugilno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | COMPANY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR |                     | Vice control and the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the | ************************************** |
|---------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                     | C HORTHE       | Service Street, Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Service Servic | - Secretary and Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of t | HBOUND I           | - Total Consumer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SIBOUND             | LEASIB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - compromission and a                  |
| EXISTING            | 88   59        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 214 ; 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TH RT<br>233 : 100 | 96 f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TH RT<br>1358 : 189 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | н ят<br>926 { 141 ∣                    |
| AMBIENT             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | ' rumanization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ti i                                   |
| RELATED             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 12 . 140.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |
| PROJECT             | Ι              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | د آ                                    |
| TOTAL               | 88 59          | 1 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 214 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 233 100            | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1358   189          | 61 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26 141                                 |
|                     | 4 6 4 6        | Q 0 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>4</b> # 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>ፍ</u> ፍ ል ቀ     | 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44分益分               | 4 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 42 44 42                             |
| LANE                | 1 0 1 0        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 201100              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 1 0 0                                |
|                     | Phasing        | RTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Phasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RTOR               | Phasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RYOR                | Phasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RYOR                                   |
| SIGNAL              | Perm           | Auto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Prot-Fix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Auto               | Perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Auto                | Perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Auto                                   |
|                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |

| Critical Movements Diagram        | 8euthBound A: 667    |                 |             |     |
|-----------------------------------|----------------------|-----------------|-------------|-----|
| EsstBound                         |                      | WestBound       | VIC RATIO   | LOS |
| A: 389<br>B: 61                   |                      | A: 516<br>B: 96 | 03,0 - 0,60 | A   |
| <u> </u>                          | L'                   |                 | 0.61 - 0.70 | 8   |
| A = Adjusted Through/Right Volume | A: 318               |                 | 8.71 - 0.80 | c   |
| B = Adjusted Left Velume          | B: 88                |                 | 9.81 - 6.96 | 0   |
| · • ATEAC Besett                  |                      | ·····           | e.81 - 1,60 | E   |
| Horth/South Critical Moveme       | 1946s - B(N/B) + A(  | 8/B)            |             |     |
| West/East Critical Mevement       | b - A(WW) + B(       | E/S)            |             |     |
| V/C =                             | ◆ 667 ◆ 814<br>*1428 |                 | L08 °       |     |

TANOIS

ENAL

EXISTING

соинт рате:

MG :MA/MA

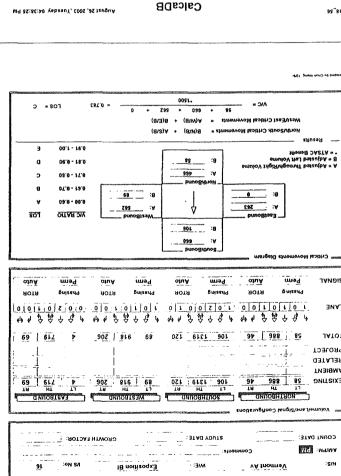
e A Agusted Through Then Volume B = Agusted Left Volume A ATBAC Benefit

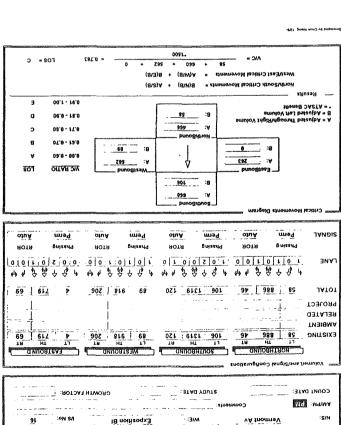
otuA

ROTA

| g »son a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mostraeuth Critical Movements = E(WB) + (A(EB)  Westraes Critical Movements = E(WB) + A(EB)  Westraes = 245 + 252 + 242 = 244  SEAF- = 244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A 03.0 - 00.0 B 07.0 - 13.0 C 08.0 - 17.0 C 08.0 - 17.0 C 08.0 - 17.0 C 08.0 - 18.0 C 08.0 - 18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Crifical Movements Okagram    Social Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PROJECT 100   1050   250   111   1183 91 323   1054 163 163 163 163 163 163 163 163 163 163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| IFI EFS ZOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | METATED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1/5 No. 19<br>FACTOR:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WE: Vermont Av WIE: Jefferson BI ANJPH: PRA Onminents: GROWTH COUNT DATE: GROWTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 9 25:80:40 Yebsauf, COOS, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TOTAL SOLUTION DATA SUMMARY SHEET INTERSECTION DATA SUMMARY SHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| WE ALL T T PR MILE TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TO |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CO2 * C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 192'0 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| O = CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AVC =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| COS = CO   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | See Ebound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| A 03.0 - 00.6<br>G 07.0 - 13.6<br>D 08.0 - 17.8<br>G 00.1 - 18.0<br>J 00.1 - 18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   Simple   S |

 EXISAINC
 102
 800
 8e
 14e
 13t
 113
 115
 120
 126
 13t
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e
 13e


INTERSECTION DATA SUMMARY SHEET


CalcaDB

: STAG YOUTS

Normandie Av vAE: M.L.King Jr. BI

поинтиор солтивойир





95 8191

JATOT РКОЈЕСТ GETALED

TNBIBMA

Volume/Lane/Signal Conngurations

сопид руде:

MILEN :

AIR 25:80:50 Yabsouf, COOS ,35 tauguA

2 - SO1

яотя

66.1 - 18.6

66.6 - 18.8

03.0 - 00.0

OTTAN 2NY

Buysaya

186

Busseya

#48848 #48848 #48848 #48848 #48848 #48848 #4888 #4888 #4888 #4888 #4888 #4888 #4888 #4888 #4888 #4888 #4888 #4

яотя

8 + 785 + 287 + 609

129

69 :8 191

otuA mraq

8 492824

Comments:

яотя

100 993 49 59 65 15 935 756 00F JATOT | 128 | 8 | 52 | 128 | 59 | 129 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 12

STUDY DATE:

INTERSECTION DATA SUMMARY SHEET

Comments: Exposition BI Is No. 18

MOGRESOS CURCER BROADWING ... WILMR) A SICIR! HOLERSONG CHEESI MORSHOUS & BILLEY & WISHE)

INTERSECTION DATA SUMMARY SHEET CalcaDB

95 8191

GROWTH FACTOR

AM/PM: PM

AMBIENT RELATED PROJECT TOTAL

LANE

Vermont Av

Ādams BI

LT TH RT 120 918 123

120 918 123

621

120

Auto

Phasing

Perm

INTERSECTION DATA SUMMARY SHEET

STUDY DATE:

Auto

B: 121

83

V/C = 83 + 645 + 521 + 115 = 0.922

\*1375

Prot-Fix

West/East Critical Movements \* A(W/B) + B(E/B)

83 936 63 121 1219 71

83 936 63 121 1219 71

Auto

EastBound
A: 442
B: 115

Perm

A = Adjusted Through/Right Volume

\* = Adjusted Left Volume

\* = ATSAC Benefit

I/S No:

<u>Lт</u> тн 115 798

Phasing

Prot-Fix

V/C RATIO

0.60 - 0.60

0.81 - 0.90 9.81 - 1.00 RTOR

Auto

<u>Los</u>

LOS \* E

GROWTH FACTOR:

#### INTERSECTION DATA SUMMARY SHEET

| Mrs:        | Normandie Av | W/E:        | Jefferson BI | VS No:    | ŻÓ |
|-------------|--------------|-------------|--------------|-----------|----|
| амин: П     | Comment      | s:          |              |           |    |
| COUNT DATE: |              | STUDY DATE: | GROWT        | H FACTOR: |    |

|          | NORT    | HBOUND. |          | SOUTH | GUND    | <u> </u> | ESTROU               | ND J | FAS     | TROUND. |               |
|----------|---------|---------|----------|-------|---------|----------|----------------------|------|---------|---------|---------------|
|          | LT      |         | <u> </u> |       |         | LT       | TH                   | RT   | LT      | TH      | RT            |
| EXISTING | 104     | 894 1   | 01 7     | 5 11  | 72 : 51 | 238      | 813                  | 105  | 65      | 507     | 172           |
| AMBIENT  |         |         |          |       |         |          | <u> </u>             | 1    |         |         |               |
| RELATED  | I       |         |          |       | 20      |          |                      |      |         |         |               |
| PROJECT  |         |         | -        |       |         |          |                      | ł.,  |         | ï. T    |               |
| TOTAL    | 104     | 894 10  | 01 7     | 5 11  | 72 51   | 238      | 813                  | 105  | 65      | 507     | 172           |
| LANE     | 4 p 4   |         |          |       | 4 p 4   |          | 今 <sub>年</sub><br>10 | i}   | 1 0 2   | 0 0     | p 6p<br>1   0 |
|          | Phasing | RTO     | R Ph     | asing | RTOR    | Phasi    | ng                   | RTOR | Phasing | RTC     | OR            |
| SIGNAL   | Perm    | Auto    | , P      | em    | Auto    | Pen      | m                    | Auto | Perm    | Au      | ito -         |

| Critical Movements Diagram announcement    | 8outhBound A: 612 B: 75 | and a second second second second second second second second second second second second second second second |             |     |
|--------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------|-------------|-----|
| A: 254                                     | ^                       | WestBound<br>A: 459                                                                                            | V/C RATIO   | LOS |
| A:<br>B:                                   | ĺ                       | 8:                                                                                                             | 0.60 - 0.60 | A   |
| <u> </u>                                   | North-Bound             |                                                                                                                | 8.61 - 0.70 | 8   |
| A = Adjusted Through/Right Volume          | A: 498                  |                                                                                                                | 0.71 - 0.80 | c   |
| B = Adjusted Left Volume * = ATSAC Benefit | B: 104                  |                                                                                                                | 0.81 - 0.90 | D   |
| - Results                                  |                         |                                                                                                                | 6.91 - 1.00 | Ε   |
| North/South Critical Moveme                | nts = B(N/B) + A(       | 8/8)                                                                                                           |             |     |
| West/East Critical Movement                | = A(W/B) + B(           | E/B)                                                                                                           |             |     |
| V/C = 104                                  | + 612 + 45:<br>*1500    | w 0.757                                                                                                        | LOS »       | С   |

Developed by Churi Wang 12/4-

1618\_56

August 26, 2003 ,Tuesday 04:38:25 PM

CalcaDB

August 26, 2003 ,Tuesday 04:38:25 PM

## CalcaDB August 26 INTERSECTION DATA SUMMARY SHEET

| N/S:        | Normandie Av | w/e:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Adams Bl | #S No:      |
|-------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|
| AMPH:       | Comments:    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |             |
| COUNT DATE: | STI          | UDY DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GROV     | VTH FACTOR: |
|             |              | CTATALAN CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA CANADA |          |             |

|          | C NO   | RTHROW | COUNTRACTOR | S. S.           | MIHBO | CONTRACTOR OFFI |   | L         | ESTRO | IND                  | 1 5E             | STROW        | 10           |
|----------|--------|--------|-------------|-----------------|-------|-----------------|---|-----------|-------|----------------------|------------------|--------------|--------------|
|          | LT     | TH     | RY          | LT              | TH    | RT              |   | LT        | TH.   | RT                   | LT               | TH           | RT           |
| EXISTING | 80     | 1048   | 113         | 183             | 1118  | 4 : 92          |   | 130       | 965   | 93                   | 120              | 720          | 85           |
| AMBIENT  |        |        |             | 1               |       | 1               |   |           | T     | <u></u> -            |                  |              | T            |
| RELATED  |        |        |             |                 |       |                 |   |           | -     |                      | Linear           | ;==          | Ť            |
| PROJECT  |        |        |             |                 |       |                 | - | .517.2175 | -     | -i                   | trase no<br>     |              | Ĺ.           |
| TOTAL    | 80     | 1048   | 113         | 183             | 118   | 92              | • | 130       | 965   | 93                   | 120              | 720          | 85           |
| LANE     |        |        |             |                 |       |                 |   |           |       | \$ # \$<br>1   0   0 | 4 6              |              |              |
| SIGNAL.  | Phasin |        | roa<br>Nuto | Phasi<br>Prot-l |       | RTOR<br>Auto    |   | Phasic    |       | RTOR<br>Auto         | Phasia<br>Prot-F | <del>-</del> | RTOR<br>Auto |

| Critical Movements Diagram                                    |                 |                 | COLUMN TO SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERV | delining and a supple |
|---------------------------------------------------------------|-----------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                                                               | SouthBound      | 1               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                                                               | A: 638          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                                                               |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                                                               | B: 183          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| EastBound A: 403                                              | Δ               | WestBound       | Y/C RATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 103                   |
| B: 120                                                        | Ī               | B: 130          | 0.60 - 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A                     |
|                                                               | •               |                 | 0.61 - 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                     |
|                                                               | HorthSound      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                                                               | A: 881          |                 | 0.71 - 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C                     |
| A = Adjusted Through/Right Volume<br>B = Adjusted Left Volume | B: 80           |                 | 0.81 - 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Đ                     |
| · • ATEAC Benefit                                             |                 |                 | 9.91 - 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E                     |
|                                                               |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| North/South Critical Moveme                                   |                 | •               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| West/East Critical Movement                                   | 1 = A(W/B) + B( | E/8)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| WC = 681                                                      | + 183 + 621     | 0 + 120 , 0.868 | LOS •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | £                     |
| WC =                                                          | 4376            | .— 6 4.500      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                     |

1618\_56

INTERSECTION DATA SUMMARY SHEET

N/S: Vermont Av W/E: I-10 EB Ramps NS No: 23

AM/PM: TAN Comments:

COUNT DATE: STUDY DATE: GROWTH FACTOR:

|          | C NO   | RTHBOU | NO. Ja   | 50     | UTHBOUN | Ď.  | Cw     | STROS | UND I           | CEAS                        | IBOUN | 0          |
|----------|--------|--------|----------|--------|---------|-----|--------|-------|-----------------|-----------------------------|-------|------------|
| !        | LT     | TH     | RT       | LT     | TH      | RT  | LY     | ΥH    | RT              | LT                          | TH    | RT         |
| EXISTING | . 0    | 1142   | 100      | 348    | 1063    | 0   | 0      | 0     | 0               | 478                         | 12    | 341        |
| AMBIENT  |        |        |          |        | T       |     |        |       |                 | - :                         | . 1   |            |
| RELATED  |        |        | 21 12.71 | 22. 7  | 7       |     |        | - '   | 7 4             |                             |       |            |
| PROJECT  |        |        | ÷        |        |         |     |        |       |                 |                             |       |            |
| TOTAL    | 0      | 1142   | 100      | 348    | 1063    | Ô   | 0      | 0     | 0               | 478                         | 12    | 341        |
| LANE     |        |        |          |        |         |     |        |       | € # #><br>ō o o | ቁ <sub>ቀ</sub> ት ተ<br>1 0 0 |       | 6 0<br>0 0 |
|          | Phasia | g (    | RTOR     | Phasin | g R     | TOR | Phasin | 8     | RTOR            | Phasing                     | ,     | RTOR       |
| SIGNAL   | Pem    |        | Auto     | Prot-F | ix A    | uto | ≤none  | >     | <none></none>   | Perm                        |       | Auto       |

| Critical Movements Diagram  EastBound  A: 333  B: 476                              | SouthBound A: \$32 B: 181 | WestBound A: 0 B: "0 | <u>V/C RATIO</u> 0.00 - 0.40 0.61 - 0.70  | LOS<br>A<br>B |
|------------------------------------------------------------------------------------|---------------------------|----------------------|-------------------------------------------|---------------|
| A = Adjusted Through/Right Volume<br>B = Adjusted Left Volume<br>* a ATSAC Benefit | NorthBound A: 571 B: 0    |                      | 0.71 - 0.80<br>0.81 - 0.90<br>0.81 - 1.00 | C<br>D<br>E   |
| Resetts North/Bowth Critical Movement West/East Critical Movement V/C = 571        | s = A(W/6) + B(           | E/8)                 | LO8 *                                     | 0             |

Devotoped by Chun Wong, 18

Brokest to One York 150

HAL

East Critical Movements . A(WWB) + A(E/B)

Prot-Fix Auto Perm Auto

яотя

B(NB) + V(SNB)

A: 458 B: 284

795

яотя

09.1 - 19.0

08.9 - 17.0 07.0 - 19.0

व्याका कर

яотя

340

otuA msq

яотя

| 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                            | · 如有杂离午会                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                   | SEC ZZII 0 18 HL 17 UNIOSHINOS                                    | WolumeA. ReneStepast Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -10 WB Ramps va No.; ZE GROWTH FACTOR:                            |                                                                   | NS: Normandie Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                   | CalcaDE<br>естом рта                                              | ez_ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| gostootta talaanaa ka ka ka ka ka ka ka ka ka ka ka ka k          |                                                                   | يوده و درسه بدوس ويهد                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (an                                                               | 888 + (8/N)8 = 2000<br>19 + (8/N)4 = 200<br>0 + 200 + 600<br>2011 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6.71 - 0.80 C<br>0.81 - 0.80 D                                    | 615 :A<br>0 :8                                                    | A * Adjusted ThroughVidght Volume B = Adjusted Left Volume - * A TASAC Benefit - * - Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| A 09.0 0.00 0.0 S  A 09.0 - 00.0 0 S  B 07.6 - 0.00 B             | SS: 282                                                           | beuo83ss3<br>38¢ :A<br>345 :8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                   | brinoErbros :A                                                    | Critical Movements Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0   0   1   1   0   0   0   0   0   0                             | 0 0 0 0 Z 0 1                                                     | LANE 0.0 2 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 49 4 5 \$ 4 4 5 4 4 5 5 4 5 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 3es   1000   0                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                   | 265 1000 0<br>LY TH RI<br>SOUTHBOUND                              | Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configurations   Volume/Lane/Signak Configura |
| . вомин гастов:                                                   | ents:<br>STUDY DATE:                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1-10 EB Ramps 124                                                 | M/E:                                                              | vA sibrarmoN :21N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

SZVL. √/C = 250 + 621 + 252 + WestEast Critical Movements = A(WIB) + A(E/B) North/South Critical Movements . B(N/B) + A(S/B) 00.1 - 19.0 B: 200 2/9 :W 01.0 - 19.0 <u> 191</u> :8 WestBound SSE :A 03.0 - 00.0 VIC RATIO 0 CHRICES WOASHIEUR DIPRIEM Prot-Fix SIGNAL яотя яотя buseud яотя Phasing Britsaria 0 [ 1574 277 LI ne et

INTERSECTION DATA SUMMARY SHEET

1-10 WB Ramps

STAG YGUTZ

нтиояэ

ON SA

Mq 25:80:40 yabzaul, 0005,25 fauguA

CalcaDB

vA InormeV

COUNT DATE: MYPM: TOTAL

> MIG 85:80:50 Yabseuf, COOK , SK lauguA 95 8191

INTERSECTION DATA SUMMARY SHEET CalcaDB

95 8191



#### INTERSECTION DATA SUMMARY SHEET

| N/S:        | Figueroa St · W/E: | Adams BI US No: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| амри: СА    | Comments:          | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |
| COUNT DATE: | STUDY DATE:        | GROWTH FACTOR:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Volume   | :/Lane/Signal C | Configurations |         | WALL DOGGER | CONTRACTOR AND AND AND AND AND AND AND AND AND AND | *************************************** | -       | VIII. VIII. WALLES      |
|----------|-----------------|----------------|---------|-------------|----------------------------------------------------|-----------------------------------------|---------|-------------------------|
|          | C NORTHB        | OUND           | SOUTHE  |             | WESTE                                              |                                         |         | BOUND T                 |
|          | LT TH           |                | LT n    |             | LT T                                               |                                         |         | TH RT                   |
| EXISTING | 204 192         | 21 131         | 107 12  | 10 · 130    | 122   12                                           | 68   604                                |         | 31 153                  |
| AMBIENT  |                 |                |         |             |                                                    | 1                                       |         | _L                      |
| RELATED  | 1               |                |         |             |                                                    | -1                                      |         | r                       |
| PROJECT  |                 |                |         | -12         | A. T. 1141                                         | * "   = -                               |         | -i -                    |
|          |                 |                |         |             |                                                    | 1                                       |         | 1.                      |
| TOTAL    | 204 192         | 21 131         | 107 12  | 10 130      | 122 12                                             | 68 604                                  | 148 9   | 31   153                |
| LANE     | 4 A A A         | 100            | 1 0 2 0 | G P 40      | 1020                                               | \$ (0 1 0                               | 1011    | 6 6 6 60<br>0 1 1 0 1 0 |
|          | Phasing         | RTOR           | Phasing | RTOR        | Phasing                                            | RTOR                                    | Phasing | RTOR                    |
| SIGNAL   | Perm            | Âuto           | Perm    | Auto        | Perm                                               | Auto                                    | Perm    | Auto                    |

| Critical Movements Diagram  EastBound  A: £42  B: 748  A = Adjusted Through/Right Volume  B = Adjusted Left Volume  * ATSAC Benefit | SouthBound   A: 665   B: 107 | WestBound A: 634 B: 122 | V/C RATIO<br>0.00 - 0.60<br>0.61 - 0.70<br>0.71 - 0.80<br>0.81 - 0.90<br>0.91 - 1.00 | LOS<br>A<br>B<br>C<br>D |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------|--------------------------------------------------------------------------------------|-------------------------|
| Results North/South Critical Movemen West/East Critical Movemen V/C = 20                                                            | ts = A(W/B) + B(             | E/B)                    | LOS ×                                                                                | E                       |

Developed by Chan Hong 124

1618\_CB

CalcaDB August 26, 2003 ,Tuesday 04:38:40 PM

#### INTERSECTION DATA SUMMARY SHEET

August 26, 2003 ,Tuesday 04:38:40 PM

| N/S:                                                                                                           | Flower St W/E: | Exposition BI US No: 3 |
|----------------------------------------------------------------------------------------------------------------|----------------|------------------------|
| АМРИ:                                                                                                          | Comments:      |                        |
| COUNT DATE:                                                                                                    | STUDY DATE:    | GROWTH FACTOR:         |
| aliyadiya da sa karan karan karan karan karan karan karan karan karan karan karan karan karan karan karan kara |                |                        |

CalcaDB

|                    | LNOB             | THROU        | (D)         | 50              | лнвоц | (20000000000000000000000000000000000000 | C.W.W  | ESTROU           | D    | EA:     | STROUN  | D.                  |
|--------------------|------------------|--------------|-------------|-----------------|-------|-----------------------------------------|--------|------------------|------|---------|---------|---------------------|
|                    | F.2              | <b>TH</b>    | RT          | L.T             | TH    | RT                                      | LT     | TH               | RT   | LT      | TH.     | RT                  |
| EXISTING           | 0                | 1590         | 338         | 58              | 213   | 0                                       | 48     | 624              | 0    | . 0     | 0       | 0                   |
| AMBIENT<br>RELATED | ==1              |              |             |                 |       | ±                                       | ==:1== | <b>3</b> - 1.2   |      |         |         |                     |
| PROJECT            | Ī                |              |             |                 |       | ######################################  | 77748. |                  | Č    | A.E =   | į       |                     |
| TOTAL              | 0 1              | 1590         | 338         | 58              | 213   |                                         | 48     | 624              | 0    | 0       | 0       |                     |
| LANE               | 4 6 9            | * <b>* *</b> | 2           | 1:1             |       | \$ P 4P                                 | 11     | ቀ <sub>ብ</sub> የ |      | 4 8 4   | · A · S | . <b>(+ 4)</b><br>[ |
| SIGNAL             | Phasing<br>Split | ·            | TOR<br>one> | Phasin<br>Split |       | RTOR<br>none>                           | Phasic |                  | ROYS | Phasing | P       | RTOR                |

| Critical Movements Diagram  EastBound  A: 0  S: 0  A * Adjusted Through/Right Volume  B * Adjusted Left Volume  * ATRAC Benefit | SouthBound   A: 167   B: 167   C   C   C   C   C   C   C   C   C | WestBound A: 336 B: 48    | V/C RATIO<br>0.00 - 0.60<br>0.61 - 0.70<br>0.71 - 0.80<br>0.81 - 0.80<br>0.91 - 1.00 | LOS<br>A<br>B<br>C<br>D |
|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------|-------------------------|
| Results  NerduZeuth Critical Movement  VicebEast Critical Movement  VIC a 366                                                   | )A + (BW)A = 8                                                   | 5/8)<br>5/8)<br>0 0 0.620 | £08 a                                                                                | A                       |

INTERSECTION DATA SUMMARY SHEET

| K/S:        | Figueroa St | W/E;        | Jefferson Bl   | I/S No: | 2 |  |  |
|-------------|-------------|-------------|----------------|---------|---|--|--|
| ам/Ри:      | Comments    | :           |                |         |   |  |  |
| COUNT DATE: |             | STUDY DATE: | GROWTH FACTOR: |         |   |  |  |
|             |             |             | ×              |         |   |  |  |

|          | LNORI        | HBONND P  | L SOUTH  | SOUND R | WE     | SIBOU | ID.  | -      | STROUN       | Ω    |
|----------|--------------|-----------|----------|---------|--------|-------|------|--------|--------------|------|
| =        | LT           | TH RT     | LT       |         | LT     | TH    | RY   | ĻŢ     | TH           | RT   |
| EXISTING | 155 1        | 217 115   | 117   10 | 81 167  | 140    | 840   | 251  | 173    | 535          | 275  |
| AMBIENT  |              |           | 1        |         | i      |       |      |        |              |      |
| RELATED  | [            |           | 1        |         | Į      |       |      |        |              |      |
| PROJECT  | I            |           | İ        |         |        |       |      |        |              |      |
| TOTAL    | 155 [ 1      | 217   115 | 117   10 | 81 167  | 140    | 840   | 251  | 173    | 535          | 275  |
|          | <b>ካ ድ</b> 수 | 商家中的      | 4 8 4 8  | 台市的     | 4 8    | ት ል ና | 4 44 | 4 A    | <u>ቀ ል ቁ</u> | p 41 |
| LANE     | 110 3        | 0 1 0 0   | 1 0 2 0  |         | 1 0 [  |       |      | 1 0    |              | 1    |
|          | Phasing      | RTOR      | Phasing  | RTOR    | Phasin | g i   | RTOR | Phasin | g i          | RTOR |
| SIGNAL   | Prot-Var     | Áuto      | Prot-Var | Auto    | Prot-V | ar    | Auto | Prot-V | 31           | Auto |

|                                                                                    | SouthBound A: 416  B: 117 |                     |             |     |
|------------------------------------------------------------------------------------|---------------------------|---------------------|-------------|-----|
| EastBound A: 197                                                                   | Δ                         | WestBound<br>A: 364 | VIC RATIO   | ros |
| B: 173                                                                             |                           | B: 140              | 8.00 - 0.60 | A   |
| L                                                                                  | NorthBound                |                     | 0.61 - 0.70 | 8   |
|                                                                                    | A: 333                    |                     | 0.71 - 0.80 | c   |
| A = Adjusted Through/Right Volume<br>B = Adjusted Left Volume<br>* = ATSAC Benefit | B: 155                    | <u> </u>            | 0.81 - 0.90 | ۵   |
|                                                                                    | L                         | J                   | 0.91 - 1.00 | €   |
| Results North/South Critical Movemen West/East Critical Movemen                    |                           | (S/B)               |             |     |
| V/C = 155                                                                          | *1375                     | 4 + 173 = 0.736     | Los =       | с   |

Developed by Chun Wang 125

INTERSECTION DATA SUMMARY SHEET

| N/S:        | Figueroa St | W/E:        | Exposition BI | I/S No:    | 4 |
|-------------|-------------|-------------|---------------|------------|---|
| амири:      | Comm        | ents:       |               |            |   |
| COUNT DAYE: |             | STUDY DATE: | GROW          | TH FACTOR: |   |

|                              | C NORTH | myscopic control of the second         | exactors and a feed of the | BOUND h                | WES                 | TBOUND -           | EAS                 | BOUND            |
|------------------------------|---------|----------------------------------------|----------------------------|------------------------|---------------------|--------------------|---------------------|------------------|
| EXISTING                     |         | н ят<br>47 39                          |                            | TH RT<br>138 : 356     | ניז<br>ח            | TH RT<br>913 324   | 1.T<br>377          | TH RT<br>798 199 |
| MBIENT<br>RELATED<br>PROJECT | T       | ************************************** |                            | 154   <del>15</del> 6. | 7                   |                    | 517                 |                  |
| OTAL                         | 139 94  |                                        |                            | 138 356                |                     | 913 324            |                     | 798   199        |
| .ANE                         |         | 11000                                  |                            | A G P 49<br>0 1 0 0    | 4 A A               | [0] 0 [1] 0<br>数分钟 | 2 0 3               | A G 1 0 0        |
| SIGNAL                       | Phasing | RTOR                                   | Phasing<br>Perm            | RTOR<br>Āuto           | Phasing<br>Prot-Var | RYOR               | Phasing<br>Prot-Var | RTOR<br>Auto     |

| Critical Movements Diagram                                            | BouthBound A: 747 B: 170 |                         |             |     |
|-----------------------------------------------------------------------|--------------------------|-------------------------|-------------|-----|
| EastBound                                                             |                          | WestBound               | V/C RATIO   | LOS |
| A: 246                                                                | 1 1                      | A: 324                  | 0.00 - 0.60 | A   |
| B: 207                                                                | 1                        | 8:                      | 0.61 - 0.70 | 8   |
|                                                                       | A: 247                   |                         | 6.71 - 6.80 | c   |
| A = Adjusted Through/Right Volume<br>B = Adjusted Left Volume         | B: 138                   |                         | 6.81 - 0.90 | D   |
| • = ATEAC Benefit                                                     | L                        |                         | 0.91 - 1.00 | Ε   |
| Results North/South Critical Movement West/East Critical Movement 138 | s - A(WB) + B(           | 8/8)<br>£/8)<br>4 + 267 | 100         | F   |
| V/C •                                                                 | 1376                     | a 1.831                 | LOS •       |     |

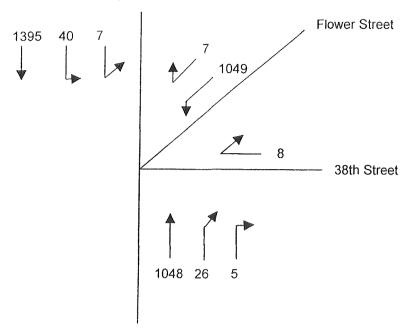
#### INTERSECTION DATA SUMMARY SHEET

| N/S:        | Flower St | W/E:      | 37th St #5  | 3 No: 5 |
|-------------|-----------|-----------|-------------|---------|
| амирм:      | Comments: |           |             |         |
| COUNT DATE: | STU       | UDY DATE: | GROWTH FACT | OR:     |

|          | HIRON      | OUND P | L SOUTH | HBOUND b | WESTEC  | MND P     | LFASI   | BOUND  |
|----------|------------|--------|---------|----------|---------|-----------|---------|--------|
|          | LT T       |        | LT      | TH RT    | LT TH   | RT        | LY      | TH RT  |
| EXISTING | 0 0        | 307    | 763 1   | 000 0    | 0 0     | 0         | -60     | 642 11 |
| AMBIENT  |            |        |         |          |         | 1         |         | , I    |
| RELATED  |            |        |         |          |         | i ir      | 17 11   |        |
|          |            |        |         |          |         | ±. ↓      | F       |        |
| PROJECT  |            |        |         |          |         |           |         |        |
| TOTAL    | 0 1 0      | 307    | 763 1   | 000   0  | 0 0     | 0         | -60 :   | 642 11 |
|          |            |        |         |          |         |           | and the |        |
|          | 9 4 4 5    | 分户的    | 6 4 4   | 经分户的     | 4 6 4 6 | 4. 10 610 | 6 4 4   | 金仓 100 |
|          |            | ν γ :  |         |          |         |           |         | 47 7   |
| ANE      | 0 0 0 0    | 0 2 0  | 210 2   | 0 0 0 0  | 0101010 | 010101    | .0 0 4  | 0,1,01 |
|          | Phasing    | RTOR   | Phasing | RTOR     | Phasing | RTOR      | Phasing | RTOR   |
|          | 1 11021119 |        |         |          |         |           |         | *****  |

| Critical Movements Diagram                                                   | SowtisBound A: 550 B: 420 |                | araban da nadigan kananaran sahiri ma |     |
|------------------------------------------------------------------------------|---------------------------|----------------|---------------------------------------|-----|
| EsstBound A: 131                                                             | 1                         | WestBound A: 0 | V/C RATIO                             | LOS |
| B: -0                                                                        | 1 1                       | 8:             | 03,0 - 08.0                           | A   |
|                                                                              | - North Bound             |                | 0.61 - 0.70                           | В   |
|                                                                              | A: 169                    |                | 0.71 - 0.80                           | c   |
| A = Adjusted Through/Right Volume B = Adjusted Left Volume * = ATSAC Benefit | B: 0                      |                | 0.81 - 0,90                           | Ð   |
|                                                                              |                           |                | 0.91 - 1.00                           | E   |
| Results North/South Critical Moveme West/East Critical Movemen               |                           | S/B)<br>E/B)   |                                       |     |
| V/C =                                                                        | + 420 + 0<br>+1425        | + 131 = 0.435  | LOS =                                 | A   |

INTERSECTION DATA SUMMARY SHEET


| N/8:       | Figueroa St | W/E:        | State Dr          | I/S No:    | 6 |
|------------|-------------|-------------|-------------------|------------|---|
| ам/рм: 🔞   | Comments    | a           |                   |            |   |
| COUNT DATE | E           | STUDY DATE: | GROW              | TH FACTOR: |   |
| L          |             |             | The second second |            |   |

|          | LNORTHI |       | Lsouth     |          | WES     | IBOUND } | L. EA               | SIBOUN | D       |
|----------|---------|-------|------------|----------|---------|----------|---------------------|--------|---------|
|          | LT T    |       |            | H RT     | LT.     | TH RT    | ĽΙ                  | TH     | RT      |
| EXISTING | 45 96   | 6 0   | 0 13       | 47 43    | 0       | 0 0      | 63                  | 0      | 65      |
| AMBIENT  | T       |       |            |          | . 1.    |          |                     |        |         |
| RELATED  |         |       | i i        |          | i       |          |                     |        | 4       |
| PROJECT  |         |       | 그러 나는 취수 있 |          | . 1     |          |                     |        | 1       |
| KOJECI   |         |       |            |          |         |          |                     |        | l       |
| TOTAL    | 45 96   | 6 0   | 0 13       | 47 43    | 0       | 0 0      | 63                  | 0      | 65      |
|          | 4848    | 台市的   | 4 6 4 6    | Q 10 610 | ላ 🔗 수   | £ \$ ሶቀ  | ቁ <sub>\$</sub> ት ና | £ £    | . Ip 41 |
| .ANE     | 0 0 2 0 | 0 0 0 | 0 0 3 6    | 0000     | 0 0 0   | 0 0 0 0  | 0 0 0               |        | 0       |
|          | Phasing | RTOR  | Phasing    | RYOR     | Phasing | RTOR     | Phasing             | 2 1    | RTOR    |
| SIGNAL   | Penn    |       | Perm       |          |         |          | Perm                |        | Auto    |

|                                              | 8: 63 | NorthBound     | WestBound A: 0 B: 0 | V/C RATIO<br>0.60 - 0.60<br>0.61 - 0.70 | LOS<br>A<br>B |
|----------------------------------------------|-------|----------------|---------------------|-----------------------------------------|---------------|
| A = Adjusted<br>B = Adjusted<br>* = ATSAC Be |       | A: 483<br>B: 0 |                     | 0.71 - 0.80<br>0.81 - 0.90              | c<br>D        |

#### Intersection # 7 Figueroa & Flower & 38th Weekday Scenario - Cumulative Base Conditions

Figueroa Street



#### **Critical Movement Analysis**

Phase 1 Critical Moves

Phase 3 Critical Moves

0.771 (LOS C)

33

Phase 2 Critical Moves

e Acjusted Throughfight Volume B = Acjusted Left Volume Mens S DASTA = • 196 :8 08.0 - 18.0 : w 10t 82 : 82 99.0 - 98.0 856 :A 100 OLLAN SAY <u>201</u> :8 CBC . Сирсен моломения пивалем Perm Auto Perm Auto otuA hige tuto hige TAMOIS Buyseya Phasing g क्षांडकश्चे 1001000 10100 1050100 1050100 

Atc = 241 + 222 + 241 + 82

Weed East Critical Movements . A (WWS) + 8(E/8)

Horizaleouth Critical Movements = A(N'B) + A(S/B)

0 - 907

09.F - F6.9

ara ipa ara serre

M9 TA:86:40 YebzsuT, 6005, 25 JauguA

EXISTING 422 81 178 105 5 383 40 969 53 83 842 143 - 17 ТН RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT - LT TH RT -. Aojnusa/Fasagajāwa Coeljānisgoes ... STUDY DATE: GROWTH FACTOR: COUNT DATE: WIE: M.L.King Jr. Bi VS No: 10 MINA : 1-110 NB Ksmbs

INTERSECTION DATA SUMMARY SHEET

CalcaDB

1618\_CB

A/C # 211 + 0 + 131 + 130 V = SO7 WestEsst Chical Movements .. B(W/B) + A(E/B) HOUDIZONDI CUDCH WOAKUKUZ ... R(MR) .. V(2/R) 00.1 - 18.6 A s Adjusted ThroughMgght Volume B = Adjusted Left Volume = E YSAC Benefit 712 :8 121 <u>0</u> :8 09.0 - 00.0 SL - 08t :V FOR WC RATIO 

INTERSECTION DATA SUMMARY SHEET

CalcaDB

Mig Th:80:50 yabsouf, COOS, 35 leuguA

INTERSECTION DATA SUMMARY SHEET CalcaDB

:3/M

: 3TAG YOUTS

484.0 a C0C +

202

887

Yerm <none>

Phasing

FO8 . W

a

102

ROTA

D8'0 - L8'8

68.0 - 17.0

AC KYLIO

med

GROWTH FACTOR:

Mq 14:85:90 yabsauf, 5005, 25 izuguA

00.1 - 18.0

07.0 - 19.0

09.0 - 00.8

VIC RATIO

Buiseua

5 0 0 0 1 0 0

ริดิวิ

клов

Akc n + 112

West East Critical Movements . B(WB) + A(E/B) Hordrigouch Cridical Movements = A(N/B) + A(B/B)

ony was

g nissaff

EANE .000000 1000011 1.030000

TOTAL 0 0 0 206 4 139 303 1485 0

SLL :8

911

яотя

: STAG YOUTS

 AWPPM:
 PAMPPM:
 PAMPPM:
 M.L.King Jr. BI
 US No.

A)C = 22 + 632 + 100 + 146

TT<u>S</u> :A 111

:8

683 \_punogupnog\_

:8

pids

**Buiseu**a

15 416C

яотя

100

West/East Critical Movements \* A(WIB) + A(E/B)

HOLDINGOOD CHROS WONSWELL B(N/B) + A(S/B)

Prot-Var

ONDOBHTHOS GNUOBHTHON

phasing

INTERSECTION DATA SUMMARY SHEET

CalcaDB

447844 44784 44784 44784 44784 44784 44784 4

A = Adjusted ThroughVidght Volume 8 = Adjusted Left Volume • = TABC Benefit

JANDIS

тоэсоя

GELATED ...

солит вите:

\_\_\_\_ Kesults \_\_\_\_

A » Adjusted ThroughMight Volume B » Adjusted Left Volume • » AZSAC Benefit

Critical Movements Diagram

gnissalq

YounnelLene/Signal Configurations

JANDIS

PROJECT RELATED TMBIBMA

oluA 18V-Jo19

132

971 : Y

HO\_BIST

\_\_\_\_ Aoiume/Lene/Signal Configurations \_\_\_\_

\_\_\_\_\_\_;A

AIR TA: 8E: 50 Yebsouf, COOS , 35 JauguA

ION S/I

GROWTH FACTOR.

82 8191

COUNT DATE:

AM/PM: EE

Figueroa St

| 061   101 0 0   691   121 0 0 0   16   0   112 | 하여 옵 유 수 유 ㅎ 하여 공 즉 수 ዓ ㅎ ㅎ ㅎ 음 수 요 ㅎ ㅎ ㅎ 용 유 수 요<br>이 proposition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>k</u> |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 061   FOI   0 0   6F1   121 0 0 0   16 0   212 | H 9 8 8 9 9 9 4 4 4 9 8 9 9 9 4 4 4 9 8 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>     |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ١.       |
| 061 POL 0 0 SPL 1ZL 0 0 0 16 0 ZLZ             | 061   100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 79       |
| 061 POL 0 0 691 1Z1 0 0 0 16 0 21Z             | and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o | 3        |
| 061 POL 0 0 691 121 0 0 0 16 0 212             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |

|                                               | the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sale of the sa | CONTRACTOR OF BRIDE STATE           | e/Signat Configurations                | w Volume/Lane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u> </u>                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | ************************************** | CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                        | COUNT DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| → SOTOA1 HTW                                  | פאכ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3TAG YOUTE                          |                                        | -STAG THUOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | Сопителен                              | MG/MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8 :on 84                                      | 18 4860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | :3/M                                | Pagme R VOH 011-1                      | :S/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7 2 X 3 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and the second second second second |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

1618\_CB

AM/PM: DM COUNT DATE:

AMBIENT RELATED PROJECT

TOTAL

LANE

STUDY DATE:

M.L.King Jr. BI

LT TH RT 309 1756 14

309 | 1756 14

Perm

+ 309 + 430 = 0.599

Hoover St

LT TH RT LT TH RT 244 4 132 34 21 20

244 4 132 34 21 20

Perm

Auto

thBound 21 A:

34

244

\*1500

RTOR Perm Auto

> A: 430 8: 19

North/South Critical Movements =

West/East Critical Movements \* B(W/B) + A(E/B) V/C = 244

A " Adjusted Through/Right Volume B = Adjusted Left Volume \* = ATSAC Benefit

ne/Lane/Signal Configurations

LT TH RT 19 1088 202

19 1088 202

Auto

LOS

D

LOS . A

1 0 2 0

Perm

V/C RATIO

9.61 - 0.70 0.71 - 0.80

8.81 - 0.90

0.91 - 1.00

34

GROWTH FACTOR

#### INTERSECTION DATA SUMMARY SHEET

| H/S:        | Figueroa St | W/E:       | M.L.Ki | ng Jr. Bl | V8 No: 12 |
|-------------|-------------|------------|--------|-----------|-----------|
| AMIPM:      | Comment     | s:         |        |           |           |
| COUNT DATE: |             | STUDY DATE |        | GROWTH FA | CTOR:     |

|                    | L NO!  | THBOUN           | Dlr  | LSΩ    | JTHBOUL          | Ω    | <u> </u>   | ESTROU | ¥0      | L. FAS  | TROUN | <u>R</u> |
|--------------------|--------|------------------|------|--------|------------------|------|------------|--------|---------|---------|-------|----------|
|                    | LT     | TH               | RT   | LT     | TH               | RT   | LT         | TH     | RT      | LT      | TH    | RT       |
| EXISTING           | 119    | 705              | 97   | 201    | 1655             | 394  | 470        | 1699   | 83      | 125     | 1048  | 154      |
| AMBIENT<br>RELATED | 1      |                  |      |        | <i>=:</i>        |      |            |        |         | T'. ±,  |       | 7        |
| ROJECT             | - ]    |                  | /    |        |                  |      |            |        | 1       | 1       |       | Í        |
| OTAL               | 119    | 705              | 97   | 201    | 1655             | 394  | 470        | 1699   | 83      | 125     | 1048  | 15       |
| ANE                | 1 0    | Ŷ <b>&amp;</b> € | p 44 | 10     | 7 fg fg<br>2 0 1 |      | ή φ<br>1 0 |        | 130 60. | 11012   | ** 7  | 101      |
|                    | Phasin | g R              | TOR  | Phasin | g F              | TOR  | Phasir     | ·g     | RTOR    | Phasing |       | RYOR     |
| IGNAL              | Penn   | A                | uto  | Penn   |                  | Auto | Prot-V     | ar     | Auto    | Prot-Va |       | Auto     |

|                                                               | 8outhBound<br>A: 683<br>B: 201 |                  |             |     |
|---------------------------------------------------------------|--------------------------------|------------------|-------------|-----|
| EastBound                                                     |                                | WestBound        | V/C RATIO   | LOS |
| A: 401                                                        | 1 1                            | A: 594<br>B: 470 | 8.68 - 8.60 | A   |
| 8: 125                                                        | NorthBound                     | b. :             | 8.61 - 8.70 | 8   |
|                                                               | A: 267                         |                  | 0.71 - 6.80 | С   |
| A = Adjusted Through/Right Volume<br>B = Adjusted Left Volume | B: 119                         |                  | 6.81 - 0.90 | D   |
| · = ATSAC Benefit                                             | <b>L</b>                       | I                | 0.91 - ¥,00 | Ε   |
| Results North/South Critical Moveme                           | mts = 8(H/B) + A(              | (\$/8)           |             |     |
| West/East Critical Movement                                   |                                | (E/B)            |             |     |
|                                                               |                                | · ·              |             |     |
| V/C =                                                         | + 683 + 47                     | 0 + 401 = 1.147  | LOS =       | F   |

CalcaDB

#### CalcaDB INTERSECTION DATA SUMMARY SHEET

| N/S:        | Vermont Av | W/E:        | M.L.King Jr. Bl | VS No: 14 |
|-------------|------------|-------------|-----------------|-----------|
| амин: ПА    | Comments:  |             |                 |           |
| COUNT DATE: |            | STUDY DATE: | GROWTH F        | <b>L</b>  |

| Volume   | e/Lane/Sign | nai Configura | don's                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |                                        |
|----------|-------------|---------------|----------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|----------------------------------------|
| ĺ        | L.T         | OHUXBHTS      | titoria _ historianoscotto | HBOUND I  | AND COMPANY OF A STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P | BOUND    | L EASTE | 20000000000000000000000000000000000000 |
| EXISTING | 91          | 639 65        |                            | 408 ; 128 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 72   205 |         | 19   145                               |
| AMBIENT  | II          |               |                            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |                                        |
| RELATED  |             |               |                            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         | $T = \mathbb{I}$                       |
| PROJECT  |             |               |                            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         | 1                                      |
| TOTAL    | 91          | 639 65        | 230 11                     | 408 128   | 114 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 72 205   | 63 11   | 19 145                                 |
|          | 4 \$ 4      |               | <b>40 4 \$ 4</b>           |           | 4 6 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 4 6 4 6 |                                        |
| LANE     | 1 0 1       | 0 1 0         | 0 1 1 0 3                  | 0 1:00    | 1 0 12 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 1 0 0  | 1:01210 | 110101                                 |
|          | Phasing     | RTOR          | Phasing                    | RTOR      | Phasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RYOR     | Phasing | RTOR                                   |
| SIGNAL   | Perm        | Auto          | Prot-Fix                   | Auto      | Perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Auto     | Perm    | Auto                                   |

|                                   |                   |                                         | March 1997  |     |
|-----------------------------------|-------------------|-----------------------------------------|-------------|-----|
| Critical Movements Diagram        |                   | *************************************** |             |     |
| · ·                               | SouthBound        | 1                                       |             |     |
|                                   | A: 768            |                                         |             |     |
| Į.                                | 1                 |                                         |             |     |
|                                   | 8: 230            |                                         |             |     |
|                                   |                   |                                         |             |     |
| EastBound -                       | ٨                 | WestBound                               | YIC RATIO   | LOS |
| A: 421                            | l P               | A: 559                                  | 0.00 - 0.69 | A   |
| B:                                | 1 1               | B: 114 ···                              | 0.60 - 0.60 | *   |
| " . "                             | '                 |                                         | 8.61 - 8.76 | 8   |
|                                   | - HorthBound      |                                         |             |     |
| 1                                 | A: 352            |                                         | 0.71 - 0.80 | C   |
| A = Adjusted Through/Right Volume |                   |                                         |             |     |
| 8 - Adjusted Left Volume          | B: 01             |                                         | 0.61 - 0.89 | D   |
| * = AYBAC Benefit                 | <u>[</u>          | ļ                                       | 8.81 - 1.68 | F   |
| - Rosulta                         |                   |                                         | 0.01 - 1.00 |     |
| 8                                 |                   |                                         |             |     |
| Horsh/Bouth Critical Moveme       | als = B(N/B) + A( | 8/8)                                    |             |     |
| West/East Critical Movement       | s = A(W/B) + B(   | E/8)                                    |             |     |
| 91                                | + 768 + 651       | 0 + 63                                  |             | _   |
| wc•                               | *1428             | u 9,989                                 | L08 =       | E   |
|                                   | *1428             |                                         |             |     |

1618 CB

August 26, 2003 ,Tuesday 04:38:47 PM

INTERSECTION DATA SUMMARY SHEET

W/E: 39th St 15 Comments: ам/рм: STUDY DATE: COURT DATE:

|                                         | L_HO     | THBOU | <u> 10</u> | 50    | UTHBOUL       | 0    | - N        | WESTBOUND |       |      | EASI | BOL | ИD | 20-27/20 <u>20</u> |
|-----------------------------------------|----------|-------|------------|-------|---------------|------|------------|-----------|-------|------|------|-----|----|--------------------|
|                                         | LT       | TH    | RT         | LT    | TH            | RT   | LT         | TH        | RT    | LT   |      | TH  |    | RT                 |
| EXISTING                                | 41       | 933   |            | -1    | 1665          | 47   | 71         | 19        | 124   | 49   |      | 3   |    | 53                 |
| AMBIENT                                 |          |       |            |       | Γ             |      |            | 1         |       |      |      |     | 1  |                    |
| RELATED                                 |          |       |            | J     | Ť             |      |            | Ť -       |       |      |      |     | i  |                    |
| PROJECT                                 |          |       |            | 10    | <del> </del>  |      | 574        |           |       |      |      |     | 1  |                    |
| , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1        |       |            |       | 1             |      |            | 1 ,       |       |      |      |     | 1  |                    |
| TOTAL                                   | 41       | 933   | 7          | 1     | 1665          | 47   | 71         | 19        | 124   | 49   |      | 3   | i  | 53                 |
|                                         |          |       |            |       |               |      |            |           |       |      |      |     |    |                    |
|                                         | 4 6 4    | 2 2 4 | *          | ٩ 🖈   | <b>+ 43 %</b> | 44   | <b>∮</b> ₽ | ት 🛣       | 4 4   | 4 4  | 4    | Ω   | Ą  | # 41               |
| LANE                                    | 3/01     |       | 676        | 1616  | 1   6   7     | فاة  | . 4.       |           | 0 0 0 | 0 0  | n    | 4   | ^  | 0 0                |
|                                         | 3 1.511. | 7121. | 1.7.1.2    | 1171  | . [ • ] .     | 1010 |            |           | 0.010 | • •  | ٠    | •   | •  |                    |
|                                         | Phasin   | 9 6   | ROTE       | Phask | ng A          | TOR  | Phasi      | ng        | RTOR  | Phas | sing |     | RT | OR                 |
| SIGNAL                                  | Perm     |       | Auto       | Pen   | . 7           | Luio | Pen        | -         | Áuto  | Рe   |      |     | a. | nto                |

| Critical Movements Diagram        | 8: 856<br>8: -1    |                 |             |     |
|-----------------------------------|--------------------|-----------------|-------------|-----|
| EastBound                         | <b>-</b>           | WestBound       | Y/C RATIO   | LOS |
| A: 166<br>8: 49                   | 1                  | A: 214<br>B: 71 | 0.00 - 0.60 | A   |
|                                   | NorthBound         |                 | 0.61 - 6.70 | В   |
| A = Addusted Through/Right Volume | A: 470             |                 | 6.71 - 0.80 | С   |
| B = Adjusted Laft Volume          | 8; 41              |                 | 9.81 - 9.80 | D   |
| · » ATÉAC Benefit                 |                    | ·····           | 8.91 - 1.00 | E   |
| North/South Critical Movem        | onts = B(N/B) + A( | E/6)            |             |     |
| West/East Critical Movemen        | ts - A(W#B) + B(   | E/B)            |             |     |
| WC = 41                           | + 656 + 214        | 1 + 48 ± 0,783  | Los         | c   |

Auto Perm

#### INTERSECTION DATA SUMMARY SHEET

|    | Vermont Av     |      | W/E;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Exposition BI  | VS No: 16                    |
|----|----------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------|
|    | С              | omn  | nents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                              |
|    |                |      | STUDY DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GROWTH         | FACTOR:                      |
|    |                | -    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                              |
| ĸ  | gnal Configura | anot | popular in the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the sta |                |                              |
| NΩ | RTHBOUND       | _    | SOUTHBOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WESTBOUND 1    | EASTBOUND                    |
| ۲  | TH RT          |      | LT TH RT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LT TH RT       | LT TH RT                     |
| 5  | 969 56         | 3    | 118 1372 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 181 1035 302   | 4 749 71                     |
| -  |                |      | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                              |
| =  | <del></del>    | =-,  | AND AND ADDRESS OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF |                |                              |
|    | <u> </u>       |      | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                              |
|    | ]              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | المستنسب المستنسب            |
| 5  | 969 56         | ·    | 118 1372 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 181 1035 302   | 4 749 71                     |
| 10 | 1 363   26     | :    | 116 1372 ; 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 181 1033   302 | 2 - 130 L 11 1               |
| ^_ | 4 A & 1        | 4    | 4 8 9 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 & 4 & 4 4 4  | 4 <i>p</i> 4 <i>g g p</i> 4+ |

Perm

|                             |                    | MANAGER (CONTROL OF THE CONTROL OF T |                            |          |
|-----------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------|
| té nents Diagram            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |          |
| sor receive though our      | 8: 118             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |          |
| A: 273                      | Α                  | WestBound A: 689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V/C.RATIO<br>6.80 - 0.60   | LOS<br>A |
| 8: 0                        | NorthBound         | B: 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.61 - 9.70                | 8        |
| ed Through/Right Volume     | A: 513<br>B: 65    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.71 - 0.80<br>9.81 - 0.80 | c<br>D   |
| B it                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.91 - 1.00                | E        |
| rb/South Critical Moveme    | ents = B(N/B) + A( | S/B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                          |          |
| West/East Critical Movement | ts = A(W/B) + B(   | E/B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |          |
| V/C =                       | + 686 + 669        | 9 + 0 = 0.877                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LOS =                      | : D      |

RTOR

Auto

Auto Perm

INTERSECTION DATA SUMMARY SHEET

| N/S:        | Normandie Av                                         | W/E:        | M.L.King Jr. Bi | I/S No.                               | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------|------------------------------------------------------|-------------|-----------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| амин:       | Comme                                                | nts:        |                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| COUNT DATE: |                                                      | STUDY DATE: | GROWT           | H FACTOR:                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | адринуруун ал эн айдамын эн <sup>д</sup> эмгэн багаа |             |                 | A Chapteriote a balance de la company | Company of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the contro |

|          | NORTH            | DOUND      | SOUTHE  | OUND .      | (WEST   | BOUND          | EAS     | THOUND |             |
|----------|------------------|------------|---------|-------------|---------|----------------|---------|--------|-------------|
|          | LT 1             | TH RT      | LT T    | H RT        | LT      | TH RT          | LY      | TH     | RT          |
| EXISTING | 111 8            | 54 89      | 152 13  | 10 116      | 123     | 170 164        | 128     | 1036   | 140         |
| AMBIENT  |                  |            |         |             | T       | W. F. S. F. W. |         | 1      |             |
| RELATED  |                  |            |         | •           | 1       |                |         |        |             |
| PROJECT  | T                |            | Ť       |             | Î       |                |         | İ      |             |
| TOTAL    | 111   8          | 54 89      | 152 13  | 10 116      | 123     | 170 164        | 128     | 1036   | 140         |
| LANE     | 1 6 4 2<br>1 0 1 | A 4 1 10 0 | 4 A A A | \$ {\$ p ep | 4 A A   | A & P #P       | 1 0 2   | 444    | φ φγ<br>0 0 |
|          | Phasing          | RTOR       | Phasing | RTOR        | Phasing | RTOR           | Phasing | g R    | ror         |
| SIGNAL   | Perm             | Auto       | Perm    | Auto        | Perm    | Auto           | Perm    | ۸      | uto         |

|            |                                   | SouthBound  | 7                   |             |     |
|------------|-----------------------------------|-------------|---------------------|-------------|-----|
|            |                                   | A: 715      | İ                   |             |     |
|            |                                   | B: 152      |                     |             |     |
|            | EastBound                         | 1 ^         | WestBound<br>A: 164 | V/C RATIO   | LOS |
|            | A: 392<br>B: 128                  | 1 1         | B: 123              | 0.00 - 0.60 | A   |
|            |                                   | North-Bound |                     | 0.61 - 0.70 | В   |
|            |                                   | A: 472      |                     | 9.71 - 0.80 | c   |
|            | Through/Right Volume  Left Volume | B: 111      |                     | 0.81 - 0.90 | D   |
| - A ISAC B | evelit                            |             | J                   | 0.91 - 1.00 | E   |

Developed by Chun Wong 12/5-

CalcaDB

August 26, 2003 ,Tuesday 04:38:47 PM

#### INTERSECTION DATA SUMMARY SHEET

|     | Normandie Av | w/E:        | Expos | ition Bí   | VS No: 18 |
|-----|--------------|-------------|-------|------------|-----------|
| 120 | C            | omments:    |       |            |           |
| MTE |              | STUDY DATE: |       | GROWTH FAC | TOR:      |
|     |              |             |       |            |           |

| ξ   | , b   | ORTHBO<br>TH | UND B  | LT SC             | UTHBOUL<br>HT | RT R   | LY   | VESTBOU<br>TH | RT             | ET ET      | ASTBOU!                                                                                                        | (D RT                      |
|-----|-------|--------------|--------|-------------------|---------------|--------|------|---------------|----------------|------------|----------------------------------------------------------------------------------------------------------------|----------------------------|
| ;   |       | 1051         | 50     | 61                | 1514          | 67     | 15   | 1057          | 177            | 8          | 716                                                                                                            | 140                        |
| , , |       | <u> </u>     |        | 21.20.22          | ~             |        |      | F :           |                |            | <u></u>                                                                                                        |                            |
|     |       | Ť-           |        |                   | <u></u>       |        |      |               | j <del>-</del> | <i></i>    |                                                                                                                | Î î                        |
|     | ;     | 1051         | 50     | 61                | 1514          | 67     | 15   | 1057          | 177            | . 8        | 716                                                                                                            | 140                        |
| 4   | ١.    | <b>ቀ</b> 🚓   | 6 0 40 | 4 &               | ቀ ፏ ቴ         | 19 619 | 4 ۾  | <b>Α</b>      | 6 14           | <b>4</b> ₽ | ተ 🚓 ና                                                                                                          | p 44                       |
| 3   | ٥, ا  | 10           | 100    | 1 0               | 101           | 0 0    | 0 1  | 1 0           | 100            | 011        | 10                                                                                                             | 0 0                        |
|     | Phasi | ភព្វ         | RYOR   | Phask             | ng A          | TOR    | Pans | lag           | RTOR           | Phask      | Ng.                                                                                                            | RTOR                       |
|     | _     | m            | Auto   | Perr              | n /           | Auto   | Per  | 199           | Auto           | Pen        | 13                                                                                                             | Auto .                     |
|     | er ,  |              |        |                   |               |        |      |               |                | -          |                                                                                                                | <del>Papinanialan</del> ia |
| 81  |       | osta filo    |        | ***************** | -             | -      |      |               |                |            | magazina de la companya de la companya de la companya de la companya de la companya de la companya de la compa |                            |

| EastBound A: 301 B: 8       | A HorshBound      | WestSound A: 398 B: 15 | <u>V/C RATIO</u><br>8.60 - 8.60<br>8.61 - 8.70 | <u>LQ8</u><br>A<br>B |
|-----------------------------|-------------------|------------------------|------------------------------------------------|----------------------|
| nghiftight Volume<br>Volume | A: \$51<br>B: 103 |                        | 6.71 - 6.63<br>6.61 - 6.60<br>6.61 - 1.60      | C<br>D<br>E          |

1618\_CB

CalcaDB

August 26, 2003 ,Yuesday 04:38:47 PM

#### INTERSECTION DATA SUMMARY SHEET

| AM/PM: PM Comments:  COUNT DATE: STUDY DATE: GROWTH FACTOR: | N/S:       | Vermont Av | W/E:        | Jefferson BI | 1/S No;    | 19 |
|-------------------------------------------------------------|------------|------------|-------------|--------------|------------|----|
|                                                             | амири:     | Come       | nents:      | •            |            |    |
|                                                             | COUNT DATE |            | STUDY DATE: | GROW         | TH FACTOR: |    |

|          | LNOR         | THBOW              | (Q)   | <u> </u> | ITHBOUN           | D     | Y      | STBOUN       | <u></u> | EEA    | STROUP | D.     |
|----------|--------------|--------------------|-------|----------|-------------------|-------|--------|--------------|---------|--------|--------|--------|
|          | LT           | TH                 | RT    | LT       | TH                | RY    | LY     | TH           | RT      | LT     | ън.    | RT     |
| EXISTING | 108          | 1223               | 288   | 114      | 1240              | 94    | 333    | 1090         | 168     | 110    | 565    | 145    |
| AMBIENT  |              |                    |       |          |                   |       |        | Γ            |         |        |        | í      |
| RELATED  | T            | 1 151 . 3          |       | 1        |                   |       |        | Î            |         |        |        | i      |
| PROJECT  | Ī            |                    |       |          |                   |       |        | Ť.           |         |        |        | ĺ      |
| TOTAL    | 108          | 1223               | 288   | 114      | 1240              | 94    | 333    | 1090         | 168     | 110    | 565    | 145    |
|          | <b>ቁ ል</b> ል | <b>&amp; &amp;</b> | *     | 4 8 4    | ያ <sub>የል</sub> ና | 49 41 | 4 £    | <u>የ</u> ል ቴ | PH      | 4 6 4  | A 4    | i # 41 |
| LANE     | 1 0 2        |                    |       |          |                   |       | 1 0    |              | 110     | 1 6    | 1 0    | i o (  |
|          | Phasin g     |                    | TOR   | Phasin   | g R               | TOR   | Phasin | g A          | TOR     | Phasin | g .    | RTOR   |
| SIGNAL   | Parm         | 7977               | DEA " | Penn     | . 7               | uto   | Prot-F | iv i         | Nuto    | Penn   |        | Auto   |

| Critical Movements Diagram                                  | 8: 114               |             |             |     |
|-------------------------------------------------------------|----------------------|-------------|-------------|-----|
| EsstBound ****                                              |                      | WestBound   | VIC RATIO   | LOS |
| A: 383                                                      | i i                  | A: 545      | 0.60 - 0.60 | A   |
| B: 110                                                      | '                    | 8: 333      | 0.61 - 0.70 | 8   |
|                                                             | NorthBound<br>A: 612 |             | 8.71 - 0.80 | С   |
| A = Adjusted Through/Right Volume  B = Adjusted Left Volume | B: 108               |             | 0.81 - 0.90 | D   |
| · = ATBAC Benefit                                           |                      |             | 8.91 - 1.00 | E   |
| Results Herth/South Critical Moveme                         | nts = 8(N/6) + A(    | 8/B)        |             |     |
| West/East Critical Movement                                 | 2 = 6(WB) + A(       | E/B)        |             |     |
| V/C = 166                                                   | + 620 + 13:<br>*1425 | 355 - 0.924 | LOS =       | E   |

Developed by Chase Wing. 1995

51 + 107 + E101 + E8

<u>ττς</u> ... . Α <u>τε</u> ... . . 8

111 :8

Phasing RTOR

184 107 E81 625 S185 T11 28 T67 E8

ļ. .

\_\_\_\_ briuoBribu

hilq2

Phashq

яотя

Mest/Esst Chilcal Movements \* A(WIB) + A(E/B)

Horth/South Critical Movements ... B(N/B) + A(S/B)

\* Adjusted Through/Right Volume \* Adjusted Left Volume \* ATSAC Benefit

8: 122

RIOR

Comments;

12 sonsugi7

971

0091-+ 918 +

30:8 And 21:95:40 Yabsaul, 2005 ,35 fauguA

CalcaDB

INTERSECTION DATA SUMMARY SHEET

482-8191

482 2191

06.0 - 18.0 08.0 - 17.0

07.0 - 19.0

OUVAL VA

plq2

яотя

0 0 1 0 0 0 2

44 2 4 4 4 4

240 38 407

240 39 107

, 25

0

STAG YOUTS

:a/M

TN3I8MA

COUNT DATE:

ДЕ :ма/ма

Mq 21:80:50 yabsauf, 0005 ,85 fauguA

CalcaDB

gzpl. 694 + 984 + 062 + 048 - 344 (8/3)8 + (8/M)A = 6/6/8) Horesteoush Critical Menements . A(NB) + B(8/B) 09.1 - 18.0 Ft :8 018 6810 - L/10 04.0 - 10.0 ) : i 674 :8 09.0 - 00.0 120 784 VIC PATRO <u>ocs</u> :8 148 nmed outh miel outh XIT-1019 ohu mma JAHDIS ROTA вотя ROTR ooklokok jooklok ooklokok jookokok 3NA1 44 2 8 4 4 p 4 4 2 8 4 4 p 4 p 4 p 8 p 4 p 8 p 4 p 8 p q p 31 | 1814 | 65 | 230 | 1406 | 128 | 144 | 1415 | 154 | 143 | 145 | 1416 | 145 | PROJECT \_\_\_\_ 03TAJ39 TNBIBMA | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | Soli | EXISTING

STUDY DATE: GROWTH FACTOR: COUNT DATE: AMPM: PA M.L.King Jr. Bl 14 No: 14 VA InomisV

INTERSECTION DATA SUMMARY SHEET

M4 21:95:40 YabsouT, COOS , 32 JauguA

CalcaDB

1618\_CBP

497 8191

\$ZI + \$001 + CF6 + BII 4 = 501 WestEsst Critical Movements = Anvill) + 8(E/8) Hordy'South Critical Howements = B(N/B) + A(S/B) 00.1 - 18.0 \* ATSAC Benefit Tas :A Adjusted ThroughHight Volume Adjusted Ital Volume 08.0 - 18.0 03.0 - 17.0 972 :8 152 03.0 - 08.0 107 :A 8001 ;A WC BATTO 102 :8

otuA ma9 otuA maq otuA :: 18V-for4 18V-1019 omA Phasang яотя Phasing яотя phasing яотя BNAI 119 705 97 201 1655 943 470 2934 83 152 | 1048 | 124 JATOT ьколеся ратьлая ТИЗІВМА EXIZING 413 102 31 501 4622 343 410 5324 83 152 1088 124 GNUGALTAS A GNUGALTACH GNUGALTACH Aoinmeiraneigham comagniagous

Comment; '
STUDY DATE: GROWTH FACTOR; ' COUNT DATE: Mama H/S: Figueroa 51 W/E: M.L.King Jr. 81 us Ho: Comments:

INTERSECTION DATA SUMMARY SHEET

CalcaDB

INTERSECTION DATA SUMMARY SHEET

6031-

60.F - FB.6

08'0 - 18'0

08.0 - 17.0

OUT OF TAKE

med

gnizarid

яотя

A)C = 48 + 514 + 48

it is

. O . . :B 992

otuA

2.7.1

:3TAG YOUTS

INTERSECTION DATA SUMMARY SHEET

CalcaDB

+ 5811 +

309

Bujseyd

309 | 5854 700

1182

344 :8

oma

яотя

243

Buisand

HE: Vennont Av va inorma Sam St.

WeetEast Critical Movements = A(W/B) + B(E/B) HordvSouth Critical Movements # A(NB) + B(S/B)

8: 18 ... v

344 223 135 34 St 50

Communits:

 EXERIENT
 125
 34
 51
 50
 208
 2824
 100

 EXEX.LIVE
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12</td

maq

SIGNAL

**BNAJ** 

JATOT

TOBLORG

**AMBIENT** 

\_\_\_ дэталэя

AMPM: PR: Comments:

яотя

2011

mad

Bursend

41 2717 693 0 1665 47 71 19 124 49 3 5 53

214

otuA

яотя

12 12 124 71 19 124 [

скомти ғасток:

M4 27:25:40 \u00e4sbau7, 2005 ,35 lauguA

00'1 - LE'0

08.0 - 18.0

08.0 - 17.0 07.0 - 19.0

09.0 - 00.0

VIC RATIO

merm

pnizari

1 0 2 0 1 0 0

448844

19 1088 202

a

<u>507</u>

OJUA

MORRESCA CHICAN WONDWIS . VIALB) + B(E/B)

Horith Could Chites Movements = A(NB) + B(S/B)

A: 301 :A

maq onA maq

RTOR

CUDCSI MOVEMBRING UNBERING

Beisadi

TANDIS

HARE

483\_8181

THAT SHE CAME MOUNT 15/2

:ON S/I

GROWTH FACTOR:

Mrd 21:80:90 Yebzauf, COOS ,85 fauguA

CalcaDB

1618\_CBP

иовтнвоиир воитивоиир Умертвоиир MYMA: DA NIS: Hoover St WIE: M.L.King Jr. BI

Mr 21:8C:50 Yabsauf, Cook , 35 tauguA

AM/PM:

COUNT DATE:

AMBIENT RELATED

PROJECT

LANE

SIGNAL

Normandie Av

LT TH RT LT TH RT EXISTING | 111 854 89 701 1310 116

RTOR

EsstBound 4 438

B: 128

----

111 854 89

Perm Auto

Phasing

Comments:

STUDY DATE:

701 | 1310 116

RTOR

A: 713 B: 701

472

111

V/C = 472 + 701 + 123 + 438 = 1.086

North/South Critical Movements = A(N/B) + B(S/B)
West/East Critical Movements = B(W/B) + A(E/B)

L SOUTHBOUND

M.L.King Jr. BI

LT TH RT 123 170 164

123 | 170 164

164

123

RTOR

128 1173 140

Auto

LOS

С

Perm

V/C RATIO

0.00 - 0.60

0.61 - 0.70

GROWTH FACTOR:

#### INTERSECTION DATA SUMMARY SHEET

| N/S:        | Vermont Av | W/E:        | Exposition BI | #8 No:    | 16 |
|-------------|------------|-------------|---------------|-----------|----|
| AMPM: DO    | Comme      | nts:        |               |           |    |
| COUNT DATE: |            | STUDY DATE: | GROWT         | H FACTOR: |    |

| 1       | L. NC  | RIHBOU       | <u> ID                                   </u> | SO.    | MOBILITIES  | 10   | <u> </u> | ESTROUN        | Ω      | £/         | ASIBOUL   | LD.   |
|---------|--------|--------------|-----------------------------------------------|--------|-------------|------|----------|----------------|--------|------------|-----------|-------|
|         | LT     | TH           | RT                                            | LŤ     | TH          | RT   | LT       | TH.            | RT     | LT         | 174       | RT    |
| XISTING | 65     | 2204         | 605                                           | 118    | 1372        | 124  | 181      | 1035           | 302    | 4          | 1572      | 71    |
| ABIENT  |        | Î            |                                               |        |             |      |          |                |        | ,          |           | 1     |
| LATED   |        | +            |                                               |        |             |      |          | ************** | erama: |            | 4: === == | +     |
|         |        | <del> </del> |                                               | 27.72  |             |      | = 1      | اختدانت        |        | 227.00     | i         | 4     |
| ROJECT  |        | .l           |                                               |        |             |      |          |                | 1 .    |            |           | Ι.    |
| TAL     | - FF   | 2204         | 605                                           | 110    | 1372        | 124  | 181      | 1035           | 302    |            | 1572      | 71    |
| JIAL.   | 65     | 2204         | 603                                           | 118    | 1314        | 12-  | 101      | 1030           | 302    |            | 1312      | 3 55  |
|         |        |              |                                               |        |             |      |          | ^ ^ ^          |        |            |           |       |
|         |        | 4 6 6        |                                               |        |             |      |          | 4 6 4          |        | <b>4</b> € |           | 货卢帕   |
| ANE     | 1 0    | 1 0 1        | 0 0                                           | 110    | 2 0 0       | 1 0  | 10       | 1 0 1          | TO O.  | 0101       | 2 0       | 1101  |
|         | 1.     |              |                                               |        | . , , .     | 1 .  | .,,,,    |                | ماديد  |            |           | - 1   |
|         | Phasic | ng f         | RTOR                                          | Phasic | ng F        | RTOR | Phasir   | ng f           | RTOR   | Phasin     | ng        | RTOR  |
|         |        |              | ATA                                           | Dom    | <u>.</u> -: | Auto | Don      | <u> </u>       | A code | 0          |           | 4.460 |
| IGNAL   | Pern   | n /          | Auto                                          | Pem    | ภ . *       | Auto | Pern     | n /            | Auto   | Pem        | n :-      | Auto  |

|                                                                   | 8: 118               |                  |             |     |
|-------------------------------------------------------------------|----------------------|------------------|-------------|-----|
| EastBound                                                         | ^                    | WestBound        | V/C RATIO   | LOS |
| A: \$48<br>B: 0                                                   | [                    | A: 669<br>B: 181 | 9.09 - 0.60 | A   |
| B:                                                                |                      | v                | 0.61 - 0.70 | 8   |
|                                                                   | A: 1405              |                  | 0.71 - 0.80 | С   |
| A = Adjusted Through/Right Volume<br>B = Adjusted Left Volume     | B: 65                |                  | 0.81 - 0.90 | D   |
| * = ATSAC Benefit                                                 | [                    |                  | 0.91 - 1.00 | E   |
| Results  North/South Critical Moveme  West/East Critical Movement |                      | S/B)             |             |     |
| V/C = 1405                                                        | + 11# + 181<br>*1500 | + 548 × 1.431    | LOS =       | F   |

Developed by Chun Yesng 12/1

1618\_CBP

CalcaDB August 26, 2003 , Yuesday 04:39:15 PM

#### INTERSECTION DATA SUMMARY SHEET

| MS: !       | Vermont Av | W/E:        | Jefferson Bi | I/S No:    | 19 |
|-------------|------------|-------------|--------------|------------|----|
| Амирм: РМ   | Comme      | nts;        |              |            |    |
| COUNT DATE: |            | STUDY DATE: |              | TH FACTOR: |    |

|          | NORTHBOUND |              |             | LT TH RT |              |      | WESTBOUND I |       |         | EASTBOUND BY |              |      |
|----------|------------|--------------|-------------|----------|--------------|------|-------------|-------|---------|--------------|--------------|------|
| EXISTING |            | 1223         | 8T<br>288 : | 1486     |              | 94   | 333         | 1090  | 168     | 110          | 1114         | 145  |
| AMBIENT  |            |              |             |          | ·            |      | 2277        | T     | C TOTEL | : 115.       |              | ì    |
| RELATED  |            |              |             |          | r ·          |      |             | Î     |         |              |              | :    |
| PROJECT  |            | i :          | :           |          |              |      |             | ĺ     |         |              |              |      |
| TOTAL    | 108        | 1223         | 288         | 1486     | 1240         | 94   | 333         | 1090  | 168     | 110          | 1114         | 145  |
|          | 46         | <b>ተ</b> 🚓 🕏 | 10 64       | ۹ ۾ .    | ት <i>ል</i> ት | p 44 | 4 £         | ተል የ  | 49      | <b>∮</b> \$  | <u>ቀ ሐ</u> የ | p 44 |
| LANE     |            |              |             |          |              |      |             | 2 0 0 |         |              |              | 0 0  |
|          | Phasin     | 9 6          | TOR         | Phasin   | g F          | RTOR | Phasi       | ng (  | RTOR    | Paasie       | ıg           | RTOR |
| SIGNAL   | Perm       |              | OLA         | Pem      |              | Auto | Prot-       | Fix . | Auto    | Pem          | n            | Auto |

| Herth/Bouth Critical Movement West/East Critical Movement V/C = 61 | its = B(WB) + A | (8/8)<br>(6/8)<br>13 + 638 - 2.67 | a 108 =     | f   |
|--------------------------------------------------------------------|-----------------|-----------------------------------|-------------|-----|
| - Results                                                          |                 |                                   | 0.81 - 1.60 |     |
| VERC Severy                                                        | B: 108          | j                                 | 0.91 - 1.69 | E   |
| A = Adjusted Through/Right Volume<br>B = Adjusted Left Volume      | B: 108          |                                   | 9.81 - 9.90 | D   |
|                                                                    | A: 612          | İ                                 | 0.71 - 0.80 | С   |
|                                                                    | NorthBound      |                                   | 0.61 - 0.70 | В   |
| 8: 110                                                             | 1               | B: 333                            | 0.00 - 0.60 | A   |
| A: 630                                                             | Δ               | WestBound<br>A: 545               | VIC RATIO   | LOS |
|                                                                    | B: 1486         |                                   |             |     |
|                                                                    | A: 620          |                                   |             |     |
|                                                                    | 8owthBound      | 1                                 |             |     |

CalcaDB August 26, 2003 , Tuesday 04:39:15 PM

#### INTERSECTION DATA SUMMARY SHEET

| NUS:        | Normandie Av | W/E: Expo | osition Bl Vs No: | 18 |
|-------------|--------------|-----------|-------------------|----|
| AMPM: THE   | Comments:    |           |                   |    |
| COUNT DATE: | STU          | DY DATE:  | GROWTH FACTOR:    |    |
|             |              |           |                   |    |

|          | NORTH   | GUND.   | THT WO 3 | OUND 1 | WEST      | BOUND      | FASTBOUND : |          |  |  |
|----------|---------|---------|----------|--------|-----------|------------|-------------|----------|--|--|
|          | LT T    |         | LT TI    |        | LT        | TH RT      | LY T        | H RT     |  |  |
| EXISTING | 103 10  | 51 50 , | 747   20 | 63 67  | 15 10     | D57   77 ° | . 8   85    | 53   140 |  |  |
| AMBIENT  |         |         |          |        | -         |            |             | T        |  |  |
| RELATED  |         |         |          |        |           |            |             | 1        |  |  |
| PROJECT  | 1.      |         |          |        | 7 - 7 - 7 |            |             | Ì        |  |  |
| TOTAL    | 103 10  | 51   50 | 747 200  | 53 67  | 15 10     | 057 77 .   | 8 85        | 3   140  |  |  |
| LARE     | 4 6 4 6 |         |          |        |           | \$ \$ p \$ |             |          |  |  |
|          | Phasing | RYOR    | Phasing  | RTOR   | Phasing   | RTOR       | Phasing     | RTOR     |  |  |
| SIGNAL.  | Perm    | Auto    | Perm     | Auto   | Perm      | Auto       | Perm        | Auto     |  |  |

| Critical Movements Diagram                                                                                                   | SouthBound A: 1965 B: 747              | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |                                                                                      |                         |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------|
| EastSound A: 347 B: 6  A = Adjusted Through/Right Volume B = Adjusted Left Volume - ATEAC Senefit                            | NorthBound  A: <u>651</u> B: 183       | WestBound A: 386 B: 15 ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V/C RATIO<br>9.00 - 0.60<br>9.61 - 9.70<br>9.71 - 9.80<br>9.81 - 6.90<br>9.91 - 1.80 | LOS<br>A<br>B<br>C<br>D |
| Results North/South Critical Movement Vices/East Critical Movement Vices/East Critical Movement Vices/East Critical Movement | ···· · · · · · · · · · · · · · · · · · | 0 1.066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LOS º                                                                                | F                       |

Governed by C

War of

Vermont Av

Volume/Lane/Signal Configurations

RELATED PROJECT

Phasing RTOR

EastBound
A: , 763 |
B: 118

Perm Auto

Critical Movements Diagram \*

A = Adjusted Through/Right Volume B = Adjusted Left Volume \* = ATSAC Benefit

Comments:

1618\_CBP

N/S

AMBIENT

LANE

AM/PM: (20) COUNT DATE: 21

RTOR

Auto

LOS

С

Đ

Prot-Fix

V/C RATIO

0.61 - 0.70

0.71 - 0.80

0.81 - 0.90

0.81 - 1.00

CalcaDB

NORTHBOUND SOUTHBOUND WESTBOUND EASTBOUND EXISTING 85 1097 65 . 125 2675 73 124 946 127 118 1418 88

Phasing

A: 537 B: 124

RTOR

TOTAL 85 1097 65 125 2675 73 124 946 127 118 1418 88

RTOR

Auto

1374

549

V/C = 85 + 1374 + 124 + 753 = 1.629 \*1375

85

Phasing

B: 125

West/East Critical Movements = B(W/B) + A(E/B)

Prot-Fix

Adams BI

GROWTH FACTOR:

INTERSECTION DATA SUMMARY SHEET

W/E:

STUDY DATE:

#### INTERSECTION DATA SUMMARY SHEET

| N/S:        | Normandie Av | W/E: _      | Jefferson Bl | VS No:       | 20 |
|-------------|--------------|-------------|--------------|--------------|----|
| ам/Рм: ЕМ   | Commen       | N:          |              |              |    |
| COUNT DATE: |              | STUDY DATE: | GRC          | WITH FACTOR: |    |

|          | NORTH            | BOUND          | C SOUTH        | BOUND   | L_WE    | TROUND  | LEASII             | ONND     |
|----------|------------------|----------------|----------------|---------|---------|---------|--------------------|----------|
|          | LT T             | H RY           |                | H RT    | LY      | TH RT   |                    | H RT     |
| EXISTING | 107 9            | 45 109         | 356 24         | 68 53   | 251     | 843 114 | 67 8               | 01   177 |
| AMBIENT  | ,                |                | -              |         |         |         |                    | T -      |
| RELATED  | ===              |                |                | :       | T- T    |         |                    | Ť        |
| PROJECT  |                  |                |                |         |         |         | ). The contract of |          |
| TOTAL    | 107 9            | 45 109         | 356 24         | 68   53 | 251     | 843 114 | 67 8               | 01   17  |
|          | <b>4</b> & A A A | ት ቁ ድ <i>ድ</i> | <b>ላ</b> ድ ት ደ | 2000年   | 4 6 4   | 金金卢州    | 4 6 4 6            | 2 & 0    |
| ANE      | 1 0 1 0          | 0 1 0 0        | 101            | 0 0     | 101     | 0.1100  |                    |          |
|          | Phasing          | RTOR           | Phasing        | RTOR    | Phasing | RTOR    | Phasing            | RTOR     |
| SIGNAL   | Perm             | Auto           | Perm           | Auto    | Perm    | Auto    | Perm               | Auto     |

| Critical Movements Diagram  EastBound  A: 461  B: 67  A = Adjusted Through/Right Volume  B = Adjusted Left Volume  - ATSAC Benefit | 8: 1251 B: 356  A | WestBound A: 479 B: 251 | V/C RATIO<br>0.60 - 0.60<br>0.51 - 0.76<br>0.71 - 0.60<br>0.81 - 0.90<br>0.91 - 1.00 | 1.05<br>A<br>8<br>C<br>D |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------|--------------------------------------------------------------------------------------|--------------------------|
| Results North/South Critical Movement West/East Critical Movement 107 V/C = 107                                                    |                   | E/B)                    | Los =                                                                                | F                        |

Developed by Chun Wong 12%

1618\_CBP

Developed by Chun Wong 12/9-

August 26, 2003 ,Tuesday 04:39:15 PM CalcaDB

#### INTERSECTION DATA SUMMARY SHEET

| N/S:        | Vermont Av | W/E:        | I-10 EB Ramps | VS No:     | 23 |
|-------------|------------|-------------|---------------|------------|----|
| АМ/РМ: ТТ   | Comments   | :           |               |            |    |
| COUNT DATE: |            | STUDY DATE: |               | TH FACTOR: |    |

|          | LNOR    | THEOU    | Ω      | SOUTHBOUND |              |       | L WE                                                                                | STROV        | ND     | L FASTBOUND |     |      |  |
|----------|---------|----------|--------|------------|--------------|-------|-------------------------------------------------------------------------------------|--------------|--------|-------------|-----|------|--|
|          | LT      | TH       | RT     | LT         | TH           | RT    | LT                                                                                  | TH           | RT     | LT          | TH  | RT   |  |
| EXISTING | 0       | 1309     | 103    | 358        | 1408         | 0     | 0                                                                                   | 0            | 0      | 492         | 12  | 1458 |  |
| AMBIENT  | T       | :        |        | - T        |              |       |                                                                                     | Γ            |        |             | i   |      |  |
| RELATED  |         | =. ===== | = 12 = | 1          |              |       |                                                                                     |              | T      | 7 -         | i   |      |  |
| PROJECT  |         |          |        |            | 1. 1 = .<br> |       |                                                                                     | T            |        |             | ĺ   |      |  |
| IATOI.   | 0       | 1309     | 103    | 358        | 1408         | Ō     | 0                                                                                   | 0            | 0      | 492         | 12  | 1458 |  |
|          | 4 £ 4   | · 🚓 な    | p 40   | 4 6 4      | * & &        | p 44  | 4 6                                                                                 | ት <b>ል</b> ት | £ # 4+ | 4 6 4       | £ 4 | # 4  |  |
| ANE      | 0 0 2   | 0 0      | 1 0    | 2 0 2      | 00           | 0   0 | 0 0                                                                                 | 0 0 [        | 0 0 0  | i 0 0       | 0 1 | 0    |  |
|          | Phasing | , ,      | TOR    | Phasin     | ; R          | FOR   | Phasin                                                                              | e e          | RTOR   | Phasing     |     | RTOR |  |
| SIGNAL   | Perm    | ' ' '    | Auto   | Prot-Fi    | x A          | uto   | <none< td=""><td></td><td>cnone&gt;</td><td>Perm</td><td></td><td>Auto</td></none<> |              | cnone> | Perm        |     | Auto |  |

|              | V/C =                      | <u> </u> | 197 -     |     | 0 +   | 1470         | 1.559 | LOS         | = F |
|--------------|----------------------------|----------|-----------|-----|-------|--------------|-------|-------------|-----|
|              | West/East Critical Movemen | rts =    | A(WS)     | • 1 | (E/8) |              |       |             |     |
|              | Horth/South Critical Movem | ents =   | A(H/B)    | + 1 | (8/8) |              |       |             |     |
| Results      |                            |          |           |     |       |              |       |             |     |
| · = AYSAC B  | paest                      | L        |           |     | j     |              |       | 0.61 - 1.60 | E   |
| 8 · Adjusted | Left Volume                | 8:       | ë         |     | 1     |              |       | 0.81 - 0.99 | Đ   |
| A n Adustad  | Through/Right Volume       | A:       | 665       |     | 1     |              |       | 0.71 - 0.80 | С   |
|              | L                          | T- Nor   | thBound ~ |     | 1     |              |       |             | _   |
|              | 8: 492                     |          | ı         |     | 8:    |              | .     | 0.61 - 0.70 | 8   |
|              |                            | 1        | T         |     | 1     | <del>-</del> |       | 0.80 - 0.60 | A   |
|              | EsstBound<br>A: 1470       |          | ۸         |     | A:    | tBound       |       | V/C RATIO   | 10  |
|              |                            | L        | 197       |     | J     |              |       |             |     |
|              |                            | B:       | 197       |     | 1     |              |       |             |     |
|              |                            | A:       | 704       |     |       |              |       |             |     |
|              |                            | FSou     | thBound " | _   | 7     |              |       |             |     |

#### 1618\_CBP August 26, 2003 ,Tuesday 04:39:15 PM CalcaDB INTERSECTION DATA SUMMARY SHEET rmandie Av W/E: Adams BI VS No: 22 Comments: амри: STUDY DATE: GROWTH FACTOR: COUNT DATE:

|          | NOH     | THBOU | sssowwidenes. | SOUTHBOUND |       |      | 100000000000000000000000000000000000000 | SIBOL    | 24/24 y 244500000000000000000000000000000000000 | FASTBOUND . |       |      |  |
|----------|---------|-------|---------------|------------|-------|------|-----------------------------------------|----------|-------------------------------------------------|-------------|-------|------|--|
|          | LT      | TH    | RT            | LT         | TH    | RT   | L7                                      | TH4      | RT                                              | LT          | TH    | RT   |  |
| EXISTING | 82      | 1109  | 116           | 188        | 2759  | 95   | 134                                     | 994      | 96                                              | 124         | 1338  | 88   |  |
| AMBIENT  | T       |       |               |            |       |      |                                         |          | T                                               |             |       | Γ    |  |
| RELATED  | I       |       |               |            |       |      |                                         |          | Ĺ                                               | TILL THE    | -     |      |  |
| PROJECT  | I       |       |               |            |       |      |                                         |          | L                                               |             |       | I    |  |
| TOTAL    | 82      | 1109  | 116           | 188        | 2759  | 95   | 134                                     | 994      | 96                                              | 124         | 1338  | 88   |  |
|          | 464     | A &   | *             | 4 8        | 수 숲 습 | p 44 | 4 6                                     | <b>A</b> | 6 14 41                                         | 4 8 4       | ን ል ና | p 4  |  |
| LANE     |         |       |               |            |       |      |                                         |          | 11010                                           |             |       |      |  |
|          | Phasing | , 6   | TOR           | Phasi      | ng f  | TOR  | Phasin                                  | 9        | RTOR                                            | Phasin      | a     | RTOR |  |
| SIGNAL   | Perm    |       | luto :        | Prot-      | Fix 1 | Auto | Pen                                     |          | Auto                                            | Prot-Fi     | e i   | Auto |  |

| Critical Movements Diagram                                                      | 8: 168                                           |                     |                                         |     |
|---------------------------------------------------------------------------------|--------------------------------------------------|---------------------|-----------------------------------------|-----|
| EsstBound A: 713                                                                | <del>                                     </del> | WestBound<br>A: 545 | Y/C RATIO                               | LOS |
|                                                                                 | T                                                | B: 134              | 0.00 - 0.60                             | A   |
| B: 124                                                                          |                                                  | 8: 134              | 0.61 - 0.70                             | 8   |
|                                                                                 | A: 613                                           |                     | 6.71 - 6.80                             | С   |
| <ul> <li>Asjusted Through/Right Volume</li> <li>Adjusted Left Volume</li> </ul> | B: 82                                            |                     | 0.81 - 0.90                             | D   |
| a ATBAC Benefit                                                                 | L                                                | j                   | 8.91 - 1.60                             | ε   |
| Results                                                                         |                                                  |                     | *************************************** |     |
| North/Bouth Critical Moves                                                      |                                                  | (8/8)               |                                         |     |
| WestEast Critical Movemen                                                       | 100 ° E(WE) + A                                  | (E/B)               |                                         |     |
|                                                                                 | 2 + 1427 + 13                                    | 4 + 713 - 1.643     | LOS                                     | a £ |
| V/C •                                                                           | 4376                                             | 5 1.043             | -                                       |     |

:яотоя нт моя а

:3/M

577L.

A: 714 :8

. 0 :8 813

0 | 1625 285

STUDY DATE:

яотя

B: 303

A: 332

maq

яогя

0 1 0 0 0 0 1 0

503 5

203

1-10 WB Ramps

AIC \* 522 + 813 +

WestVEsst Critical Movements ... A(W/B) + A(E/B)

Horth/South Critical Movements = B(N/B) + A(S/B)

CalcaDB

1616\_CBP

| SHEEL | <b>YAAMMUS</b>                      | ATAG      | NOLLO | LERSE | LN |
|-------|-------------------------------------|-----------|-------|-------|----|
|       | , , a a a a a a a a a a a a a a a a | 0-20 0 02 |       |       |    |

| E 0   S   C   O   O   O   O   O   O   O   O   O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | яотя<br>otuA | gnizari9<br>rm99 | AOTA<br><snon></snon> | Qnizadq<br><9non> | яотя<br>otuA | Priseriq<br>xi3-fo19 | яотя<br>отиА | gnizeri9<br>mrs9 | JANĐ                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|-----------------------|-------------------|--------------|----------------------|--------------|------------------|---------------------------|
| VIED VIED VIED VIED VIED VIED VIED VIED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01001        | iolo t           | 0 0 0 0               | 0 0 0 0           | 0 0 0        | 1020                 | 0 1 0        |                  | /NE                       |
| VALED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 1643       | - 1 <u>52</u>    | 0 ] (                 | 0 0               | 0 5          | 3561 376             | 1 142        | 0 110            | JATO                      |
| 20   1161   142   132   0   0   0   0   0   10   10   10   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>     |                  |                       |                   |              |                      |              |                  | MBIENT<br>ELATED<br>TOECT |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18 HT        | 17               | 18 H                  | u 11              | 1.8          | HL LT                | 18 1         | HL 17            | ONITZI                    |
| Zenter den de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de |              |                  |                       |                   |              |                      |              |                  | , Volume                  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | :AOTOA           | 4 нтмояю              |                   | :31          |                      | -            |                  | _                         |
| WPM: PATE: STUDY DATE: GROWTH FACTOR:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                  |                       |                   |              | :a/M                 | Солин        | RXCI             | na:<br>na:                |

A = Adjusted Throughtflight Volu B = Adjusted Left Volume - - AZTA = -

1618\_CBP

DEMENDER BY COMO MANN 15/20

A » Adjusted ThroughMaght Volume B » Adjusted Left Volume • « ATSAC Benefit

X14-1019

яотя

EXISTING 464 1427 0 0 1625 285

464 1427 0

vA InormsV

Phasting

**EANE** 

PROJECT TELATED TA TNBIBMA

COUNT DATE:

Med 21;ec:Ad yabsouT, COOS ,3S fauguA

00.F - F6.0

V/C RATIO

CalcaDB

+ 9/5 + 185

A: 587 0 :8

WestEsst Critical Movements = A(W/B) + A(E/B)

Horingouth Critical Movements ... A(WB) + B(S/B)

152 :0

1643

INTERSECTION DATA SUMMARY SHEET

| WESTBOUND FASTBOUND ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TA HT TA    | TR HT                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3           | nothsrugilino Disngil2\ | iena.llemukoV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |             |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| евомти ғастов:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | STAG YOUTS  |                         | OUNT DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                         | STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :3TAD YOUTS | Com                     | MPM: PATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Mormandie Av            | 00000000F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

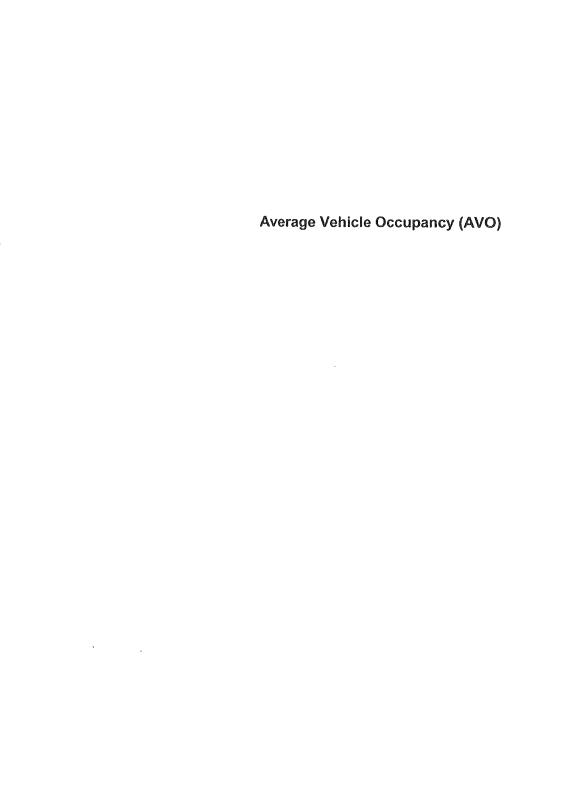
|             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |                                                  | otuA                                                                                        |                                          |                                          | ohiA                                    | HO1>                                    | 3 . 22                                 | enone                                 |                                            |
|-------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------|---------------------------------------|--------------------------------------------|
| Brissila    |                       | ROT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t28.17 <sup>c</sup> ]                              | 6                                                | яотя                                                                                        | Isariq                                   | Su                                       | яотя                                    | stood9                                  | 84                                     | ROTR                                  |                                            |
| 2 0 1       | 0 0 7                 | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0101                                               | تا ة ا                                           | 616                                                                                         | 0 0                                      | Llo                                      | ملتان                                   | loio                                    | 010                                    | olo                                   | 0                                          |
|             |                       | امطم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 6                                                |                                                  | ab al                                                                                       |                                          |                                          |                                         |                                         |                                        |                                       | <u>ٽ</u><br>الم                            |
| V V V       | V V (                 | ** *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V ¥                                                | · v v                                            | ** * \                                                                                      | V V                                      | V V                                      | ** * V                                  | V 1                                     | ~ ~                                    | * •                                   | •                                          |
| 293         | BLLL                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                  | 1466                                             | 345                                                                                         | 247                                      | 0                                        | 387                                     | 0                                       | 0                                      | 0                                     | _                                          |
| T           | <del></del>           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |                                                  |                                                                                             |                                          |                                          |                                         |                                         |                                        | <sub>]</sub>                          |                                            |
| <del></del> |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |                                                  | -=-:us-                                                                                     |                                          |                                          | 12 TE 12                                | =                                       |                                        | ·                                     | =:                                         |
| <del></del> |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ===                                                |                                                  |                                                                                             |                                          | 3 <del></del>                            |                                         | =:-=:;                                  |                                        | Ť                                     | =                                          |
| 293         | 6411                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                  | 9971                                             | SPE                                                                                         | 247                                      | o T                                      | 268                                     | 0                                       | 0                                      | 0                                     | - 12                                       |
| רג          | HL                    | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17                                                 | HL                                               | 18                                                                                          | רז                                       | HT                                       | TA                                      | 7.7                                     |                                        |                                       |                                            |
| ISON        | THBONK                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75                                                 | UTHBO                                            | ON.                                                                                         | X                                        | 38183                                    | ONT                                     |                                         | Oalsv                                  | ND.                                   | C                                          |
| 1 b         | 263<br>  263<br>  263 | 171   262   171   263   171   264   171   264   171   264   171   264   171   264   171   264   171   264   171   264   171   264   171   264   171   264   171   264   171   264   171   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264   264 | 0   25TF   E85<br>0   65TF   E85<br>0   65TF   E85 | 0 0 62 4 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 9971 0 0 0 1456<br>9971 0 0 0 1456<br>9971 0 0 0 1456<br>9971 0 0 0 1456<br>9971 0 0 0 1456 | 20 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 | 20 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 | 20 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 10   0   0   0   0   0   1   0   1   0   0 |

| _   |             |         |         |       | •  | 271.          |       |          | - * 28A                                |            |
|-----|-------------|---------|---------|-------|----|---------------|-------|----------|----------------------------------------|------------|
| o   | = 901       | 818.8 a | 0       | + 22  |    | 133           | +     | 683      | - " (41)                               |            |
|     |             |         |         | (6/3) |    | (BW)A         |       | E) WOULD | WeevEnel Critical they                 |            |
|     |             |         |         | (8/8) | ٠. | s(ws)         | . 1   | desmove  | Horishsonsh Cristesi M                 |            |
|     |             |         |         |       |    |               |       |          |                                        | ethusoft - |
| 3   | 09.1 - 16.9 |         |         | г     |    |               |       | ٦.       | 1694                                   | o ATEAC Be |
| a   | 68.9 - 18.9 |         |         |       |    | 293           | :8    |          | Felf Acteurs<br>Lincospyleibyt Acteurs | betaujbA = |
| 3   | 08.6 - 17.6 |         |         |       |    | D&S<br>punogu | Hoor: |          |                                        |            |
| 9   | 97.0 - 13.0 |         | 198     | :9    |    | 1             |       |          | 9 :9                                   |            |
| A   | 03.9 - 03.9 | "       | 255     | :•    |    | Ţ             |       |          | :v                                     |            |
| 601 | OTAR 2/Y    | L       | punogas | ·     |    | V             |       |          | _ brsuo@tea3                           |            |
|     |             |         |         |       |    |               | :8    |          |                                        |            |
|     |             |         |         |       |    | ccr           | :A    |          |                                        |            |
|     |             |         |         |       |    | - Punogra     | താള.  |          |                                        |            |

3 "\$O7






08.0 - 18.0

09.0 - 08.0

WC BATIO

40 4 2 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4

# APPENDIX D SUPPORTING DOCUMENTS AND REFERENCES



| TABLE 33 EXISTING COLISEUM PARKING SUPPLY |                  |                            |  |  |  |  |
|-------------------------------------------|------------------|----------------------------|--|--|--|--|
| LOCATION                                  | NUMBER OF SPACES | PERCENT OF TOTAL<br>SPACES |  |  |  |  |
| Exposition Park/Coliseum<br>Parking       | 7,890            | 41%                        |  |  |  |  |
| USC Campus Parking                        | $7,700^{1}$      | 40%                        |  |  |  |  |
| Parking in Small Lots or<br>Private Yards | 3,500            | 19%                        |  |  |  |  |
| TOTAL SPACES                              | 19,090           | 100%                       |  |  |  |  |

<sup>1</sup>USC has recently added 500 spaces in addition to the 7,700 available for public parking, but these are only temporary until a new building is constructed on the 500-space lot.

Figure 64 illustrates the access points to parking facilities at Exposition Park and the directions from which they can be approached. The access points are concentrated along Martin Luther King Jr. Boulevard with one access point on Exposition Boulevard at Menlo Avenue. Only courtesy parking (VIP) can be accessed via Figueroa Street.

#### Trip Generation and Parking Demand

As is discussed in the body of this report, the Coliseum is host to a variety of major entertainment events throughout the year. Events taking place in the Coliseum include professional football, college football, soccer, concerts, motocross and other special events. Although the fixed seating capacity at the Coliseum is 92,516 seats, there is a wide variation in attendance. Average attendance ranges from approximately 18,000 persons for soccer games to 65,000 persons for a USC college football game. Maximum attendance in recent years for the largest events, football and concerts, ranged from 75,313 persons for a concert to 86,091 persons for a USC football game and 81,237 for a Raiders NFL playoff game.<sup>1</sup>

An estimate of vehicle trips generated by an event can be determined by noting that 20 percent of the Coliseum patrons arrived by transit or charter bus and that those patrons that arrived by private

<sup>&</sup>lt;sup>1</sup>It is noted that the attendance at the January 1991 NFL playoff game between the Los Angeles Raiders and the Cincinnati Bengals was 91,058 persons. However, the traffic analysis examined attendance data for the three-year period from 1988 through 1990.

<sup>&</sup>quot;Los Angeles Memorial Coliseum Renovation Project", DKS Associates, 1991.

automobile have an average vehicle occupancy ratio of 2.7 persons per vehicle.<sup>2</sup> This compares to auto occupancy ratios of 2.9 at Dodger Stadium and 2.8 at Greek Theater events.<sup>3</sup> For example, if the Coliseum were at capacity (92,516 persons), it would mean that approximately 18,500 persons arrived by transit or charter bus (20 percent) and that the remaining 74,000 patrons arrived in approximately 27,400 cars. In this context, typical vehicle trip generation for average attendance at various Coliseum events ranges from approximately 5,000 vehicles to 19,700 vehicles and is shown in Table 34.

| TABLE 34<br>AVERAGE ONE-WAY VEHICLE TRIP GENERATION AT COLISEUM EVENTS |                       |                                                     |                                                 |                                                          |  |  |  |  |
|------------------------------------------------------------------------|-----------------------|-----------------------------------------------------|-------------------------------------------------|----------------------------------------------------------|--|--|--|--|
| EVENT TYPE                                                             | AVERAGE<br>ATTENDANCE | PATRONS<br>ARRIVING BY<br>TRANSIT OR<br>CHARTER BUS | PATRONS<br>ARRIVING BY<br>PRIVATE<br>AUTOMOBILE | AVERAGE ONE WAY VEHICLE TRIP GENERATION (Parking demand) |  |  |  |  |
| College Football                                                       | 65,178                | 13,036                                              | 52,142                                          | 19,312                                                   |  |  |  |  |
| Professional<br>Football                                               | 47,032                | 9,406                                               | 37,626                                          | 13,936                                                   |  |  |  |  |
| Soccer                                                                 | 17,757                | 3,551                                               | 14,206                                          | 5,261                                                    |  |  |  |  |
| Concerts                                                               | 66,598                | 13,320                                              | 53,278                                          | 19,732                                                   |  |  |  |  |
| Motocross                                                              | 35,391                | 7,078                                               | 28,313                                          | 10,486                                                   |  |  |  |  |
| Special Events                                                         | 16,700                | 3,340                                               | 13,360                                          | 4,948                                                    |  |  |  |  |

Maximum trip generation in recent years for football and concerts ranges from approximately 22,000 vehicles to approximately 26,000 vehicles and is shown in Table 35. These values represent the number of vehicles travelling to/from the Coliseum and seeking a parking space. Each results in two one-way trips; one inbound and one outbound.

<sup>&</sup>lt;sup>2</sup>"Feasibility Study of Estimated Parking Demand and Revenues," Wilbur Smith Associates, 1986, pg. 8; also corroborated by the City of Los Angeles Department of Transportation in "1984 Olympic Games Transportation Planning Status Report," September 1983.

<sup>&</sup>lt;sup>3</sup>The Coliseum parking operators, Five Star Parking, estimate that vehicle occupancy ratios are, at a minimum, 3.0 persons per vehicle. The Wilbur Smith study which served as a basis for trip calculation in this EIR analysis makes has indicated a ridership of 2.7 persons per car. This would represent a conservative or "worst-case" analysis, as non-documented observations by parking lot operators would indicate higher vehicle occupancy.

# ARIZONA CARDINALS NFL STADIUM

TRAFFIC ANALYSIS

Glendale, Arizona

**JUNE 2003** 

PREPARED FOR

**ARIZONA CARDINALS** 

PREPARED BY



There are examples where the arrival and departure patterns are more spread out than the percentages shown above. Using these lower percentages would reduce the arrival/departure patterns and reduce the overall traffic impact of the stadium. However, to remain conservative, the higher peaks will be used in this analysis.

In addition, these arrival/departure patterns are conservative because the location of the Glendale Town Center with over 850,000 square feet of Phase 1 retail, restaurant, and entertainment space should offer opportunities for spectators to come early and stay after the game to eat or visit the shops and entertainment venues.

#### **VEHICLE OCCUPANCY**

The average number of occupants per vehicle significantly affects the total number of vehicles that have to be accommodated at the stadium. For the purposes of this analysis, a vehicle occupancy rate of 3.0 persons per vehicle will be assumed. Again, this is slightly lower than the 3.2 - 3.3 persons/vehicle average for the National Football League venues, but in an effort to produce a conservative analysis, the 3.0 occupancy level will be used.

#### **PROJECT TRAFFIC**

With the assumptions above, a sold-out event would produce the following traffic levels:

#### **Project Traffic Levels**

Number of Automobiles = 63,000 tickets x 85% auto arrival = 17,850 automobiles 3.0 persons/auto

Number of Buses = 63,000 tickets x 15% bus arrival = 236 buses 40.0 persons/bus

# TRAFFIC IMPACT ANALYSIS FOR THE PROPOSED LOS ANGELES SPORTS AND ENTERTAINMENT COMPLEX

PREPARED FOR:

L. A. ARENA COMPANY LLC

KORVE ENGINEERING, INC. MARCH 18, 1997

- The extent to which downtown parking facilities (remote from the Arena site) will remain open late in the evening to accommodate CBD employees who are also Arena patrons,
- The cost of parking at or near the Arena, and
- The extent to which CBD employees who are already transit commuters are able to find a convenient way home after an event that concludes in the late evening hours, given the constraints of transit service at that hour (though Blue Line rail service, for example, currently runs until 11:00 11:30 PM every night).

The specific degree of such transit-oriented travel, therefore, is difficult to estimate. It is interesting to note that the City of Los Angeles Department of Transportation has estimated that approximately 20 percent of the spectators at the Los Angeles Memorial Coliseum, which is located a short distance south of the CBD, arrive via a non-auto mode (Source: Wilbur Smith Associates, *Feasibility Study of Estimated Parking Demand and Revenues*, prepared for the Los Angeles Memorial Coliseum Commission, June 1986). This figure is probably higher than would be achieved at an arena, however, due to the difference in attendance levels and the higher levels of congestion that occur at a stadium the size of the Coliseum. While the operation of the Coliseum may be different from that of the proposed Arena, the transit usage characteristics of Coliseum patrons are believed to be indicative of what could ultimately be achieved at the Arena.

For the purposes of this analysis, it has been assumed that 10 percent of the Arena patrons will arrive via some non-auto mode (i.e., bus, rail, or walk). This is felt to be a reasonable, yet conservative, estimate for this evaluation.

#### **Auto Occupancy**

A critical consideration in determining the volume of traffic generated by the Arena is the average auto occupancy of the remaining 90 percent of the Arena patrons. Substantial research has been performed in this regard.

Clearly, the average auto occupancy of arena facilities is higher than is typically found in connection with commute traffic or most other trip purposes. Sporting events and other arena events attract families, couples, and groups of friends who travel together as part of the social experience.

While the actual auto occupancy varies depending on location, type of event, etc., research has indicated that typical rates range from approximately 2.0 persons per vehicle to as high as 4.0 persons per vehicle. According to the Los Angeles Memorial Coliseum parking study referred to above, LADOT has determined that the automobile occupancy at Coliseum events averages 2.7 persons per car. This factor is consistent with the results of studies at other locations. For example, the traffic impact analysis prepared in connection with the Alameda District Plan in Los Angeles included consideration of a sports arena as a possible alternative land use (Source: Korve Engineering, Inc., Alameda District Plan Transportation Study

Technical Memorandum – Equivalency Alternative Analysis, November 7, 1995). According to that document, survey data for similar facilities in San Francisco, Oakland, San Diego, and Boston indicated that the observed auto occupancy rate at those locations was typically approximately 2.75 persons per vehicle. Thus, that rate was employed in the Alameda District Plan analysis. Furthermore, the ITE document, *Traffic Considerations for Special Events*, presents auto occupancy information from eight stadium locations. Generally, the auto occupancy rates for events at those locations are in the range of 2.5 - 3.5, though some fall outside that range. Auto occupancy information for an additional five stadium locations is presented in the ITE *Transportation and Traffic Engineering Handbook*. The information provided there is generally consistent with the other data described here.

For this analysis, therefore, an average auto occupancy rate of 2.75 persons per vehicle has been assumed.

#### **Trip Generation Summary**

As described above, the key factors in determining the total spectator vehicle-trip generation for the proposed Arena are as follows:

- Mode Split -- 10 percent transit/walk/non-auto and 90 percent automobile.
- Auto occupancy -- 2.75 persons per vehicle average.

Applying these factors to the ultimate 22,000-seat capacity of the facility indicates that 2,200 patrons will arrive via some non-automobile mode, while 19,800 individuals will arrive in automobiles. Given the auto occupancy factor described above, a total of 7,200 automobile trips will be generated by a sold-out event at the Arena. These automobile trips will then be distributed across the two-hour period prior to an event as described above.

Table 8 summarizes the employee and spectator trip generation estimate for the proposed Arena, including not only the total number of auto-trips to be generated, but also the temporal distribution (by half-hour period) of those trips during the analysis time periods. As shown, during the typical PM peak hour, the Arena is projected to generate a total of 605 vehicle-trips, with 550 inbound and 55 outbound. Between 5:30 and 6:30 PM, the estimated number of Arena-generated trips increases to 1,512, including 1,482 inbound and 30 outbound trips. During the 6:00 - 7:00 PM hour, the number of outbound trips falls to zero, with 3,242 inbound trips. Finally, during the one-hour period immediately preceding a sold-out event, the Arena will generate 4,680 vehicle-trips, all inbound.

The trip generation assumptions employed in this analysis are intended to provide a conservative, "worst case" evaluation of the traffic impacts associated with the proposed Arena. For example, the analysis has considered only the effects of a sold-out event attended by 22,000 people, though the majority of events at the Arena will attract fewer than that.

Korve Engineering, Inc. Page 48 March 18, 1997

| r                       |                           |               |        |          |             |     |  |
|-------------------------|---------------------------|---------------|--------|----------|-------------|-----|--|
|                         | Table 8                   |               |        |          |             |     |  |
| Trip Generation Summary |                           |               |        |          |             |     |  |
|                         | Spectator Trips (Inbound) |               | Employ | ee Trips | Total Trips |     |  |
| Time Period             | % of Total<br>Spectators  | Vehicle-Trips | In     | Out      | <u>In</u>   | Out |  |
| 5:00 - 5:30 PM          | 0%                        | 0             | 150    | 25       | 150         | 25  |  |
| 5:30 - 6:00 PM          | 5%                        | 360           | 40     | 30       | 400         | 30  |  |
| 6:00 - 6:30 PM          | 15%                       | 1,080         | 2      | 0        | 1,082       | 0   |  |
| 6:30 - 7:00 PM          | 30%                       | 2,160         | 0      | 0        | 2,160       | 0   |  |
| 7:00 - 7:30 PM          | 35%                       | 2,520         | 0      | 0        | 2,520       | 0   |  |
| 7:30 - 8:00 PM          | 15%                       | 1,080         | 0      | 0        | 1,080       | 0   |  |
| TOTAL                   | 100%                      | 7,200         | 192    | 55       | 7,392       | 55  |  |

#### **Arena Trip Distribution**

The regional distribution of automobile trips to and from the proposed Arena was derived from several sources.

Of particular interest in developing this information were the trip distribution patterns for existing season ticket holders for the Los Angeles Kings and the Los Angeles Lakers. Information was provided by those organizations indicating the locations of current season ticket holders in the Los Angeles region. Though there is some difference between those two sources (with higher levels of interest in the Kings apparent in areas having active youth hockey programs), the overall patterns were not substantially different. Such differences were further considered to be of little consequence, as it is likely that a relocation of the two teams to the downtown area would result in some redistribution of spectator travel patterns.

Further, it must be noted that the season ticket holder information must be used with a high degree of care. In particular, several factors affect the validity of this information and the ability to directly apply it to this analysis. For example, some portion of the season tickets are sold to corporations, who use the tickets as employee benefits or as a promotional tool with clients and potential clients. Thus, the origin of the spectator might be different than the address of record for the ticket holder.

A similar consideration applies even to season tickets that are held by individuals. For weekday events, in particular, such individuals might be traveling to the Arena from their work location rather than from home. Further, many season tickets are sold to consortiums of several individuals, who then split up the available tickets among themselves. If a group of

Korve Engineering, Inc. Page 49 March 18, 1997



#### Parking/Access

A key component in how the access system is ultimately used by patrons of the Coliseum is the relative accessibility, supply and location of parking in the Coliseum vicinity. Typically, access routes are chosen by the Coliseum patrons in anticipation of where they will find parking. Figures 62 and 63 indicate the locations of off-street parking at the Coliseum and on-street/front yard parking in adjacent neighborhoods, respectively. Often this system is unpredictable - particularly for infrequent Coliseum visitors - due to unanticipated prohibited turns, street closures, or impassable intersections that cause re-routing, and parking lots that when full are closed with minimal visible signing to direct people elsewhere causing additional vehicle circulation. As will be discussed later in this analysis, drivers' preferred access routes to parking facilities creates imbalances in the distribution of traffic into the Coliseum area. A large percentage of drivers attempt to use the Harbor Freeway and either Exposition Boulevard or Martin Luther King Jr. Boulevard to reach Exposition Park parking lots because these are perceived by many to be the shortest and most direct routes to the parking lots. They are, however, also the most congested and not necessarily the fastest approach routes. In addition, the supply of parking outside of Exposition Park creates typically high pedestrian street crossing volumes, which further impacts traffic operations principally along Exposition Boulevard, Figueroa Street, Martin Luther King Jr. Boulevard, and Vermont Avenue.

Traditionally, Coliseum parking is provided in five basic areas:

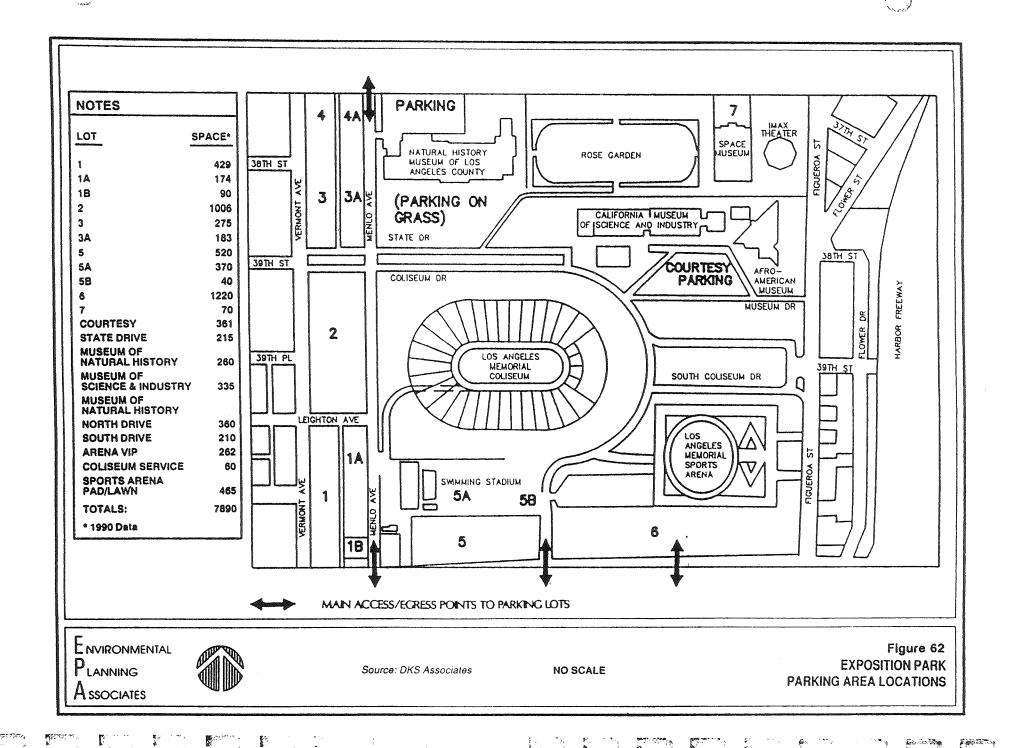
- Exposition Park Parking Lots
- USC Campus Parking Lots
- Private Parking Lots located primarily along Vermont Avenue, Martin Luther King Jr. Boulevard,
   Hoover Street and Figueroa Street
- On-Street Curb Parking in residential areas adjacent to the Coliseum
- An informal system of pay parking on parkways, driveways and on front lawns in adjacent residential areas.

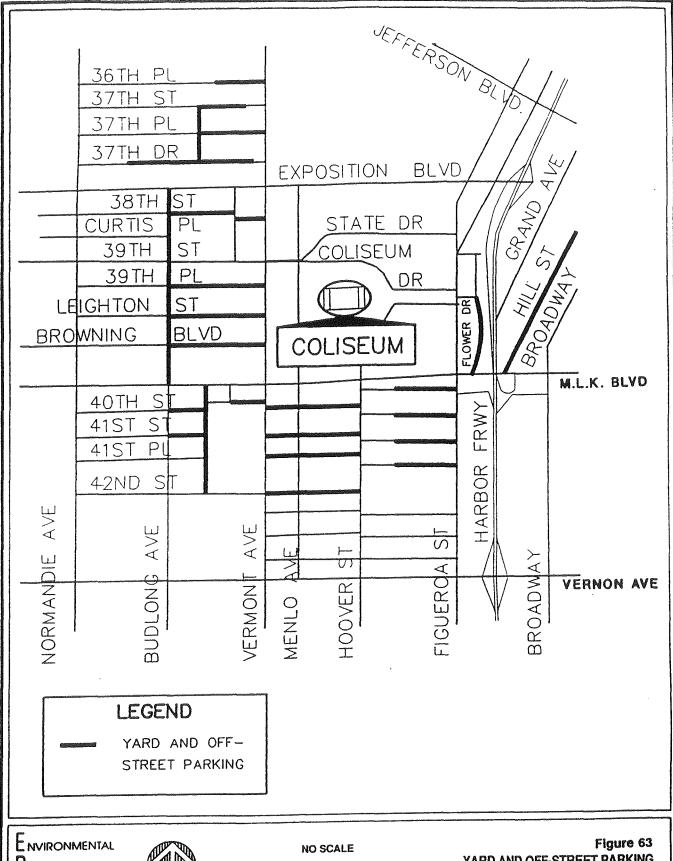
There are approximately 19,090 parking spaces in the Coliseum vicinity (Table 31 and Figures 62 and 63). Just over 40 percent of the spaces provided is Exposition Park/Coliseum parking. The parking lots are all owned by the California Museum of Science and Industry (CMSI). A private firm, Five Star Parking, is under contract to CMSI to operate all of the lots at Exposition Park. Lots available for game day parking on the USC Campus provide an additional 40 percent and parking in small lots and yards provides close to an additional 20 percent, as shown in Figure 64. A varying amount of on-street parking is also available for Coliseum event attendee's use.

| EXIS                                      | TABLE 31<br>TING COLISEUM PARKING SU | PPLY                       |
|-------------------------------------------|--------------------------------------|----------------------------|
| LOCATION                                  | NUMBER OF SPACES                     | PERCENT OF TOTAL<br>SPACES |
| Exposition Park/Coliseum Parking          | 7,890                                | 41%                        |
| USC Campus Parking                        | 7,700¹                               | 40%                        |
| Parking in Small Lots or<br>Private Yards | 3,500                                | 19%                        |
| TOTAL SPACES                              | 19,090                               | 100%                       |

these are only temporary until a new building is constructed on the 500-space lot.

Figure 65 illustrates the access points to parking facilities at Exposition Park and the directions from which


they can be approached. The access points are concentrated along Martin Luther King Jr. Boulevard with one access point on Exposition Boulevard at Menlo Avenue. Only courtesy parking (VIP) can be accessed via Figueroa Street.

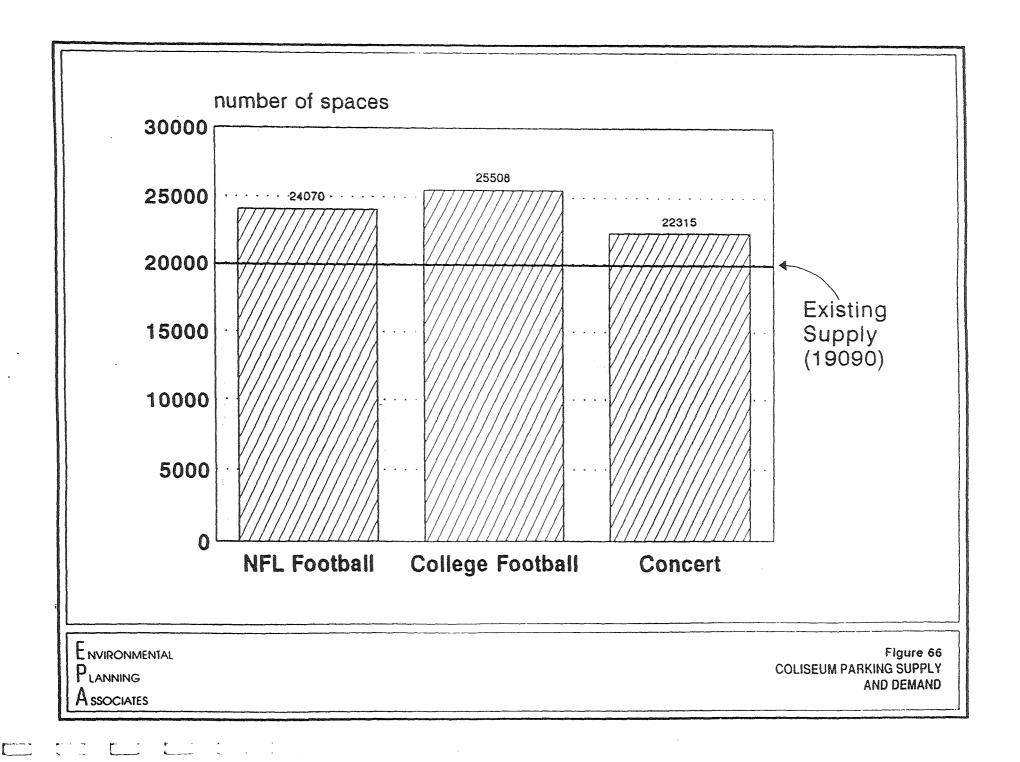

#### Trip Generation and Parking Demand

As is discussed in the body of this report, the Coliseum is host to a variety of major entertainment events throughout the year. Events taking place in the Coliseum include professional football, college football, soccer, concerts, motocross and other special events. Although the fixed seating capacity at the Coliseum is 92,516 seats, there is a wide variation in attendance. Average attendance ranges from approximately 18,000 persons for soccer games to 65,000 persons for a USC college football game. Maximum attendance in recent years for the largest events, football and concerts, ranged from 75,313 persons for a concert to 86,091 persons for a USC football game and 81,237 for a Raiders NFL playoff game.<sup>1</sup>

An estimate of vehicle trips generated by an event can be determined by noting that 20 percent of the Coliseum patrons arrived by transit or charter bus and that those patrons that arrived by private automobile

It is noted that the attendance at the January 1991 NFL playoff game between the Los Angeles Raiders and the Cincinnati Bengals was 91,058 persons. However, the traffic analysis examined attendance data for the three-year period from 1988 through 1990.






PLANNING
ASSOCIATES



Source: DKS Associates

YARD AND OFF-STREET PARKING PATTERN IN COLISEUM VICINITY

